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Three fermions in a box at the unitary limit: universality in a lattice model
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We consider three fermions with two spin components interacting on a lattice model with an
infinite scattering length. Low lying eigenenergies in a cubic box with periodic boundary condi-
tions, and for a zero total momentum, are calculated numerically for decreasing values of the lattice
period. The results are compared to the predictions of the zero range Bethe-Peierls model in con-
tinuous space, where the interaction is replaced by contact conditions. The numerical computation,
combined with analytical arguments, shows the absence of negative energy solution, and a rapid
convergence of the lattice model towards the Bethe-Peierls model for a vanishing lattice period.
This establishes for this system the universality of the zero interaction range limit.

PACS numbers: 03. 75. Ss, 05. 30. Fk, 21. 45. +v

Recent experimental progress allow to prepare a two-
component Fermi atomic gas in the BEC-BCS crossover
regime and to study its physical properties and its phase
transitions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16]. By using the concept of Feshbach resonance [17], an
external magnetic field (B) permits to tune the two-body
s-wave scattering length a ∝ −1/(B−B0) at an arbitrary
large value (|a| = ∞) and the unitary regime is achieved
in present experiments for broad resonances, where the
effective range in the two-body scattering amplitude is
of the order of the Van der Waals range of interatomic
forces [18, 19]. Examples of s-wave broad resonances are
given for 6Li atoms by the one at B0 ≃ 830 G [1, 4, 5, 7]
or also for 40K atoms at B0 ≃ 200 G [3]. The unitary
regime has the striking property of being universal; this
was checked experimentally, this also appears in fixed
node Monte Carlo simulations [20, 21] and more recently
in exact Quantum Monte Carlo calculations [22, 23, 24].
This shows that short range physics of the binary inter-
action does not play a significant role.

In this paper, we solve a simple model in order to exem-
plify the emergence of this property for three fermions in
a cubic box, when the interaction range tends to zero. We
compare our results to the commonly used Bethe-Peierls
zero range model, where the interactions are replaced by
contact conditions [25, 26, 27, 28, 29, 30, 31]. We find ex-
cellent agreement, indicating that the zero range model
is indeed well behaved for equal mass fermions.

Our simple model is a lattice model, of quite practical
importance since it allows exact Quantum Monte Carlo
simulations with no sign problem [22, 23, 24]. It has
already been described in details in Refs. [32, 33] so that
we recall here only its main features. The positions ri of
each particle i are discretized on a cubic lattice of period
b. The Hamiltonian contains the kinetic term of each
particle, p2/2m, such that the plane wave of wave vector
k has an energy :

ǫk =
~

2k2

2m
. (1)

Here the wave vector is restricted to the first Brillouin
zone of the lattice :

k ∈ D ≡ [−π/b, π/b[3. (2)

We enclose the system in a cubic box of size L
with periodic boundary conditions, so that the com-
ponents {kα}α∈{x,y,z} of k are integer multiples of
2π/L. In what follows we shall for convenience re-
strict our computations to the case where the ratio
L/b = 2N + 1 is an odd integer, so that kα = 2πnα/L
with nα ∈ {−N,−N + 1, . . . , N}. The Hamiltonian also
contains the interaction potential between opposite spin
fermions i and j, which is a discrete delta on the lattice:

V (ri, rj) =
g0
b3
δri,rj

. (3)

The bare coupling constant g0 is adjusted in order to re-
produce the desired value of the s-wave scattering length
a between two opposite spin particles [31, 32, 33]:

1

g0
− 1

g
= −

∫

D

d3k

(2π)3
1

2ǫk
= − mK

4π~2b
, (4)

where K = 2.44274960780 . . ., and g = 4π~
2a/m is the

usual effective s-wave coupling constant. The effective
range re of the interaction in this lattice model is pro-
portional to the lattice period, re ≃ 0.337 b [31], and the
limit b → 0 is equivalent to the limit of zero range and
zero effective range for the interaction [34].

We first solve the problem for two opposite spin
fermions in the box, in the singlet spin state |s〉 = (| ↑↓
〉 − | ↓↑〉)/

√
2, by looking for eigenstates of eigenenergy

E with a ket of the form |s〉 ⊗ |φ〉. We restrict to the
case of a zero total momentum [35], so that the orbital
part |φ〉 may be expanded on |k,−k〉 = |1 : k〉⊗|2 : −k〉,
where |1 : k〉 is the normalized ket representing particle 1
with wave vector k. The corresponding wavefunction is
〈r|k〉 = eik·r/L3/2. Schrödinger’s equation then reduces
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to:

(2ǫk − E)〈k,−k|φ〉 +
g0
L3/2

〈r, r|φ〉 = 0, (5)

where the last term does not depend on a common po-
sition r of the two particles. A first type of eigenstates
corresponds to 〈r, r|φ〉 = 0: these eigenstates have a zero
probability to have two particles at the same point, and
are also eigenstates of the non-interacting case. An exam-
ple of such a state with the correct exchange symmetry
is given by the wavefunction:

φ(r1, r2) ∝ cos

[

2π

L
(x1 − x2)

]

− cos

[

2π

L
(y1 − y2)

]

. (6)

We are interested here in the states of the second type,
what we call ‘interacting’ states, such that 〈r, r|φ〉 6= 0.
Treating the interacting term in Eq.(5) as a source term,
one expresses |φ〉 in terms of 〈r, r|φ〉 and a sum over k.
Projecting the resulting expression onto |r, r〉 leads to a
closed equation (now E 6= 2ǫk):

1

g0
+

1

L3

∑

k∈D

1

2ǫk − E
= 0. (7)

The resulting implicit equation for E, of the form u(E) =
0, where u(E) is the left hand side of Eq.(7), is then read-
ily solved numerically; to this end, one notes that u(E)
has poles in each E = 2ǫk, and that it varies monotoni-
cally from −∞ to +∞ between two poles, so that u(E)
vanishes once and only once between two successive val-
ues of 2ǫk. In Fig.1, we show for |a| = ∞ the first low ly-
ing eigenenergies as functions of the lattice spacing; one
observes a convergence to finite values in the b/L→ 0
limit, with a first correction scaling as b/L. A rewriting
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FIG. 1: First three eigenenergies for two fermions in a box of
size L for an infinite scattering length in the lattice model, as
functions of the lattice period b. The total momentum of the
eigenstates is fixed to zero. The computed eigenenergies are
given by the plotting symbols, in units of E0 = (2π~)2/2mL2;
the straight lines are linear fits performed on the data with
b/L < 2 × 10−2.

of the implicit equation for E that will reveal convenient
in the b = 0 limit is:

πL

a
=

(2π~)2

mL2

[

1

E
+

∑

k∈D−0

(

1

E − 2ǫk
+

1

2ǫk

)

]

+ C(b),

(8)
where the function C(b) is defined by:

C(b) =
(2π~)2L

2m

(

∫

D

d3k

(2π)3
1

ǫk
− 1

L3

∑

k∈D−0

1

ǫk

)

, (9)

and has a finite limit for b→ 0 which is given by C(0) ≃
8.91364.

We now briefly check that the b = 0 limit in Eq.(8)
coincides with the prediction of the Bethe-Peierls model,
which is a continuous space model where one replaces the
interaction potential by the following contact conditions
on the wavefunction [25, 26, 27, 28, 29, 30, 31]: there
exists a function S(R) such that,

φ(r1, r2) = S(R)

(

1

r
− 1

a

)

+O(r), (10)

where r = |r1 − r2| → 0 is the distance between the two
particles and the center of mass position R = (r1 + r2)/2
is fixed. Using this model we arrive at an implicit equa-
tion for the energy of an interacting state exactly of the
form obtained by taking the b = 0 limit in Eq.(8), except
that the constant C(0) in the right hand side is replaced
by [36]:

CBP = lim
σ→0

(

∫

d3u
e−u2σ2

u2
−
∑

n∈Z3∗

e−n2σ2

n2

)

. (11)

We expect the identity CBP = C(0) from the general re-
sult that the Bethe-Peierls model for the two-body prob-
lem reproduces the zero range limit of a true interaction
potential [27, 37]. It is however instructive to check this
property explicitly for the lattice model. One can show
that:

CBP − C(0) = lim
σ→0

∑

n∈Z3∗

∫

I

d3u [hσ(n + u) − hσ(n)]

(12)
where hσ(q) = [exp(−q2σ2) − 1]/q2 and the integration
domain is I = [−1/2, 1/2]3. The desired identity C(0) =
CBP results from the fact that one can exchange the σ = 0
limit and the summation over n in the above equation
[38, 39].

In the lattice model, it is possible to show analytically
that the spectrum of the two-body problem for an infinite
scattering length is bounded from below in the b→ 0
limit. Since g0 < 0 for |a| = ∞, there exists at least one
non-positive energy solution, by a variational argument.
One then notes that the right hand side in Eq.(8) is a
strictly decreasing function ofE over ] −∞, 0[, that tends
to −∞ in E = 0+, so that at most one negative energy
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solution may exist. Furthermore one can show that the
b→ 0 limit of the right hand side tends to +∞ when
E → −∞ [40], whence this negative energy solution is
finite [41].

We now turn to the problem of three fermions in the
box. Schrödinger’s equation is obtained by considering
the particular spin component (1: ↑ ; 2: ↑ ; 3: ↓), so that the
interaction takes place only among the pairs (1, 3) and
(2, 3), and in the lattice model one obtains:

[

3
∑

i=1

p2
i

2m
+
g0
b3

(δr1,r3
+ δr2,r3

) − E

]

ψ(r1, r2, r3) = 0.

(13)
We restrict to a zero total momentum modulo 2π/b along
each direction [35]; using the fermionic antisymmetry
condition for the transposition of particles 1 and 2, we
express the part of Eq.(13) involving the interaction in
terms of a function of the position of a single particle:

ψ(r1, r2, r1) = f(r2 − r1) (14)

ψ(r1, r2, r2) = −f(r1 − r2). (15)

We then project Eq.(13) on the plane waves in the box,
which leads to:

〈k1,k2,k3|ψ〉 =
g0 δ

mod
k1+k2+k3,0

E − ǫk1
− ǫk2

− ǫk3

(fk2
− fk1

) (16)

where δmod is a discrete delta modulo 2π/b along each
direction, and where the Fourier transform of f(r) is de-
fined as:

fk = 〈k|f〉 =
b3

L3/2

∑

r∈[0,L[3

exp (−ik · r) f(r). (17)

Replacing f(r) in the right-hand side of this equation
by its expression in terms of 〈k1,k2,k3|ψ〉 deduced from
Eq.(14), we obtain a closed equation for fk:

L3

g0
fk = fk

∑

q∈D

ak,q −
∑

q∈D

ak,qfq (18)

where we have introduced the matrix:

ak,q =
1

E − ǫk − ǫq − ǫ[k+q]FBZ

, (19)

and for an arbitrary wavevector u, [u]FBZ denotes the
vector in the first Brillouin zone that differs from u by
integer multiples of 2π/b along each direction. The eigen-
values E of the three-body problem are such that the
linear system (18) admits a non-identically vanishing so-
lution fk, that is the determinant of this linear system is
zero. Note that from Eq.(18), one has f(0) ∝

∑

q∈D fk =
0, a consequence of Pauli exclusion principle.

For |a| = ∞, we have computed numerically the first
eigenenergies of the system, by calculating the determi-
nant as a function of E. In Fig.2 we give these eigenen-
ergies as functions of the ratio b/L. A rapid convergence

in the zero-b limit is observed, with a linear dependence
in b/L.

This rapid convergence illustrates the fact that
fermions easily exhibit universal properties, as revealed
by experiments; here b plays the role of the finite Van der
Waals range of the true potential [given by (mC6/~

2)1/4,
where C6 is the Van der Waals coefficient], and L is of
the order of the mean interparticle distance in a real gas.
As an example, for 6Li atoms b ∼ 3 nm and in exper-
iments for the broad Feshbach resonance in the s-wave
channel at ∼ 830 G the atomic density is of the order of
1013 cm−3, so that the ratio b/L is of the order of 10−2

which is well within the zero-b limit.
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FIG. 2: First eigenenergies of three fermions in a box of size
L for an infinite scattering length in the lattice model, for
a zero total momentum. The computed eigenenergies (dia-
monds) are given in units of E0 = (2π~)2/2mL2 for different
values of the lattice period b. For functions f(r) invariant by
reflection along x, y, z and by arbitrary permutation of x, y, z
we have computed the eigenenergies down to smaller values
of b/L. The straight lines are a linear fit performed on the
data over the range b/L ≤ 1/15, except for the energy branch
E ≃ 2.89E0 which becomes more slowly linear than the other
branches. The eigenenergies predicted by the Bethe-Peierls
model are given by stars in b = 0.

The absence of negative three-body eigenenergies in
the unitary limit can be obtained numerically very effi-
ciently through a formal analogy between Eq.(18) and a
set of rate equations on fictitious occupation numbers of
the single particle modes in the box. Assuming E ≤ 0, we
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note Πk the fictitious occupation number in the mode k

and Γk→q = g0aq,k/L
3 the transition rate from the mode

k to the mode q. From Eq.(19), one obtains the property
Γk→q = Γq→k, and the rate equation can be written as:

dΠk

dt
= −





∑

q 6=k

Γk→q



Πk +
∑

q 6=k

Γq→kΠq. (20)

The symmetric matrix M(E), which defines the first or-

der linear system in Eq.(20), d~Π/dt = M(E)~Π, has the
following properties: 1) its eigenvalues are non-positive,
since it is a set of rate equations; 2) its eigenvalues are
decreasing function of the energy E, which can be de-
duced from the fact that dM(E)/dE is a matrix of rate
equations and obeys property 1), and from the Hellman-
Feynman theorem; and 3) eigenmodes of Eq.(20) with
an eigenvalue equal to −1 correspond to solutions fk of
Eq.(18) with Πk = fk exp(−t). Therefore, in order to
check that there is no non-zero solution of Eq.(18) for
E < 0, it is sufficient to check that all eigenvalues of
M(E = 0) are strictly larger than −1.

We have computed the lowest eigenvalue m0 of the
matrix M(E = 0) as a function of the ratio b/L. A fit
of m0 as a function of b/L suggests limb→0m0 ≃ −1.
To better see what happens in the zero b/L limit, we
note that having m0 > −1 is equivalent to having (m0 +
1)/g0 < 0, or more simply (m0 + 1)/(b/L) > 0. We have
thus plotted in Fig.3 the ratio (m0 + 1)/(b/L), which is
seen to tend to a positive value for b → 0, ≃ 1.085, with
a negative slope; this excludes the existence of negative
eigenenergies for the three fermions at infinite scattering
length even in the small b limit [42].

In a last step, we compare the results of the lattice
model to the predictions of the Bethe-Peierls approach
for three fermions in a continuous space, which was shown
to be a successful model in free space [28, 29] and in a har-
monic trap at the unitary limit [30]. For this purpose, we
introduce the function Fk which is the Fourier transform
of the regular part of the wave function as |r1 − r3| → 0:

F (R) = lim
r→0

[

rψ
(

R +
r

2
,0,R − r

2

)]

, (21)

where we have used the translational invariance. By re-
producing a calculation procedure analogous to what we
have done for the lattice model, we obtain the following
infinite dimension linear system:

L3

g
Fk = Fk



Ak,0 +
∑

q 6=0

(

Ak,q +
1

2ǫq

)

+
mL2CBP

(2π~)2





−
∑

q

Ak,qFq , (22)

where the wavevectors k and q now run over the whole
space (2π/L)Z3, and:

Ak,q =
1

E − ǫk − ǫq − ǫk+q

. (23)
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FIG. 3: Quantity (m0 + 1)/(b/L) as a function of the lattice
period b. Herem0 is the lowest eigenvalue of the matrixM(E)
defining the linear system Eq.(20), for E = 0 and for an
infinite scattering length. The fact that m0+1 > 0 shows that
there is no negative eigenenergy for the three fermions, see
text. The symbols are obtained from a numerical calculation
of m0. The solid line is a linear fit over the range b/L ≤
1/29, not including the point with b/L = 1/81: for this point,
the matrix M has more than half a million lines so that m0

was obtained by a computer memory-saving iterative method
rather than by a direct diagonalisation.

The similarity between the structure of (18) and (22)
is apparent. Numerically, at |a| = ∞, we have verified
the convergence between the two models as b → 0 in
Eq.(18), see Fig.2. Analytically, one can even formally
check the equivalence between the two sets of equations
(18) and (22): First, we eliminate the integral of 1/ǫk
between (4) and (9), to express 1/g0 in terms of 1/g and
C(b). Second, we replace 1/g0 by the resulting expression
in Eq.(18). Third, we take the limit b → 0: we exactly
recover the system (22). Hence, if the eigenenergy E and
the corresponding function f in the lattice model have
a well defined limit for b = 0, this shows that the limit
is given by the Bethe-Peierls model. Of course, the real
mathematical difficulty is to show the existence of the
limit, in particular for all eigenenergies. This property
is not granted: For example, the present lattice model
generalized to the case of a ↓ particle of a mass m3 dif-
ferent from the mass m of the two ↑ particles leads, for
a large enough mass ratio m/m3, to a three-body energy
spectrum not bounded from below in the b = 0 limit,
even though the Pauli exclusion principle prevents from
having the three particles on the same lattice site [43].

In conclusion, we have computed numerically the low
lying eigenenergies of three spin-1/2 fermions in a box,
interacting with an infinite scattering length in a lattice
model, for a zero total momentum and for decreasing val-
ues of the lattice period. Our results show numerically
the equivalence between this model and the Bethe-Peierls
approach in the limit of zero lattice period. This is re-
lated to the fact that the eigenenergies E are bounded
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from below in the zero lattice period limit b → 0, more
precisely E > 0. Such a convergence of the eigenstates of
fermions in a lattice model towards universal states when
b→ 0 is a key property used in Monte Carlo simulations
at the N -body level [22, 23, 24].

We thank F. Werner for interesting discussions on
the subject. Laboratoire de Physique Théorique de la
Matière Condensée is the Unité Mixte de Recherche 7600
of Centre National de la Recherche Scientifique (CNRS).
The cold atom group at LKB is a member of IFRAF.
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