Three fermions in a box at the unitary limit: universality in a lattice model

Ludovic Pricoupenko, Yvan Castin

To cite this version:

Ludovic Pricoupenko, Yvan Castin. Three fermions in a box at the unitary limit: universality in a lattice model. 2007. hal-00145589v1

HAL Id: hal-00145589
 https://hal.science/hal-00145589v1

Preprint submitted on 10 May 2007 (v1), last revised 26 Sep 2007 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Three fermions in a box at the unitary limit: universality in a lattice model

L. Pricoupenko ${ }^{1}$ and Y. Castin ${ }^{2}$
${ }^{1}$ Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, case courier 121, 4 place Jussieu, 75252 Paris Cedex 05, France.
${ }^{2}$ Laboratoire Kastler Brossel, Ecole normale supérieure, UPMC,
CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France.

(Dated: May 10, 2007)

Abstract

We consider three fermions with two spin components interacting on a lattice model with an infinite scattering length. Low lying eigenenergies in a cubic box with periodic boundary conditions, and for a zero total momentum, are calculated numerically for decreasing values of the lattice period. The results are compared to the predictions of the zero range Bethe-Peierls model in continuous space, where the interaction is replaced by contact conditions. The numerical computation, combined with analytical arguments, shows the absence of negative energy solution, and a rapid convergence of the lattice model towards the Bethe-Peierls model for a vanishing lattice period. This establishes for this system the universality of the zero interaction range limit.

PACS numbers: 03. 75. Ss, 05. 30. Fk, 21. 45. +v

Recent experimental progress allow to prepare a twocomponent Fermi atomic gas in the BEC-BCS crossover regime and to study its physical properties and its phase transitions 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. By using the concept of Feshbach resonance [17], an external magnetic field (B) permits to tune the two-body s-wave scattering length $a \propto-1 /\left(B-B_{0}\right)$ at an arbitrary large value $(|a|=\infty)$ and the unitary regime is achieved in present experiments for broad resonances, where the effective range in the two-body scattering amplitude is of the order of the Van der Waals range of interatomic forces 18, 19. Examples of s-wave broad resonances are
 or also for ${ }^{40} \mathrm{~K}$ atoms at $B_{0} \simeq 200 \mathrm{G}$ [3]. The unitary regime has the striking property of being universal; this was checked experimentally, this also appears in fixed node Monte Carlo simulations 20, 21 and more recently in exact Quantum Monte Carlo calculations [22, 23, 24. This shows that short range physics of the binary interaction does not play a significant role.
In this paper, we solve a simple model in order to exemplify the emergence of this property for three fermions in a cubic box, when the interaction range tends to zero. We compare our results to the commonly used Bethe-Peierls zero range model, where the interactions are replaced by contact conditions 25, 26, 27, 28, 29, 30, 31. We find excellent agreement, indicating that the zero range model is indeed well behaved for equal mass fermions.

Our simple model is a lattice model, of quite practical importance since it allows exact Quantum Monte Carlo simulations with no sign problem 22, 23, 24. It has already been described in details in Refs. 32, 33] so that we recall here only its main features. The positions \mathbf{r}_{i} of each particle i are discretized on a cubic lattice of period b. The Hamiltonian contains the kinetic term of each particle, $\mathbf{p}^{2} / 2 m$, such that the plane wave of wave vector \mathbf{k} has an energy :

$$
\begin{equation*}
\epsilon_{\mathbf{k}}=\frac{\hbar^{2} k^{2}}{2 m} \tag{1}
\end{equation*}
$$

Here the wave vector is restricted to the first Brillouin zone of the lattice :

$$
\begin{equation*}
\mathbf{k} \in \mathcal{D} \equiv\left[-\pi / b, \pi / b\left[^{3}\right.\right. \tag{2}
\end{equation*}
$$

We enclose the system in a cubic box of size L with periodic boundary conditions, so that the components $\left\{k_{\alpha}\right\}_{\alpha \in\{x, y, z\}}$ of \mathbf{k} are integer multiples of $2 \pi / L$. In what follows we shall for convenience restrict our computations to the case where the ratio $L / b=2 N+1$ is an odd integer, so that $k_{\alpha}=2 \pi n_{\alpha} / L$ with $n_{\alpha} \in\{-N,-N+1, \ldots, N\}$. The Hamiltonian also contains the interaction potential between opposite spin fermions i and j, which is a discrete delta on the lattice:

$$
\begin{equation*}
V\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)=\frac{g_{0}}{b^{3}} \delta_{\mathbf{r}_{i}, \mathbf{r}_{j}} \tag{3}
\end{equation*}
$$

The bare coupling constant g_{0} is adjusted in order to reproduce the desired value of the s-wave scattering length a between two opposite spin particles 31, 32, 33]:

$$
\begin{equation*}
\frac{1}{g_{0}}-\frac{1}{g}=-\int_{\mathcal{D}} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{2 \epsilon_{\mathbf{k}}}=-\frac{m K}{4 \pi \hbar^{2} b} \tag{4}
\end{equation*}
$$

where $K=2.44274960780 \ldots$, and $g=4 \pi \hbar^{2} a / m$ is the usual effective s-wave coupling constant. The effective range r_{e} of the interaction in this lattice model is proportional to the lattice period, $r_{e} \simeq 0.337 b$ 31], and the limit $b \rightarrow 0$ is equivalent to the limit of zero range and zero effective range for the interaction (34.

We first solve the problem for two opposite spin fermions in the box, in the singlet spin state $|s\rangle=(\mid \uparrow \downarrow$ $\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}$, by looking for eigenstates of eigenenergy E with a ket of the form $|s\rangle \otimes|\phi\rangle$. We restrict to the case of a zero total momentum 355, so that the orbital part $|\phi\rangle$ may be expanded on $|\mathbf{k},-\mathbf{k}\rangle=|1: \mathbf{k}\rangle \otimes|2:-\mathbf{k}\rangle$, where $|1: \mathbf{k}\rangle$ is the normalized ket representing particle 1 with wave vector \mathbf{k}. The corresponding wavefunction is $\langle\mathbf{r} \mid \mathbf{k}\rangle=e^{i \mathbf{k} \cdot \mathbf{r}} / L^{3 / 2}$. Schrödinger's equation then reduces
to:

$$
\begin{equation*}
\left(2 \epsilon_{\mathbf{k}}-E\right)\langle\mathbf{k},-\mathbf{k} \mid \phi\rangle+\frac{g_{0}}{L^{3 / 2}}\langle\mathbf{r}, \mathbf{r} \mid \phi\rangle=0 \tag{5}
\end{equation*}
$$

where the last term does not depend on a common position \mathbf{r} of the two particles. A first type of eigenstates corresponds to $\langle\mathbf{r}, \mathbf{r} \mid \phi\rangle=0$: these eigenstates have a zero probability to have two particles at the same point, and are also eigenstates of the non-interacting case. An example of such a state with the correct exchange symmetry is given by the wavefunction:

$$
\begin{equation*}
\phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \propto \cos \left[\frac{2 \pi}{L}\left(x_{1}-x_{2}\right)\right]-\cos \left[\frac{2 \pi}{L}\left(y_{1}-y_{2}\right)\right] . \tag{6}
\end{equation*}
$$

We are interested here in the states of the second type, what we call 'interacting' states, such that $\langle\mathbf{r}, \mathbf{r} \mid \phi\rangle \neq 0$. Treating the interacting term in Eq. (5) as a source term, one expresses $|\phi\rangle$ in terms of $\langle\mathbf{r}, \mathbf{r} \mid \phi\rangle$ and a sum over \mathbf{k}. Projecting the resulting expression onto $|\mathbf{r}, \mathbf{r}\rangle$ leads to a closed equation (now $E \neq 2 \epsilon_{\mathbf{k}}$):

$$
\begin{equation*}
\frac{1}{g_{0}}+\frac{1}{L^{3}} \sum_{\mathbf{k} \in \mathcal{D}} \frac{1}{2 \epsilon_{\mathbf{k}}-E}=0 \tag{7}
\end{equation*}
$$

The resulting implicit equation for E, of the form $u(E)=$ 0 , where $u(E)$ is the left hand side of Eq. (7), is then readily solved numerically; to this end, one notes that $u(E)$ has poles in each $E=2 \epsilon_{\mathbf{k}}$, and that it varies monotonically from $-\infty$ to $+\infty$ between two poles, so that $u(E)$ vanishes once and only once between two successive values of $2 \epsilon_{\mathbf{k}}$. In Fig. 1 , we show for $|a|=\infty$ the first low lying eigenenergies as functions of the lattice spacing; one observes a convergence to finite values in the $b / L \rightarrow 0$ limit, with a first correction scaling as b / L. A rewriting

FIG. 1: First three eigenenergies for two fermions in a box of size L for an infinite scattering length in the lattice model, as functions of the lattice period b. The total momentum of the eigenstates is fixed to zero. The computed eigenenergies are given by the plotting symbols, in units of $E_{0}=(2 \pi \hbar)^{2} / 2 m L^{2}$; the straight lines are linear fits performed on the data with $b / L<2 \times 10^{-2}$.
of the implicit equation for E that will reveal convenient in the $b=0$ limit is:

$$
\begin{equation*}
\frac{\pi L}{a}=\frac{(2 \pi \hbar)^{2}}{m L^{2}}\left[\frac{1}{E}+\sum_{\mathbf{k} \in \mathcal{D}-\mathbf{0}}\left(\frac{1}{E-2 \epsilon_{k}}+\frac{1}{2 \epsilon_{k}}\right)\right]+C(b) \tag{8}
\end{equation*}
$$

where the function $C(b)$ is defined by:

$$
\begin{equation*}
C(b)=\frac{(2 \pi \hbar)^{2} L}{2 m}\left(\int_{\mathcal{D}} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\epsilon_{\mathbf{k}}}-\frac{1}{L^{3}} \sum_{\mathbf{k} \in \mathcal{D}-\mathbf{0}} \frac{1}{\epsilon_{\mathbf{k}}}\right) \tag{9}
\end{equation*}
$$

and has a finite limit for $b \rightarrow 0$ which is given by $C(0) \simeq$ 8.91364 .

We now briefly check that the $b=0$ limit in Eq.(8) coincides with the prediction of the Bethe-Peierls model, which is a continuous space model where one replaces the interaction potential by the following contact conditions on the wavefunction 25, 26, 27, 28, 29, 30, 31]: there exists a function $S(\mathbf{R})$ such that,

$$
\begin{equation*}
\phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=S(\mathbf{R})\left(\frac{1}{r}-\frac{1}{a}\right)+O(r) \tag{10}
\end{equation*}
$$

where $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right| \rightarrow 0$ is the distance between the two particles and the center of mass position $\mathbf{R}=\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right) / 2$ is fixed. Using this model we arrive at an implicit equation for the energy of an interacting state exactly of the form obtained by taking the $b=0$ limit in Eq.(8), except that the constant $C(0)$ in the right hand side is replaced by [36:

$$
\begin{equation*}
C_{\mathrm{BP}}=\lim _{\sigma \rightarrow 0}\left(\int d^{3} \mathbf{u} \frac{e^{-u^{2} \sigma^{2}}}{u^{2}}-\sum_{\mathbf{n} \in \mathbb{Z}^{3 *}} \frac{e^{-n^{2} \sigma^{2}}}{n^{2}}\right) \tag{11}
\end{equation*}
$$

We expect the identity $C_{\mathrm{BP}}=C(0)$ from the general result that the Bethe-Peierls model for the two-body problem reproduces the zero range limit of a true interaction potential [27, 37. It is however instructive to check this property explicitly for the lattice model. One can show that:

$$
\begin{equation*}
C_{\mathrm{BP}}-C(0)=\lim _{\sigma \rightarrow 0} \sum_{\mathbf{n} \in \mathbb{Z}^{3 *}} \int_{\mathcal{I}} d^{3} \mathbf{u}\left[h_{\sigma}(\mathbf{n}+\mathbf{u})-h_{\sigma}(\mathbf{n})\right] \tag{12}
\end{equation*}
$$

where $h_{\sigma}(\mathbf{q})=\left[\exp \left(-q^{2} \sigma^{2}\right)-1\right] / q^{2}$ and the integration domain is $\mathcal{I}=[-1 / 2,1 / 2]^{3}$. The desired identity $C(0)=$ C_{BP} results from the fact that one can exchange the $\sigma=0$ limit and the summation over \mathbf{n} in the above equation (38, 39].
In the lattice model, it is possible to show analytically that the spectrum of the two-body problem for an infinite scattering length is bounded from below in the $b \rightarrow 0$ limit. Since $g_{0}<0$ for $|a|=\infty$, there exists at least one non-positive energy solution, by a variational argument. One then notes that the right hand side in Eq.(8) is a strictly decreasing function of E over $]-\infty, 0[$, that tends to $-\infty$ in $E=0^{+}$, so that at most one negative energy
solution may exist. Furthermore one can show that the $b \rightarrow 0$ limit of the right hand side tends to $+\infty$ when $E \rightarrow-\infty$ 40, whence this negative energy solution is finite 41.

We now turn to the problem of three fermions in the box. Schrödinger's equation is obtained by considering the particular spin component $(1: \uparrow ; 2: \uparrow ; 3: \downarrow)$, so that the interaction takes place only among the pairs $(1,3)$ and $(2,3)$, and in the lattice model one obtains:

$$
\begin{equation*}
\left[\sum_{i=1}^{3} \frac{\mathbf{p}_{i}^{2}}{2 m}+\frac{g_{0}}{b^{3}}\left(\delta_{\mathbf{r}_{1}, \mathbf{r}_{3}}+\delta_{\mathbf{r}_{2}, \mathbf{r}_{3}}\right)-E\right] \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=0 \tag{13}
\end{equation*}
$$

We restrict to a zero total momentum modulo $2 \pi / b$ along each direction (35]; using the fermionic antisymmetry condition for the transposition of particles 1 and 2, we express the part of Eq.(13) involving the interaction in terms of a function of the position of a single particle:

$$
\begin{align*}
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1}\right) & =f\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \tag{14}\\
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}\right) & =-f\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \tag{15}
\end{align*}
$$

We then project Eq. (13) on the plane waves in the box, which leads to:

$$
\begin{equation*}
\left\langle\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3} \mid \psi\right\rangle=\frac{g_{0} \delta_{\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}, \mathbf{0}}^{\bmod }}{E-\epsilon_{\mathbf{k}_{1}}-\epsilon_{\mathbf{k}_{2}}-\epsilon_{\mathbf{k}_{3}}}\left(f_{\mathbf{k}_{2}}-f_{\mathbf{k}_{1}}\right) \tag{16}
\end{equation*}
$$

where $\delta^{\text {mod }}$ is a discrete delta modulo $2 \pi / b$ along each direction, and where the Fourier transform of $f(\mathbf{r})$ is defined as:

$$
\begin{equation*}
f_{\mathbf{k}}=\langle\mathbf{k} \mid f\rangle=\frac{b^{3}}{L^{3 / 2}} \sum_{\mathbf{r} \in\left[0, L\left[^{3}\right.\right.} \exp (-i \mathbf{k} \cdot \mathbf{r}) f(\mathbf{r}) \tag{17}
\end{equation*}
$$

Replacing $f(\mathbf{r})$ in the right-hand side of this equation by its expression in terms of $\left\langle\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3} \mid \psi\right\rangle$ deduced from Eq.(14), we obtain a closed equation for $f_{\mathbf{k}}$:

$$
\begin{equation*}
\frac{L^{3}}{g_{0}} f_{\mathbf{k}}=f_{\mathbf{k}} \sum_{\mathbf{q} \in \mathcal{D}} a_{\mathbf{k}, \mathbf{q}}-\sum_{\mathbf{q} \in \mathcal{D}} a_{\mathbf{k}, \mathbf{q}} f_{\mathbf{q}} \tag{18}
\end{equation*}
$$

where we have introduced the matrix:

$$
\begin{equation*}
a_{\mathbf{k}, \mathbf{q}}=\frac{1}{E-\epsilon_{\mathbf{k}}-\epsilon_{\mathbf{q}}-\epsilon_{[\mathbf{k}+\mathbf{q}]_{\mathrm{FBZ}}}} \tag{19}
\end{equation*}
$$

and for an arbitrary wavevector $\mathbf{u},[\mathbf{u}]_{\text {FBZ }}$ denotes the vector in the first Brillouin zone that differs from \mathbf{u} by integer multiples of $2 \pi / b$ along each direction. The eigenvalues E of the three-body problem are such that the linear system (18) admits a non-identically vanishing solution $f_{\mathbf{k}}$, that is the determinant of this linear system is zero. Note that from Eq. (18), one has $f(\mathbf{0}) \propto \sum_{\mathbf{q} \in D} f_{\mathbf{k}}=$ 0 , a consequence of Pauli exclusion principle.

For $|a|=\infty$, we have computed numerically the first eigenenergies of the system, by calculating the determinant as a function of E. In Fig. 22 we give these eigenenergies as functions of the ratio b / L. A rapid convergence
in the zero- b limit is observed, with a linear dependence in b / L.

This rapid convergence illustrates the fact that fermions easily exhibit universal properties, as revealed by experiments; here b plays the role of the finite Van der Waals range of the true potential [given by $\left(m C_{6} / \hbar^{2}\right)^{1 / 4}$, where C_{6} is the Van der Waals coefficient], and L is of the order of the mean interparticle distance in a real gas. As an example, for ${ }^{6} \mathrm{Li}$ atoms $b \sim 3 \mathrm{~nm}$ and in experiments for the broad Feshbach resonance in the s-wave channel at $\sim 830 \mathrm{G}$ the atomic density is of the order of $10^{13} \mathrm{~cm}^{-3}$, so that the ratio b / L is of the order of 10^{-2} which is well within the zero- b limit.

FIG. 2: First eigenenergies of three fermions in a box of size L for an infinite scattering length in the lattice model, for a zero total momentum. The computed eigenenergies (diamonds) are given in units of $E_{0}=(2 \pi \hbar)^{2} / 2 m L^{2}$ for different values of the lattice period b. For functions $f(\mathbf{r})$ invariant by reflection along x, y, z and by arbitrary permutation of x, y, z we have computed the eigenenergies down to smaller values of b / L. The straight lines are a linear fit performed on the data over the range $b / L \leq 1 / 15$, except for the energy branch $E \simeq 2.89 E_{0}$ which becomes more slowly linear than the other branches. The eigenenergies predicted by the Bethe-Peierls model are given by stars in $b=0$.

The absence of negative three-body eigenenergies in the unitary limit can be obtained numerically very efficiently through a formal analogy between Eq.(18) and a set of rate equations on fictitious occupation numbers of the single particle modes in the box. Assuming $E \leq 0$, we
note $\Pi_{\mathbf{k}}$ the fictitious occupation number in the mode \mathbf{k} and $\Gamma_{\mathbf{k} \rightarrow \mathbf{q}}=g_{0} a_{\mathbf{q}, \mathbf{k}} / L^{3}$ the transition rate from the mode \mathbf{k} to the mode \mathbf{q}. From Eq.(19), one obtains the property $\Gamma_{\mathbf{k} \rightarrow \mathbf{q}}=\Gamma_{\mathbf{q} \rightarrow \mathbf{k}}$, and the rate equation can be written as:

$$
\begin{equation*}
\frac{d \Pi_{\mathbf{k}}}{d t}=-\left(\sum_{\mathbf{q} \neq \mathbf{k}} \Gamma_{\mathbf{k} \rightarrow \mathbf{q}}\right) \Pi_{\mathbf{k}}+\sum_{\mathbf{q} \neq \mathbf{k}} \Gamma_{\mathbf{q} \rightarrow \mathbf{k}} \Pi_{\mathbf{q}} \tag{20}
\end{equation*}
$$

The symmetric matrix $M(E)$, which defines the first order linear system in Eq. $20, d \vec{\Pi} / d t=M(E) \vec{\Pi}$, has the following properties: 1) its eigenvalues are non-positive, since it is a set of rate equations; 2) its eigenvalues are decreasing function of the energy E, which can be deduced from the fact that $d M(E) / d E$ is a matrix of rate equations and obeys property 1), and from the HellmanFeynman theorem; and 3) eigenmodes of Eq. (20) with an eigenvalue equal to -1 correspond to solutions $f_{\mathbf{k}}$ of Eq.(18) with $\Pi_{\mathbf{k}}=f_{\mathbf{k}} \exp (-t)$. Therefore, in order to check that there is no non-zero solution of Eq.(18) for $E<0$, it is sufficient to check that all eigenvalues of $M(E=0)$ are strictly larger than -1.

We have computed the lowest eigenvalue m_{0} of the matrix $M(E=0)$ as a function of the ratio b / L. A fit of m_{0} as a function of b / L suggests $\lim _{b \rightarrow 0} m_{0} \simeq-1$. To better see what happens in the zero b / L limit, we note that having $m_{0}>-1$ is equivalent to having ($m_{0}+$ $1) / g_{0}<0$, or more simply $\left(m_{0}+1\right) /(b / L)>0$. We have thus plotted in Fig. 3 the ratio $\left(m_{0}+1\right) /(b / L)$, which is seen to tend to a positive value for $b \rightarrow 0, \simeq 1.085$, with a negative slope; this excludes the existence of negative eigenenergies for the three fermions at infinite scattering length even in the small b limit 42].

In a last step, we compare the results of the lattice model to the predictions of the Bethe-Peierls approach for three fermions in a continuous space, which was shown to be a successful model in free space [28, 29] and in a harmonic trap at the unitary limit 30]. For this purpose, we introduce the function $F_{\mathbf{k}}$ which is the Fourier transform of the regular part of the wave function as $\left|\mathbf{r}_{1}-\mathbf{r}_{3}\right| \rightarrow 0$:

$$
\begin{equation*}
F(\mathbf{R})=\lim _{r \rightarrow 0}\left[r \psi\left(\mathbf{R}+\frac{\mathbf{r}}{2}, \mathbf{0}, \mathbf{R}-\frac{\mathbf{r}}{2}\right)\right] \tag{21}
\end{equation*}
$$

where we have used the translational invariance. By reproducing a calculation procedure analogous to what we have done for the lattice model, we obtain the following infinite dimension linear system:

$$
\begin{align*}
\frac{L^{3}}{g} F_{\mathbf{k}}=F_{\mathbf{k}}[& \left.A_{\mathbf{k}, \mathbf{0}}+\sum_{\mathbf{q} \neq \mathbf{0}}\left(A_{\mathbf{k}, \mathbf{q}}+\frac{1}{2 \epsilon_{\mathbf{q}}}\right)+\frac{m L^{2} C_{\mathrm{BP}}}{(2 \pi \hbar)^{2}}\right] \\
& -\sum_{\mathbf{q}} A_{\mathbf{k}, \mathbf{q}} F_{\mathbf{q}} \tag{22}
\end{align*}
$$

where the wavevectors \mathbf{k} and \mathbf{q} now run over the whole space $(2 \pi / L) \mathbb{Z}^{3}$, and:

$$
\begin{equation*}
A_{\mathbf{k}, \mathbf{q}}=\frac{1}{E-\epsilon_{\mathbf{k}}-\epsilon_{\mathbf{q}}-\epsilon_{\mathbf{k}+\mathbf{q}}} \tag{23}
\end{equation*}
$$

FIG. 3: Quantity $\left(m_{0}+1\right) /(b / L)$ as a function of the lattice period b. Here m_{0} is the lowest eigenvalue of the matrix $M(E)$ defining the linear system Eq. (2d), for $E=0$ and for an infinite scattering length. The fact that $m_{0}+1>0$ shows that there is no negative eigenenergy for the three fermions, see text. The symbols are obtained from a numerical calculation of m_{0}. The solid line is a linear fit over the range $b / L \leq$ $1 / 29$, not including the point with $b / L=1 / 81$: for this point, the matrix M has more than half a million lines so that m_{0} was obtained by a computer memory-saving iterative method rather than by a direct diagonalisation.

The similarity between the structure of (18) and (22) is apparent. Numerically, at $|a|=\infty$, we have verified the convergence between the two models as $b \rightarrow 0$ in Eq.(18), see Fig.2 Analytically, one can even formally check the equivalence between the two sets of equations (18) and (22): First, we eliminate the integral of $1 / \epsilon_{\mathbf{k}}$ between (4) and (9), to express $1 / g_{0}$ in terms of $1 / g$ and $C(b)$. Second, we replace $1 / g_{0}$ by the resulting expression in Eq.(18). Third, we take the limit $b \rightarrow 0$: we exactly recover the system (22). Hence, if the eigenenergy E and the corresponding function f in the lattice model have a well defined limit for $b=0$, this shows that the limit is given by the Bethe-Peierls model. Of course, the real mathematical difficulty is to show the existence of the limit, in particular for all eigenenergies. This property is not granted: For example, the present lattice model generalized to the case of a \downarrow particle of a mass m_{3} different from the mass m of the two \uparrow particles leads, for a large enough mass ratio m / m_{3}, to a three-body energy spectrum not bounded from below in the $b=0$ limit, even though the Pauli exclusion principle prevents from having the three particles on the same lattice site 43].

In conclusion, we have computed numerically the low lying eigenenergies of three spin- $1 / 2$ fermions in a box, interacting with an infinite scattering length in a lattice model, for a zero total momentum and for decreasing values of the lattice period. Our results show numerically the equivalence between this model and the Bethe-Peierls approach in the limit of zero lattice period. This is related to the fact that the eigenenergies E are bounded
from below in the zero lattice period limit $b \rightarrow 0$, more precisely $E>0$. Such a convergence of the eigenstates of fermions in a lattice model towards universal states when $b \rightarrow 0$ is a key property used in Monte Carlo simulations at the N-body level 22, 23, 24.

We thank F. Werner for interesting discussions on the subject. Laboratoire de Physique Théorique de la Matière Condensée is the Unité Mixte de Recherche 7600 of Centre National de la Recherche Scientifique (CNRS). The cold atom group at LKB is a member of IFRAF.
[1] K.M. O'Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, J.E. Thomas, Science 298, 2179 (2002).
[2] M.E. Gehm, S.L. Hemmer, S.R. Granade, K.M. O'Hara, J.E. Thomas, Phys. Rev. A 68, 011401(R) (2003).
[3] C. Regal, C. Ticknor, J. Bohn, D. Jin, Nature (2003).
[4] T. Bourdel, J. Cubizolles, L. Khaykovich, K.M.F. Magalhaes, S.J.J.M.F. Kokkelmans, G. Shlyapnikov, C. Salomon, Phys. Rev. Lett. 91, 020402 (2003).
[5] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, R. Grimm, Science 302, 2101 (2003).
[6] M. Greiner, C.A. Regal, D.S. Jin, Nature 426, 537 (2003).
[7] M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003).
[8] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S.J.J.M.F. Kokkelmans, C. Salomon, Phys. Rev. Lett. 93, 050401 (2004).
[9] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 92, 120401 (2004).
[10] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. Hecker Denschlag, R. Grimm, Science 305, 1128-1130 (2004).
[11] M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, 1047 (2005).
[12] G.B. Partridge, W.Li, R.I. Kamar, Y.A. Liao, R.G. Hulet, Science 311, 503 (2006).
[13] Y. Shin, M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle, Phys. Rev. Lett. 97, 030401 (2006).
[14] J.T. Stewart, J.P. Gaebler, C.A. Regal, D.S. Jin, Phys. Rev. Lett. 97, 220406 (2006).
[15] A. Altmeyer, S. Riedl, C. Kohstall, M. Wright, R. Geursen, M. Bartenstein, C. Chin, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 98, 040401 (2007).
[16] L. Luo, B. Clancy, J. Joseph, J. Kinast, J.E. Thomas, Phys. Rev. Lett. 98, 080402 (2007).
[17] H. Feshbach, Annals of Physics 19, 287 (1962).
[18] A.J. Moerdijk, B.J. Verhaar, A. Axelsson, Phys. Rev. A 51, 4852 (1995).
[19] J.M. Vogels, C.C. Tsai, R.S. Freeland, S.J.J.M.F. Kokkelmans, B.J. Verhaar, D.J. Heinzen, Phys. Rev. A 56, R1067 (1997).
[20] S.-Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003).
[21] G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004).
[22] E. Burovski, N. Prokof'ev, B. Svistunov, M. Troyer, Phys. Rev. Lett. 96, 160402 (2006); ibid., New J. Phys. 8, 153 (2006).
[23] A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96, 090404 (2006).
[24] O. Juillet, cond-mat/0609063.
[25] H. Bethe, R. Peierls, Proc. R. Soc. London, Ser. A 148, 146 (1935).
[26] V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971) and Nucl. Phys. A210, 157 (1973).
[27] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden in "Solvable Models in Quantum Mechanics" (Springer, New York, 1988).
[28] D.S. Petrov, Phys. Rev. A 67, 010703 (2003).
[29] D. Petrov, C. Salomon, G. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004) and Phys. Rev. A 71, 012708 (2005).
[30] F. Werner, Y. Castin, Phys. Rev. Lett. 97, 150401 (2006).
[31] Y. Castin, in Proceedings of the Enrico Fermi Varenna School on Fermi gases (2006).
[32] C. Mora, Y. Castin, Phys. Rev. A 67, 053615 (2003).
[33] Y. Castin, in Proceedings of the school "Quantum Gases in Low Dimensions", J. Phys. IV (France) 116 (2004).
[34] In contrast, in a two-channel model for a Feshbach resonance, one finds that the effective range has a finite (and negative) limit in the zero potential range limit (the socalled narrow Feshbach resonance limit) 31].
[35] One thus cannot conclude that the corresponding minimal eigenenergy is the absolute ground state energy.
[36] Usually one expresses the Green's function of the Laplacian in a cubic box in terms of plane waves. This leads to $C_{\mathrm{BP}}=\lim _{x \rightarrow 0} v(\mathbf{x})$, with $v(\mathbf{x})=\int d^{3} \mathbf{u} \exp (i \mathbf{u} \cdot \mathbf{x}) / u^{2}-$ $\sum_{\mathbf{n} \in \mathbb{Z}^{3 *}} \exp (i \mathbf{n} \cdot \mathbf{x}) / n^{2}$. This definition of $v(\mathbf{x})$ should be understood within the frame of the theory of distributions. We define the $x=0$ limit of $v(\mathbf{x})$ as the limit for $\sigma \rightarrow 0$ of $\int d^{3} \mathbf{x} v(\mathbf{x}) \phi(\mathbf{x} / \sigma) / \sigma^{3}$, where ϕ is a C^{∞} rapidly decreasing function with $\int d^{3} \mathbf{x} \phi(\mathbf{x})=1$. In Eq.(11) we have taken for simplicity ϕ to be a Gaussian, but we have shown that C_{BP} is independent of this choice.
[37] M. Olshanii, L. Pricoupenko, Phys. Rev. Lett. 88, 010402 (2002).
[38] One uses the rewriting $h_{\sigma}(\mathbf{n}+\mathbf{u})-h_{\sigma}(\mathbf{n})=T_{1}+T_{2}$, with $T_{1}=[\hat{\phi}[\sigma(\mathbf{n}+\mathbf{u})]-\hat{\phi}(\sigma \mathbf{n})] /(\mathbf{n}+\mathbf{u})^{2}, T_{2}=[\hat{\phi}(\sigma \mathbf{n})-$ 1] $\left[1 /(\mathbf{n}+\mathbf{u})^{2}-1 / n^{2}\right]$ and $\hat{\phi}(\mathbf{x})=\exp \left(-x^{2}\right)$. Using a large n expansion, one finds that the integral of T_{2} over the symmetric integration domain \mathcal{I} is $O\left(1 / n^{4}\right)$, so that the theorem of dominated convergence applies. For T_{1}, one uses the Taylor-Lagrange formula up to second order for the numerator: For a given \mathbf{u}, there exists a vector $\mathbf{x}_{\mathbf{u}}$ on the line connecting $\sigma \mathbf{n}$ and $\sigma(\mathbf{n}+\mathbf{u})$ such that $\hat{\phi}[\sigma(\mathbf{n}+$ $\mathbf{u})]-\hat{\phi}(\sigma \mathbf{n})=\sum_{i} \sigma u_{i} \partial_{i} \hat{\phi}(\sigma \mathbf{n})+\frac{1}{2} \sum_{i, j} \sigma^{2} u_{i} u_{j} \partial_{i} \partial_{j} \hat{\phi}\left(\mathbf{x}_{\mathbf{u}}\right)$. The term involving the first order derivatives of $\hat{\phi}$ vanishes after integration over \mathbf{u}. Since the second order derivatives of $\hat{\phi}(\mathbf{x})$ are rapidly decreasing functions, they are in particular $\leq A / x^{2}$ at large x for some number A, so that the integral of T_{1} over \mathcal{I} is bounded by A / n^{4} and the theorem of dominated converge applies again.
[39] The value of $C_{B P}$ disagrees with the one (7.44 $\simeq \pi \times$ 2.37 . . .) given in Eq.(53) of K. Huang, C.N. Yang, Phys. Rev. 105, 767 (1957).
[40] One uses the fact that for $n \in \mathbb{N}^{*}, \epsilon /\left[n^{2}\left(n^{2}+\epsilon\right)\right]$ is positive when $\epsilon>0$, and tends to $1 / n^{2}$ for $\epsilon \rightarrow+\infty$. The fact that $\sum_{\mathrm{n} \in \mathbb{Z}^{3} *} 1 / n^{2}=+\infty$ gives the result.
[41] In the limit $b \rightarrow 0$, there exists a negative energy solution $E<0$ for all a. Its energy can be calculated accurately directly from the Bethe-Peierls model from a more convenient representation of the function $v(\mathbf{x})$ in [36], using Poisson's summation formula applied to the function $\mathbf{u} \rightarrow e^{i \mathbf{u} \cdot \mathbf{x}} /\left(u^{2}+\lambda^{2}\right)$ where $\lambda>0$ is arbitrary. One obtains $C_{\mathrm{BP}}=\lambda^{-2}+2 \pi^{2} \lambda-\sum_{\mathbf{n} \in \mathbb{Z}^{3 *}}\left[\lambda^{2} n^{-2}\left(\lambda^{2}+\right.\right.$ $\left.\left.n^{2}\right)^{-1}+\pi \exp (-2 \pi \lambda n) / n\right]$, an expression whose value does not depend on λ. Specializing to the unitary limit, and taking $\lambda=\alpha /(2 \pi)$, where $\alpha=1.945766 \ldots$ solves $\alpha=\sum_{\mathbf{n} \in \mathbb{Z}^{3 *}} \exp (-\alpha n) / n$, one finds a minimal eigenenergy $E=-\alpha^{2} \hbar^{2} / m L^{2}$.
[42] One may fear at this stage that an eigenvalue m_{x} of $M(E=0)$, although not being the lowest one for the values of b / L considered in the figure, may be such that $\left(m_{x}+1\right) /(b / L)$ varies with a positive slope with b / L and converges for $b / L \rightarrow 0$ to a lower value than 1.08. To test this possibility, we have considered the lowest twenty eigenvalues of $M(E=0)$ in each symmetry sector with respect to reflections along x, y, z. All these eigenvalues m_{i} are found to lead to $\left(m_{i}+1\right) /(b / L)$ having a negative slope as functions of b / L and thus converging for $b / L \rightarrow 0$ to values $2.13,2.27,2.51, \ldots$, larger than 1.08.
[43] For an arbitrary mass ratio, the coupling constant g_{0} for an infinite scattering length is $g_{0}=-2 \pi \hbar^{2} b /(\mu K)$ where $1 / \mu=1 / m+1 / m_{3}$ is the inverse of the reduced mass. One may take as a simple variational ansatz the ground
state of the three-body problem for $m=\infty$, of the form $\left|\psi_{\infty}\right\rangle=\left[\left|\mathbf{r}_{1}\right\rangle\left|\mathbf{r}_{2}\right\rangle-\left|\mathbf{r}_{2}\right\rangle\left|\mathbf{r}_{1}\right\rangle\right]|\chi\rangle$, with $\mathbf{r}_{1}-\mathbf{r}_{2}=b \mathbf{e}_{x}$ and \mathbf{e}_{x} the unit vector along $x ;|\chi\rangle$ has a simple expression in momentum space and one finds $\chi\left(\mathbf{r}_{1}\right)=\chi\left(\mathbf{r}_{2}\right)$. For a finite value of m the expectation value of H in $\left|\psi_{\infty}\right\rangle$ gives an upper bound E_{v} on the ground state three-body energy,

$$
E_{v}=\frac{\hbar^{2} \pi^{2}}{2 m_{3} b^{2}}\left(A+B \frac{m_{3}}{m}\right)
$$

where A is the smallest root of $F(A)=1+\int_{[-1,1]^{3}} d^{3} q[1+$ $\left.\cos \left(\pi \mathbf{q} \cdot \mathbf{e}_{x}\right)\right] /\left[2 \pi K\left(A-q^{2}\right)\right]$ and $B=2+1 / F^{\prime}(A)$. One finds numerically $A \simeq-0.042088$ and $B \simeq 1.75762$. Then $E_{v} \rightarrow-\infty$ when $b \rightarrow 0$ for a mass ratio m / m_{3} above the critical value $\simeq 41.8$. Actually the exact critical mass ratio is expected to be below $13.6069 \ldots$ since the Efimov phenomenon takes place for $m / m_{3}>13.6069 \ldots$ (44. Note: in the bosonic case, for the lattice model at $|a|=\infty$ with N_{B} bosons of mass m in the same spin state, one may take as a variational ansatz the state vector where all the N_{B} bosons are on the same lattice site; one then finds an upper bound on the ground state energy $E_{v}^{B}=$ $g_{0} N_{B}\left[N_{B}-(1+\pi K / 4)\right] /\left(2 b^{3}\right)$, with $1+\pi K / 4 \simeq 2.9185$, so that the ground state energy tends to $-\infty$ for $b \rightarrow 0$ if $N_{B} \geq 3$.
[44] From [28] we find that the minimal mass ratio $\mathrm{m} / \mathrm{m}_{3}$ leading to the Efimov phenomenon solves $-\frac{\pi}{2} \sin ^{2}(2 \theta)+$ $\cot 2 \theta+2 \theta=0$, excluding the trivial root $\theta=\pi / 4$, with $\theta=\arctan \left[\left(1+2 m / m_{3}\right)^{1 / 2}\right]$.

