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Abstract- This paper presents an algorithm for detecting and computing the cusp points in the joint 

space of 3-RPR planar parallel manipulators. In manipulator kinematics, cusp points are special points, 

which appear on the singular curves of the manipulators. The nonsingular change of assembly mode of 

3-RPR parallel manipulators was shown to be associated with the existence of cusp points. At each of 

these points, three direct kinematic solutions coincide. In the literature, a condition for the existence of 

three coincident direct kinematic solutions was established, but has never been exploited, because the 

algebra involved was too complicated to be solved. The algorithm presented in this paper solves this 

equation and detects all the cusp points in the joint space of these manipulators. 
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I. Introduction 

Critical points such as bifurcation points, turning points and cusp points can be considered of 

particular interest in applied sciences. The application of cusp points on manipulators kinematics is 

what we will be considering here. 

A serial (resp. parallel) manipulator with cusp points in its workspace (resp. in its joint space) can 

change posture (resp. assembly mode) without crossing a singularity. When no cusp points exist, such 

a singular-free motion is not possible. 

Regarding serial manipulators, it had been widely believed that they all should meet a singularity 

when changing posture. “Parenti-Castelli and Innocenti (1988)” were the first to prove the existence of 

non-singular posture changing motions on in 6-DOF serial manipulators. Similar results were found 

for 3R serial manipulators in “Burdick (1991)” and “Wenger (1992)”. "Elomri and Wenger (1995)" 
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have shown that serial manipulators having the ability to change posture without meeting a singularity 

are characterised by the existence of cusp points in their workspace, where three inverse kinematic 

solutions coincide. Cusp points in serial manipulators can be determined by looking for the triple roots 

of the inverse kinematics polynomial “Elomri and Wenger (1995)” or from the equation of the 

workspace boundary “Ottaviano and Husty (2004)”. 

 

Most fully parallel manipulators have multiple direct kinematic solutions, which are associated with 

the different assembly modes. “Hunt and Primrose (1993)” first showed that to move from one 

assembly mode to another, a fully parallel manipulator had to cross a singularity. But, “Innocenti and 

Parenti-Castelli (1998)” found a 3-RPR parallel manipulator able to change its assembly mode without 

crossing a singularity. One year later, “Mcaree (1999)” pointed out that 3-RPR and octahedral 

manipulators can undertake non-singular assembly changing motions, if a point with triple direct 

kinematic solutions exists in their joint space, this point is “a cusp point” in a section of the joint 

space. He established a condition for the existence of cusp points. But this condition has never been 

exploited, because the algebra involved in this condition was found to be too complicated. “Wenger 

and Chablat (1998)” showed that to accomplish a non-singular assembly-mode changing motion, a 3-

RPR manipulator platform should encircle a cusp point in its joint space. Thus, the determination of 

the cusp points is of interest for planning trajectories.  

In this paper, an algorithm for detecting all cusp points and computing their coordinates in the joint 

space of 3-RPR parallel manipulators is established; it is based on the abovementioned condition. This 

work finds application in both design and trajectory planning.  

In the following sections, we present the 3-RPR parallel manipulators studied and their constraint 

equations, we explain briefly the cusp points existence condition established by “Mcaree (1999)”, then 

the algorithm is described and run on two different 3-RPR manipulators. 

II. Preliminaries 

II.1 Manipulators studied 

The manipulators under study are 3-DOF planar parallel manipulators with three extensible leg rods 

(Fig. 1). These manipulators have been frequently studied, for example by “Sefrioui and Gosselin 

(1995)” and “Merlet (2000)”. Each of the three extensible leg rods is actuated with a prismatic joint. 

The geometric parameters of the manipulators are the three sides of the moving platform d1, d2, d3 and 

the position of the base revolute joint centres defined by A1, A2 and A3. The reference frame is centred 

at A1 and the x-axis passes through A2. Thus, A1 = (0, 0), A2 = ( A2x , 0) and A3 = ( A3x , A3y). 
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Fig 1.  The 3-RPR parallel manipulator under study. 

II.2 Constraint equations 

Let L  (L1, L2, L3) define the lengths of the three leg rods and let   (1, 2, 3) define the three 

angles between the leg rods and the x-axis. The six parameters (L, ) can be regarded as a 

configuration of the manipulator but only three of them are independent, so that the configuration 

space is a 3-dimensional manifold embedded in a 6-dimensional space. The dependency between (L, 

) can be identified by writing the fixed distances between the three vertices of the mobile platform B1, 

B2, B3, which yield the following constraint equations 
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where bi is the vector defining the coordinates of Bi in the reference frame as function of L and . For 

more simplicity, (L, ) will be omitted in the following equations. 

Expanding each i as a series about the configuration (L, ) yields 
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If one keeps only the first-order and second-order terms, Eq. (2) can be written in matrix form as 

follows 

 

22 2
11 1

2 2

2 2 2

2 2 2

2 2

2 22
3 33

2 2

1 1
0

2 2

TT T

T T T

T TT

                      
          

                  
         

                
          

θ Lθ θ L L
θ Lθ L

Γ Γ
Γ θ L θ θ θ L L L

θ L θ θ L L

θ θ L Lθ L
θ Lθ L

 (3) 



 

 

 

 

4 

Equation (3) can be used to describe an arbitrary local motion at a given configuration of the 

manipulator “Mcaree (1999)”. When first order terms of Eq. (3) are sufficient to describe the motion, 

the manipulator is in a regular configuration and the following equation can be used instead of Eq. (3) 

 
   , ,

0
 

   
 

Γ L θ Γ L θ
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  (4) 

Otherwise the configuration (L, ) is special and the manipulator meets a singularity. This happens 

when the constraint Jacobian  Γ/ θ  drops rank so that the second order terms of the equation (3) are 

needed to describe the constraints. The three vertices of the moving platform have the following 

coordinates in the fixed reference frame 

 
       

   

1 1 1 1 1 2 2 2 2 2 2

3 3 3 3 3 3 3

cos sin ; cos sin ;

cos sin .

T T

x

T

x y

L L A L L

A L A L

   

 

         

    

b b

b

 

Thus, the constraint Jacobian can be put in the following form 
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where  sini is  ,  cosi ic   and  sinij i js    . 

III. Existence condition of cusp points 

To determine the cusp points, we need first to characterise the singular configurations. “Mcaree 

(1999)” determined the singularities of the 3-RPR manipulator by looking for the configurations where 

det( Γ/ θ) vanishes. In our work, we have used a geometric approach that is much more direct than 

the calculation of the determinant, which does not simplify easily. It is well known that a 3-RPR 

manipulator is in a singular configuration whenever the axes of its three leg rods intersect (possibly at 

infinity). The derivation of this geometric condition is straightforward and yields the following 

equation 

  2 2 31 3 3 3 3 12 0x x yA s s A s A c s    (6) 

For serial 3-DOF manipulators, the cusp points can be determined by deriving the condition under 

which the inverse kinematics polynomial admits three identical roots (Elomri 1995). However this 

approach is much more complicated when applied to the direct kinematics polynomial of 3-RPR 

manipulators because this polynomial is of degree 6. 

An interesting alternative approach was proposed in “Mcaree (1999)” by writing the condition under 

which the manipulator loses first and second order constraints. The resulting condition for triple 

coalescence of assembly modes was shown to take the following form 
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where v is a unit vector in the right kernel of matrix  Γ/ θ , and u1, u2, u3 are the three components of 

the unit vector u that spans the left kernel. Vectors u and v can be chosen in the set of nonzero rows 

and columns of the adjoint of matrix  Γ/ θ  (i.e. the matrix of cofactors of the transpose of  Γ/ θ ), 

respectively. 

Calculating the adjoint of  Γ/ θ  from Eq. (5) yields 
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Taking u (resp. v) as the first row (resp. column) of (9), the equation (7) can be written as 
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“Mcaree (1999)” left equation (10) as such and no information was provided on how to use it in a 

computer program. He noted that the expansion of this equation was too complicated to yield any real 

insight. 

We have developed an algorithm to solve this equation for any 3-RPR manipulator and we have 

implemented it in Maple. This algorithm detects all the cusp points inside the joint space of any 3-RPR 

manipulators and computes their coordinates. 

We present it in the next section, and we run it on two different 3-RPR manipulators.  

IV.  Algorithm for calculating cusp points 

The existence of cusp points allows the 3-RPR manipulator to undertake non-singular assembly mode 

changing trajectories, these special trajectories can be executed by encircling a cusp point. “Mcaree 
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(1999)” stated that cusp points are pernicious and should be avoided or designed out by judicious 

dimensioning. 

The configuration of the 3-RPR manipulator is given by six parameters: the three rod lengths (L1, L2, 

L3), and the platform position variables (1, 2, 3). Only three of these parameters are independent. In 

order to reduce the dimension of our problem, “Mcaree (1999)” shows that it is possible to consider 

two-dimensional slices of the configuration space by fixing one of the leg rod lengths. 

By doing so, the manipulator configuration can be fully defined by only two parameters. For example, 

for a fixed value of L1, a configuration may be fully defined by either (,1) or (L2, L3). Note that in 

the first case, the configuration is defined in the output space by the position and the orientation of the 

moving platform (L1 and 1 define the position of B1 in the plane and  defines the orientation of the 

moving platform in the plane). In the second case, the configuration is defined in the joint space by the 

three leg rod lengths. 

In our work, we have always taken L1 as the fixed parameter. After fixing the value of L1, we first 

calculate the singularity curves in (L2, L3), and then we compute all the cusp points of this two-

dimensional slice. 

IV.1 Algorithm 

If we consider equation (6), we notice that it is a function of (1, 2, 3). The existence condition of 

cusp points (10) is a function of (L1, L2, L3) and (1, 2, 3). Our first goal is to establish an equation, 

which is a function of (L1, , 1), and then to solve it to obtain the cusp points coordinates. Thus, we 

first consider the following set of equations computed from the geometry of the manipulator. 
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The algorithm for detecting cusp points is implemented in MAPLE; its steps are presented below: 

1. First, the expression of cos(2), cos(3), sin(2) and sin(3) in (12) are substituted into the 

singularities equations (6). Then, sin(), cos(), cos(1) and sin(1) are replaced by the 

tangents of their half angles tan(/2) and tan(1/2), as a consequence we obtain an equation of 

the form: 

  1 1 1, , 0F L t t   (13) 

where  tant   and  1 1tant  . 

2. Then, the expression of cos(2), cos(3), sin(2) and sin(3) in (12) are substituted into 

equations (9) and (11) and sin(), cos(), cos(1) and sin(1) are replaced by the tangents of 

their half angles tan(/2) and tan(1/2). We get an equation of the form: 

  1 1 1, , 0E L t t   (14) 

So, we notice that the two equations (6) and (10) are written now as function of three parameters only. 
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3. We fix now L1, and we input the manipulator parameters d1, d2, d3, A2x, A3x and A3y. We have 

noticed that the direct substitution of the real values of  sin  and  cos   into the equations 

(13) and (14) make the equations resolution very complicated in the following steps. Thus, we 

write  sin  and  cos   as a function of an intermediate parameter h, which is the altitude 

of the moving triangle. 

4. The Maple resultant function is used to eliminate  tant   from the two equations (13) and 

(14). The resulting equation is a polynomial of degree 96 in  1 1tant  , which can be 

factored as follows: 

 3 11 2

1 2 3 1... 0n na a aa a

n nP P P P P Q

   (15) 

where Q is a 24
th
-order univariate polynomial in t1 and P1, P2,…,Pn are quadratic and quartic 

polynomials in t1. Note that the factor form cannot be obtained without the intermediate 

parameter h.  

5. We input the parameter h value. We solve equation (15). Each real root t1i is back-substituted 

into (13), which is then solved for t. For every t1i, we obtain different tij. Finally, we get a 

number of solution couples (tij,t1i). 

6. We substitute the values of each solution couple (tij,t1i) into (14), and we keep only those that 

satisfy this equation. 

7. The solutions (tij,t1i) kept in the last step should give the coordinates of the cusp points. To 

verify this, we calculate the direct kinematic solutions for each solution (tij,t1i). In many 

instances, we have found that some solutions do not yield three coincident solutions, which 

means that they are not associated with cusp points. So we reject them and we keep only those 

solutions that give three coincident direct kinematic solutions. These couples are the 

coordinates of the cusp points, we call them (ij,1i)cusp. 

After executing our algorithm hundreds of times, we have noticed that in each case all cusp points 

were determined by the 24
th
-order polynomial Q of equation (15), that is, all remaining factors 

provided spurious solutions. Thus, we may conjecture that the cusp points are determined by Q, 

although we have no mathematical proof for this fact. All the real roots of Q are the cusp points. With 

this conjecture, our algorithm simplifies significantly because instead of solving (16) (a 96
th
 order 

polynomial) we just have to solve polynomial Q (a 24
th
 order polynomial). 

To implement this result in the algorithm, we must change steps 5 and 6 into the following steps 5’ 

and 6’, and eliminate step 7: 

5'. We input the parameter h real value. We solve the polynomial Q. We substitute every real root 

1i of Q into equation (13), and we solve it for tan(/2). For every 1i, we obtain different 

values ij. Finally, we get a number of couples (ij,1i). 

6'. We substitute the values of each couple (ij,1i) into equation (14). The couples that satisfy 

this equation are the cusp points coordinates. We call them (ij,1i)cusp. 

Finally, to obtain the coordinates of the cusp points in the joint space (L1, L2, L3), we use the following 

equations computed from the geometry of the manipulator: 

          
2 2
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and we obtain the cusp points in a slice of the joint space for a fixed value of L1. 

IV.2 Important conclusion 

In step 7 of the algorithm, we have noticed that the cusp existence condition generates solutions that 

do not provide triple direct kinematic solutions. This means that the cusp existence condition 

established by “Mcaree (1999)” is not a necessary and sufficient condition but only a sufficient 

condition.  

IV.3 Algorithm execution 

In this paragraph, we present the results of some executions of the algorithm for two different 3-RPR 

parallel manipulators. Only some slices of the joint space are presented. However, for both 

manipulators, we have run the algorithm for L1 varying from 0 to 50 with a scanning step of 0.1. We 

have noticed that the number of cusp points varies from one slice to another. Note that in serial 

manipulators, the number of cusp points does not depend on the workspace section (if we consider just 

the sections which passes through the axis of the first revolute joint). 

On the other hand, the number of cusp points stabilizes for sufficiently large values of L1. For 

example, there are always four cusp points for the first manipulators as soon as L1>31. 

Finally, the maximal number of cusp points depends on the geometry of the manipulator. For example, 

the second manipulator may have at most 6 cusp points whereas the first one may has 8 cusp points. 

We have also found manipulators with only 0, 2 or 4 cusp points. A symmetric manipulator with two 

similar platform has 0 cusp points as this manipulator is non-cuspidal “Mcaree (1999)”. We have not 

been able to find manipulators with more than 8 cusp points.  

The algorithm execution time slightly depends on the value of L1 and of the 3-RPR manipulator 

parameters. It highly depends on the number of digits required for the calculation. For 90 digits (which 

is necessary to guaranty a good accuracy), it is about two minutes on a computer equipped with a 

3GHz-Pentium 4 with 512 Mo of Ram. 

 

IV.3.1 3-RPR parallel manipulator used in “Mcaree (1999)” 

First, we begin with the 3-RPR parallel manipulator used in “Mcaree (1999)” and “Innocenti (1998)”. 

The geometric parameters of this manipulator are recalled below in an arbitrary length unit:  

A1=(0, 0) d1=17.04 

A2=(15.91, 0) d2=16.54 

A3=(0, 10) d3=20.84 

 

  A slice for L1=14.98 

For the same fixed value L1=14.98, as in “Mcaree (1999)” and “Innocenti (1998)”, the algorithm 

detects six cusp points instead of five identified in “Mcaree (1999)”. Figure 2 shows the singular 

curves of the 3-RPR manipulator for L1=14.98, and the six cusp points pinpointed with circles. The 

sixth point missed by “Mcaree (1999)” is the point A, it is circled with bold lines and in-boxed in a 

separate view. The zoomed view shows that it is really a cusp point. 

 



 

 

 

 

9 

L2

L3

A B

C

D
E

F

 
Fig 2.  Singular curves and cusp points in a slice of the 3-RPR manipulator joint space (L2,L3) for 

L1=14.98. 

The coordinates of the six cusp points are given in the table 1 below 

 

   1 L2 L3 

Cusp A 50.67 deg -69.12 deg 0.84 3.77 

Cusp B -2.59 deg 177.32 deg 13.85 6.26 

Cusp C -122.89 deg 114.05 deg 31.27 16.17 

Cusp D 57.48 deg 133.77 deg 30.44 26.61 

Cusp E -0.59 deg 15.46 deg 16.02 29.56 

Cusp F 170.37 deg -10.65 deg 17.98 26.44 

Tab 1. Coordinates of the six cusp points for L1=14.98. 

 A slice for L1=34 

For the same manipulator with L1=34, four cusp points are found. Figure 3 shows the singularity 

curves and the four cusps in the slice of the joint space for L1=34. 

L2

L3

D
C

B

A

 
Fig 3.  Singular curves and cusp points in a slice of the 3-RPR manipulator joint space (L2,L3) for 

L1=34. 

The coordinates of the four cusp points are given in the table 2 below 
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  1 L2 L3 

Cusp A -3.84 deg -167.01 deg 33.22 19.00 

Cusp B 52.71 deg -61.76 deg 19.46 22.68 

Cusp C -1.07 deg 15.43 deg 35.00 48.64 

Cusp D 55.85 deg 128.19 deg 49.14 45.52 

Tab 2. Coordinates of the four cusp points for L1=34. 

 A slice for L1=27 

For the same manipulator with L1=27, eight cusp points are found. Figure 4 shows the singularity 

curves and the eight cusps in the slice of the joint space for L1=27. 
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A B

CD

E
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Fig 4.  Singular curves and cusp points in a slice of the 3-RPR manipulator joint space (L2,L3) for 

L1=27. 

The coordinates of the eight cusp points are given in the table 3 below 

 

   1 L2 L3 

Cusp A -0.95 deg 15.47 deg 28.01 41.63 

Cusp B 56.20 deg 129.36 deg 42.21 38.54 

Cusp C  -5.11 deg -168.45 deg 26.31 11.84 

Cusp D 52.23 deg -63.22 deg 12.56 15.71 

Cusp E -168.17 deg 8.70 deg 5.92 29.74 

Cusp F -125.54 deg 43.86 deg 7.98 27.36 

Cusp G -113.95 deg 63.88 deg 13.96 21.66 

Cusp H -129.36 deg 103.65 deg 35.57 4.80 

Tab 3. Coordinates of the eight cusp points for L1=27. 

IV.3.2 Another 3-RPR parallel manipulator 

The geometric parameters of the second manipulator are given below in an arbitrary length unit: 

A1=(0, 0) d1=13 

A2=(30, 0) d2=9 

A3=(11, 27) d3=4 
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 For L1=3: 

In this manipulator joint space section, the algorithm detects four cusp points. Figure 5 shows the 

singularity curves and the four cusps in the slice of the joint space for L1=3.  

L2

L3

A
B

C
D

 
Fig 5.  Singular curves and cusp points in a slice of the joint space (L2,L3) of the second 3-RPR 

manipulator studied for L1=3. 

The coordinates of the four cusp points are given in the table 4 below 

 

  1 L2 L3 

Cusp A 12.52 deg -145.11 deg 19.80 29.43 

Cusp B 156.76 deg -63.48 deg 40.68 31.11 

Cusp C -168.74 deg 26.38 deg 40.08 29.14 

Cusp D -20.32 deg 114.01 deg 19.11 27.01 

Tab 4. Coordinates of the four cusp points of the second manipulator studied for L1=3. 

V. Conclusions 

In this paper, we have reviewed and exploited the cusp points existence condition defined by “Mcaree 

(1999)”, we have found that it is only a sufficient condition and not a necessary one. 

An algorithm, able to detect and to compute cusp points inside any section of the joint space of any 3-

RPR parallel manipulator, has been established. To the best of the authors’ knowledge, such an 

algorithm had never been proposed before. The algorithm results in a 96
th
 degree univariate 

polynomial that can be put in a factored form. We have showed with intensive numerical experiments 

that the cusp points coordinates are the real roots of a 24
th
 degree univariate polynomial, which is one 

of the factors of the 96
th
 polynomial.  

Finally, the results of four numerical executions of the algorithm on two different manipulators has 

been exposed. Determination of the cusp points is an important issue for planning non-singular 

assembly mode changing trajectories in parallel manipulators. 

Contrary to serial manipulators, the number of cusp points is not the same in all sections. Future work 

will investigate the transition slices of the joint space where the number of cusp points changes, and its 

physical meaning for the behaviour of the manipulator.  
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