
HAL Id: hal-00145458
https://hal.science/hal-00145458

Submitted on 10 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automatic Selection of Bitmap Join Indexes in Data
Warehouses

Kamel Aouiche, Jérôme Darmont, Omar Boussaïd, Fadila Bentayeb

To cite this version:
Kamel Aouiche, Jérôme Darmont, Omar Boussaïd, Fadila Bentayeb. Automatic Selection of Bitmap
Join Indexes in Data Warehouses. 7th International Conference on Data Warehousing and Knowledge
Discovery (DaWaK 05), Aug 2005, Copenhagen, Denmark. pp.64-73. �hal-00145458�

https://hal.science/hal-00145458
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ha
l-0

01
45

45
8,

 v
er

si
on

 1
 -

 1
0

M
ay

 2
00

7

Automatic Selection of Bitmap Join Indexes

in Data Warehouses

Kamel Aouiche, Jerome Darmont, Omar Boussaid, and Fadila Bentayeb

ERIC Laboratory – University of Lyon 2
5, av. Pierre Mendès-France

F-69676 BRON Cedex – FRANCE
{kaouiche, jdarmont, boussaid, bentayeb}@eric.univ-lyon2.fr

Abstract. The queries defined on data warehouses are complex and
use several join operations that induce an expensive computational cost.
This cost becomes even more prohibitive when queries access very large
volumes of data. To improve response time, data warehouse administra-
tors generally use indexing techniques such as star join indexes or bitmap
join indexes. This task is nevertheless complex and fastidious.
Our solution lies in the field of data warehouse auto-administration. In
this framework, we propose an automatic index selection strategy. We
exploit a data mining technique ; more precisely frequent itemset mining,
in order to determine a set of candidate indexes from a given workload.
Then, we propose several cost models allowing to create an index config-
uration composed by the indexes providing the best profit. These models
evaluate the cost of accessing data using bitmap join indexes, and the
cost of updating and storing these indexes.
Keywords: Data warehouses, auto-administration, index selection, fre-
quent itemsets, cost models, bitmap join indexes.

1 Introduction

Data warehouses are generally modelled according to a star schema that con-
tains a central, large fact table, and several dimension tables that describe the
facts [10,11]. The fact table contains the keys of the dimension tables (foreign
keys) and measures. A decision–support query on this model needs one or more
joins between the fact table and the dimension tables. These joins induce an
expensive computational cost. This cost becomes even more prohibitive when
queries access very large data volumes. It is thus crucial to reduce it.

Several database techniques have been proposed to improve the computa-
tional cost of joins, such as hash join, merge join and nested loop join [14].
However, these techniques are efficient only when a join applies on two tables
and data volume is relatively small. When the number of joins is greater than
two, they are ordered depending on the joined tables (join order problem). Other
techniques, used in the data warehouse environment, exploit join indexes to pre-
compute these joins in order to ensure fast data access. Data warehouse ad-
ministrators then handle the crucial task of choosing the best indexes to create

(index selection problem). This problem has been studied for many years in
databases [1,4,5,6,7,12,18]. However, it remains largely unresolved in data ware-
houses. Existing research studies may be clustered in two families: algorithms
that optimize maintenance cost [13] and algorithms that optimize query response
time [2,8,9]. In both cases, optimization is realized under the constraint of the
storage space allotted to indexes. In this paper, we focus on the second family of
solutions, which is relevant in our context because they aim to optimize query
response time.

In addition, with the large scale usage of databases in general and data
warehouses in particular, it is now very important to reduce the database ad-
ministration function. The aim of auto-administrative systems is to administrate
and adapt themselves automatically, without loss (or even with a gain) in per-
formance. In this context, we proposed a method for index selection in databases
based on frequent itemset extraction from a given workload [3]. In this paper,
we present the follow-up of this work. Since all candidate indexes provided by
the frequent itemset extraction phase cannot be built in practice due to system
and storage space constraints, we propose a cost model–based strategy that se-
lects the most advantageous indexes. Our cost models estimate the data access
cost using bitmap join indexes, and the maintenance and storage cost of these
indexes.

We particularly focus on bitmap join indexes because they are well–adapted
to data warehouses. Bitmap indexes indeed make the execution of several com-
mon operations such as And, Or, Not or Count efficient by having them operating
on bitmaps, in memory, and not on the original data. Furthermore, joins are pre-
computed at index creation time and not at query execution time. The storage
space occupied by bitmaps is also low, especially when the indexed attribute
cardinality is not high [17,19]. Such attributes are frequently used in decision–
support query clauses such as Where and Group by.

The remainder of this paper is organized as follows. We first remind the
principle of our index selection method based on frequent itemset mining (Sec-
tion 2). Then, we detail our cost models (Section 3) and our index selection
strategy (Section 4). To validate our work, we also present some experiments
(Section 5). We finally conclude and provide research perspectives (Section 6).

2 Index selection method

In this section, we present an extension to our work about the index selection
problem [3]. The method we propose (Appendix A) exploits the transaction log
(the set of all the queries processed by the system) to recommend an index
configuration improving data access time.

We first extract from a given workload a set of so called indexable at-
tributes. Then, we build a “query-attribute” matrix whose rows represent work-
load queries and whose columns represent a set of all the indexable attributes.
Attribute presence in a query is symbolized by one, and absence by zero. It is
then exploited by the Close frequent itemset mining algorithm [16]. Each itemset

is analyzed to generate a set of candidate indexes. This is achieved by exploiting
the data warehouse metadata (schema: primary keys, foreign keys; statistics. . .).
Finally, we prune the candidate indexes using the cost models presented in Sec-
tion 3, before effectively building a pertinent index configuration. We detail these
steps in the following sections.

3 Cost models

The number of candidate indexes is generally as high as the input workload is
large. Thus, it is not feasible to build all the proposed indexes because of system
limits (limited number of indexes per table) or storage space constraints. To
circumvent these limitations, we propose cost models allowing to conserve only
the most advantageous indexes. These models estimate the storage space (in
bytes) occupied by bitmap join indexes, the data access cost using these indexes
and their maintenance cost expressed in number of input/output operations
(I/Os). Table 1 summarizes the notations used in our cost models.

Table 1. Cost model parameters

Symbol Description

| X | Number of tuples in table X or cardinality of attribute X

Sp Disk page size in bytes

pX Number of pages needed to store table X

Spointer Page pointer size in bytes

m B-tree order

d Number of bitmaps used to evaluate a given query

w(X) Tuple size in bytes of table X or attribute X

3.1 Bitmap join index size

The space required to store a simple bitmap index linearly depends on the in-
dexed attribute cardinality and the number of tuples in the table on which the
index is built. The storage space of a bitmap index built on attribute A from ta-

ble T is equal to |A||T |
8 bytes [19,20]. Bitmap join indexes are built on dimension

table attributes. Each bitmap contains as many bits as the number of tuples in

fact table F . The size of their storage space is then S = |A||F |
8 bytes.

3.2 Bitmap join index maintenance cost

Data updates (mainly insert operations in decisions-support systems) systemi-
cally trigger index updates. These operations are applied either on a fact table
or dimensions. The cost of updating bitmap join indexes is presented in the
following sections.

Insertion cost in fact table Assume a bitmap join index built on attribute
A from dimension table T . While inserting tuples in fact table F , it is first
necessary to search for the tuple of T that is able to be joined with them. At
worst, the whole table T is scanned (PT pages are read). It is then necessary

to update all bitmaps. At worst, all bitmaps are scanned: |A||F |
8Sp

pages are read,

where Sp denotes the size of one disk page. The index maintenance cost is then

Cmaintenance = pT + |A||F |
8Sp

.

Insertion cost in dimension tables An insertion in dimension T may induce
or not a domain expansion for attribute A. When not expanding the domain, the
fact table is scanned to search for tuples that are able to be joined with the new
tuple inserted in T . This operation requires to read pF pages. It is then necessary

to update the bitmap index. This requires |A||F |
8Sp

I/Os. When expanding the

domain, it is necessary to add the cost of building a new bitmap (|F |
8Sp

pages).

The maintenance cost of bitmap join indexes is then Cmaintenance = pF + (1 +

ξ) |A||F |
8Sp

, where ξ is equal to one if there is expansion and zero otherwise.

3.3 Data access cost

We propose two cost models to estimate the number of I/Os needed for data
access. In the first model, we do not take any hypothesis about how indexes
are physically implemented. In the second model, we assume that access to the
index bitmaps is achieved through a b-tree such as is the case in Oracle. Due to
lack of space and our experiments under Oracle we only detail here the second
model because of running our experiments. however, the first model is detailed
in Appendix B.

B-tree access to bitmaps In this model, we assume that the access to bitmaps
is realized through a b-tree (meta–indexing) in which leaf nodes point to bitmaps
(appendix figure 5). The cost, in number of I/Os, of exploiting a bitmap join in-
dex for a given query may be written as follows: C = Cdescent + Cscan + Cread,
where Cdescent denotes the cost needed to reach the leaf nodes from the b-tree
root, Cscan denotes the cost of scanning leaf nodes to retrieve the right search
key and the cost of reading the bitmaps associated to this key, and Cread finally
gives the cost of reading the indexed table’s tuples.

The descent cost in the b-tree depends on its height. The b-tree’s height built
on attribute A is logm|A|, where m is the b-tree’s order. This order is equal to
K + 1, where K represents the number of search keys in each b-tree node. K is
equal to

Sp

w(A)+Spointer
, where w(A) and Spointer are respectively the size of the

indexed attribute A and the size of a disk page pointer in bytes. Without adding
the b-tree leaf node level, the b-tree descent cost is then Cdescent = logm|A| − 1.

The scanning cost of leaf nodes is |A|
m−1 (at worst, all leaf nodes are read).

Data access is achieved through bits set to one in each bitmap. In this case, it

is necessary to read each bitmap. The reading cost of d bitmaps is d |F |
8Sp

. Hence,

the scanning cost of the leaf nodes is Cscan = |A|
m−1 + d |F |

8Sp
.

The reading cost of the indexed table’s tuples is computed as follow. For a

bitmap index built on attribute A, the number of read tuples is equal to |F |
|A| (if

data are uniformly distributed). Generally, the total number of read tuples for

a query using d bitmaps is Nr = d |F |
|A| . Knowing the number of read tuples, the

number of I/Os in the reading phase is Cread = pF (1 − e
−Nr

pF) [15], where pF

denotes the number of pages needed for store the fact table.
In summary, the evaluation cost of a query exploiting a bitmap join index is

Cindex = logm|A| − 1 + |A|
m−1 + d |F |

8Sp
+ pF (1 − e

−Nr
pF).

3.4 Join cost without indexes

If the bitmap join indexes are not useful while evaluating a given query, we
assume that all joins are achieved by the hash–join method. The number of
I/Os needed for joining table R with table S is then Chash = 3 (pS + pR) [14].

4 Bitmap join index selection strategy

Our index selection strategy proceeds in several steps. The candidate index set
is first built from the frequent itemsets mined from the workload (Section 2). A
greedy algorithm then exploits an objective function based on our cost models
(Section 3) to prune the least advantageous indexes. The detail of these steps and
the construction of the objective function are provided in the following sections.

4.1 Candidate index set construction

From the frequent itemsets (Section 2) and the data warehouse schema (foreign
keys of the fact table, primary keys of the dimensions, etc.), we build a set of
candidate indexes.

The SQL statement for building a bitmap join index is composed of three
clauses: On, From and Where. The On clause is composed of attributes on which is
built the index (non–key attributes in the dimensions), the From clause contains
all joined tables and the Where clause contains the join predicates.

We consider a frequent itemset < Table.attribute1, ..., T able.attributen >
composed of elements such as Table.attribute. Each itemset is analyzed to de-
termine the different clauses of the corresponding index. We first extract the
elements containing foreign keys of the fact table because they are necessary to
define the From and Where index clauses. Next, we retrieve the itemset elements
that contain primary keys of dimensions to form the From index clause. The
elements containing non–key attributes of dimensions form the On index clause.
If such elements do not exist, the bitmap join index cannot be built.

4.2 Objective functions

In this section, we describe three objective functions to evaluate the variation of
query execution cost, in number of I/Os, induced by adding a new index. The
query execution cost is assimilated to computing the cost of hash joins if no
bitmap join index is used or to the data access cost through indexes otherwise.
The workload execution cost is obtained by adding all execution costs for each
query within this workload.

The first objective function advantages the indexes providing more profit
while executing queries, the second one advantages the indexes providing more
benefit and occupying less storage space, and the third one combines the first
two in order to select at first all indexes providing more profit and then keep only
those occupying less storage space when this resource becomes critical. The first
function is useful when storage space is not limited, the second one is useful when
storage space is small and the third one is interesting when this storage space is
quite large. The detail of computing each function is given in Appendix C.

4.3 Index configuration construction

The index selection algorithm (Appendix D) is based on a greedy search within
the candidate index set I given as an input. The objective function F must be
one of the functions P , R or H described in the previous section. If R is used,
we add to the algorithm’s input the space storage M allotted for indexes. If H
is used, we also add threshold α as input.

In the first algorithm iteration, the values of the objective function are com-
puted for each index within I. The execution cost of all queries in workload Q
(the first term of function F) is equal to the total cost of hash joins. The index
imax that maximizes F , if it exists (F/S(imax) > 0), is then added to S. If R
or H is used, the whole space storage M is decreased by the amount of space
occupied by imax.

The function values of F are then recomputed for each remaining index in
I − S since they depend on the selected indexes present in S. This helps taking
into account the interactions that probably exist between the indexes.

We repeat these iterations until there is no improvement (F/S(i) ≤ 0) or
all indexes have been selected (I − S = ∅). If functions R or H are used, the
algorithm also stops when storage space is full.

5 Experiments

In order to validate our bitmap join index selection strategy, we have run tests
on a data warehouse implemented within Oracle 9i, on a Pentium 2.4 GHz PC
with a 512 MB main memory and a 120 GB IDE disk. This data warehouse
is composed of the fact table Sales and five dimensions Customers, Products,
Promotions, Times and Channels. We have measured for different value of the

minimal support parameterized in Close the workload execution time. In prac-
tice, the minimal support limits the number of candidate indexes to generate
and selects only those that are frequently used.

For computing the different costs from our models, we fixed the value of Sp

(disk page size) and Spointer (page pointer size) to 8 MB and 4 MB respectively.
These values are those indicated in the Oracle 9i configuration file. The work-
load is composed of forty decision–support queries containing several joins. We
measured the total execution time when building indexes or not. In the case of
building indexes, we also measured the total execution time when we applied
each objective function among of profit, ratio profit/space and hybrid. We also
measured the disk space occupied by the selected indexes.

680,00

730,00

780,00

830,00

880,00

930,00

980,00

1030,00

1,
0%

5,
0%

10
,0%

15
,0%

17
,5%

20
,0%

25
,0%

40
,0%

45
,0%

>=
 47

,5%

Minimal support

R
es

po
ns

e
tim

e
(in

 s
ec

on
ds

)

Without indexes With indexes and w ithout cost models

With indexes and cost models

Fig. 1. Profit function

0

20

40

60

80

100

120

1,
00

%
5,

00
%

10
,0

0%

15
,0

0%

17
,5

0%

20
,0

0%

25
,0

0%

40
,0

0%

45
,0

0%

>
= 4

7,5
%

Minimal support

S
iz

e
of

 in
de

xe
s

(in
 M

B
)

Without cost models With cost models

Fig. 2. Index storage space

5.1 Profit function experiment

Figure 1 shows that the selected indexes improve query execution time with
and without application of our cost models until the minimal support forming
frequent itemsets reaches 47.5%. Moreover, the execution time decreases con-
tinuously when the minimal support increases because the number of indexes
decreases. For high values of the minimal support (greater than 47.5%), the exe-
cution time is closer to the one obtained without indexes. This case is predictable
because there is no or few candidate indexes to create.

The maximal gain in time in both cases is respectively 30.50% and 31.85%.
Despite of this light drop of 1.35% in time gain when the cost models are used
(fewer indexes are built), we observe a significant gain in storage space (equal to
32.79% in the most favorable case) as shown in figure 2. This drop in number of
indexes is interesting when the data warehouse update frequency is high because
update time is proportional to the number of indexes. On the other hand, the

gain in storage space helps limiting the storage space allotted for indexes by the
administrator.

5.2 Profit/space ratio function experiment

In these experiments, we have fixed the value of minimal support to 1%. This
value gives the highest number of frequent itemsets and consequently the highest
number of candidate indexes. This helps varying storage space within a wider
interval. We have measured query execution time according to the percentage of
storage space allotted for indexes. This percentage is computed from the space
occupied by all indexes.

Figure 3 shows that execution time decreases when storage space occupation
increases. This is predictable because we create more indexes and thus better
improve the execution time. We also observe that the maximal time gain is equal
to 28.95% and it is reached for a space occupation of 59.64%. This indicates
that if we fix space storage to this value, we obtain a time gain close to the one
obtained with the profit objective function (30.50%). This case is interesting
when the administrator does not have enough space to store all the indexes.

5.3 Hybrid function experiment

We repeated the previous experiments with the hybrid objective function. We
varied the value of parameter α between 0.1 and 1 by 0.1 steps. The obtained
results with α ∈ [0.1, 0.7] and α ∈ [0.8, 1] are respectively equal to those obtained
with α = 0.1 and α = 0.7. Thus, we represent in figure 4 only the results obtained
with α = 0.1 and α = 0.7. This figure shows that for α = 0.1, the results are close
to those obtained with profit/space ratio the function ; and for α = 0.8, they are
close to those obtained with the profit function. The maximal gain in execution
time is respectively equal to 28.95% and 29.95% for α = 0.1 and α = 0.8.

We explain these results by the fact that bitmap join indexes built on several
attributes need more storage space. However, as they pre–compute more joins,
they better improve the execution time. The space storage allotted for indexes
then fills up very quickly after a few iterations of the greedy algorithm. This
explains why the parameter α does not significantly affect our algorithm and
the experiment results.

6 Conclusion and perspectives

In this article, we presented an automatic strategy for bitmap index selection
in data warehouses. This strategy first exploits frequent itemsets obtained by
the Close algorithm from a given workload to build a set of candidate bitmap
join indexes. With the help of cost models, we keep only the most advantageous
candidate indexes. These models estimate data access cost through indexes, as
well as maintenance and storage cost for these indexes. We have also proposed
three objective functions: profit, profit/space ratio and hybrid that exploit our

680

730

780

830

880

930

980

1030

0,
00

%

11
,93

%

23
,86

%

35
,79

%

47
,71

%

59
,64

%

71
,57

%

83
,50

%

95
,43

%

Srorage space allocated to indexes

R
es

po
ns

e
tim

e
(in

 s
ec

on
ds

)

Without indexes With indexes and cost models

Fig. 3. Profit/space ratio function

680

730

780

830

880

930

980

1030

0,
00

%

11
,9

3%

23
,8

6%

35
,7

9%

47
,7

1%

59
,6

4%

71
,5

7%

83
,5

0%

95
,4

3%

Storage space allocated to indexes

R
e

sp
o

ns
e

 ti
m

e
 (

in
 s

e
co

n
ds

)

Without indexes With indexes and cost models (�=0,1)

With indexes and cost models (�=0,8)

Fig. 4. Hybrid function

cost models to evaluate the execution cost of all queries. These functions are
themselves exploited by a greedy algorithm that recommends a pertinent con-
figuration of indexes. This helps our strategy respecting constraints imposed by
the system (limited number of indexes per table) or the administrator (storage
space allotted for indexes). Our experimental results show that the application
of cost models to our index selection strategy decreases the number of selected
indexes without a significant loss in performance. This decrease actually guar-
antees a substantial gain in storage space, and thus a decrease in maintenance
cost during data warehouse updates.

Our work shows that the idea of using data mining techniques for data ware-
house auto-administration is a promising approach. It opens several future re-
search axes. First, it is essential to keep on experimenting in order to better eval-
uate system overhead in terms of index building and maintenance. It could also
be very interesting to compare our approach to other index selection methods.
Second, extending our approach to other performance optimization techniques
(materialized views, buffering, physical clustering, etc.) is another promising
perspective. Indeed, in a data warehouse environment, it is principally in con-
junction with other physical structures such as materialized views that indexing
techniques provide significant gains in performance. For example, our context
extraction may be useful to build clusters of queries that maximize the simi-
larity between queries within each cluster. Each cluster may be then a starting
point to materialize views. In addition, it could be interesting to design methods
to efficiently share the available storage space between indexes and views.

References

1. S. Agrawal, S. Chaudhuri, and V. Narasayya. Automated selection of materialized
views and indexes in SQL databases. In 26th International Conference on Very
Large Data Bases (VLDB 2000), Cairo, Egypt, pages 496–505, 2000.

2. S. Agrawal, S. Chaudhuri, and V. Narasayya. Materialized view and index selection
tool for Microsoft SQL Server 2000. In ACM SIGMOD International Conference
on Management of Data (SIGMOD 2001), Santa Barbara, USA, page 608, 2001.

3. K. Aouiche, J. Darmont, and L. Gruenwald. Frequent itemsets mining for database
auto-administration. In 7th International Database Engineering and Application
Symposium (IDEAS 2003), Hong Kong, China, pages 98–103, 2003.

4. S. Chaudhuri, M. Datar, and V. Narasayya. Index selection for databases: A hard-
ness study and a principled heuristic solution. IEEE Transactions on Knowledge
and Data Engineering, 16(11):1313–1323, 2004.

5. Y. Feldman and J. Reouven. A knowledge–based approach for index selection in
relational databases. Expert System with Applications, 25(1):15–37, 2003.

6. S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical database design for rela-
tional databases. ACM Transactions on Database Systems, 13(1):91–128, 1988.

7. M. Frank, E. Omiecinski, and S. Navathe. Adaptive and automated index selection
in RDBMS. In 3rd International Conference on Extending Database Technology
(EDBT 1992), Vienna, Austria, volume 580 of Lecture Notes in Computer Science,
pages 277–292, 1992.

8. M. Golfarelli, S. Rizzi, and E. Saltarelli. Index selection for data warehousing.
In 4th International Workshop on Design and Management of Data Warehouses
(DMDW 2002), Toronto, Canada, pages 33–42, 2002.

9. H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection
for OLAP. In 13th International Conference on Data Engineering (ICDE 1997),
Birmingham, U.K., pages 208–219, 1997.

10. W. Inmon. Building the Data Warehouse. John Wiley & Sons, third edition, 2002.
11. R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling. John Wiley & Sons, second edition, 2002.
12. J. Kratica, I. Ljubić, and D. Tošić. A genetic algorithm for the index selection

problem. In Applications of Evolutionary Computing, Essex, England, volume 2611
of LNCS, pages 281–291, 2003.

13. W. Labio, D. Quass, and B. Adelberg. Physical database design for data ware-
houses. In 13th International Conference on Data Engineering (ICDE 1997), Birm-
ingham, U.K., pages 277–288, 1997.

14. P. Mishra and M. Eich. Join processing in relational databases. ACM Computing
Surveys, 24(1):63–113, 1992.

15. P. O’Neil and D. Quass. Improved query performance with variant indexes. In ACM
SIGMOD International Conference on Management of Data (SIGMOD 1997),
Tucson, USA, pages 38–49, 1997.

16. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In 7th International Conference on Database Theory
(ICDT 1999), Jerusalem, Israel, volume 1540 of LNCS, pages 398–416, 1999.

17. S. Sarawagi. Indexing OLAP data. Data Engineering Bulletin, 20(1):36–43, 1997.
18. G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2 advisor: An

optimizer smart enough to recommend its own indexes. In 16th International
Conference on Data Engineering (ICDE 2000), San Diego, USA, pages 101–110,
2000.

19. M. Wu. Query optimization for selections using bitmaps. In ACM SIGMOD
International Conference on Management of Data (SIGMOD 1999), Philadelphia,
USA, pages 227–238, 1999.

20. M. Wu and A. Buchmann. Encoded bitmap indexing for data warehouses. In 14th
International Conference on Data Engineering (ICDE 1998), Orlando, USA, pages
220–230, 1998.

APPENDIX

A Automatic index selection strategy��������
 �����	�
 �����������

Index generation

���� ���������
Indexable attribute extraction

Index creation

���� ����������� ����� �������!�������� ���������� �� ���"���� ���	����
#��$%���&���'(�����)��� 	������*��������� ��������

Close application

Index selection

B Direct access to bitmaps

Two phases are necessary to evaluate a query exploiting a given bitmap index:
scan all the bitmaps and read the corresponding tuples in the indexed table. The
first phase includes I/O operations allowing to search for all the bitmaps needed
to evaluate a given query. The second phase includes additional I/O operations
needed to directly read the data from disk that are referenced by the bitmaps
reached in the first phase. We assume that data are uniformly distributed.

B.1 Number of I/Os in the bitmap scanning phase

At worst, all bitmaps should be scanned to search for the bitmap corresponding
to the indexed attribute’s value. In DBMSs (Database Management Systems),
I/O operations read a data page rather than a tuple. This means that when a
tuple in a page is accessed, the whole page is read. If Sp is the disk page size,

the number of pages to scan for reading one bitmap is |F |
8Sp

.

 p,k ;p,k ;… ;p,k,p

p,k ; p,k ;…

p,k ; p,k ;…

k,pb ;k,pb;… ;k,pb k,pb ;…

…

…

1
0
0
.
.
.
1

0
0
1
.
.
.
0

0
1
0
.
.
.
0

Table

…

… …

Fig. 5. B-tree accessed bitmap join index.

The number of I/Os needed to search for one bitmap is |A||F |
8Sp

. If reading d

bitmaps is necessary, the cost of the index scanning phase is Cscan = d |A||F |
8Sp

.

The value of d is equal to the number of predicates on the indexed attributes
linked by the Or operator or the cardinality of a list in a In clause. For example,
the value of d for indexed attribute A is equal to 2 in the following clauses: A=5
or A=10, A in (5,10).

B.2 Number of I/Os in the tuple reading phase

For a bitmap index built on attribute A, the number of read tuples is equal to
|F |
|A| (if data are uniformly distributed).

Generally, the total number of read tuples for a query using d bitmaps is

Nr = d |F |
|A| . Knowing the number of read tuples, the number of I/Os in the

reading phase is Cread = pF (1 − e
−Nr

pF) [15], where pF denotes the number of
pages needed for store the fact table.

B.3 Total number of I/Os

The total number of I/Os is the sum of the I/Os from the bitmap scanning phase

and the I/Os from the tuple reading phase: Cindex = d |A||F |
8Sp

+ pF (1 − e
−Nr

pF).

In this formula, note that the cost of the bitmap scanning phase (operations
on bitmaps) is high when the indexed attribute’s cardinality is large. On the
other hand, the cost of the tuple reading phase decreases when this cardinality
increases.

C Objective functions

C.1 Profit objective function

Let I = {i1, ..., in} be a candidate bitmap join index set, Q = {q1, ..., qm} a
query set (a workload) and S a final index set to build.

The profit objective function, noted P , is defined as follows:

P/S(ij) = λ
(

C/S(Q) − C/S∪{ij}(Q) − β Cmaintenance({ij})
)

, ij /∈ S.

– Coefficient λ estimates a ratio between the avoided join cost induced by
index ij when executing queries that exploit this index and the total join
cost of all queries. Higher is the value of λ, better is the index. Indeed,
an index avoiding a lot of joins is more advantageous. λ is computed as

follows: λ = |Q| support(ij)
hash(tables(ij))

∑|Q|

i=1
hash(tables(qi))

, where |Q|, support(ij),

hash(tables(ij) and
∑|Q|

i=1 hash(tables(qi)) are respectively the number of
queries in the workload, the support of the frequent itemset generator of ij ,
and the total cost of hash joining the tables used in each query qi.

– C/S(Q) denotes the query execution cost when all indexes in S are used. If
this set is empty, C/∅(Q) is equal to the total cost of hash joining all tables in

each query. When an index ij is added to S, C/S∪{ij}(Q) =
∑|Q|

k=0 C(qk, {ij})
denotes the query execution cost for the indexes are in S ∪ {ij}. If query qk

exploits ij , the cost C(qk, {ij}) is then equal to Cij (cost of data access
through this index). Otherwise, C(qk, {ij}) is equal to the minimum value
between Chash (cost of hash joining all tables in qk) and values of C(qk, {i})
(executing cost of qk exploiting i ∈ S with i 6= ij).

– The coefficient β = |Q| p(ij) estimates the number of updates for index ij .

The update probability p(ij) is equal to 1
number of indexes

%update
%query , where the

ratio %update
%query represents the proportion of updating vs. querying the data

warehouse.
– Cmaintenance({ij}) represents the maintenance cost for index ij.

C.2 Profit/space ratio objective function

If index selection is achieved under a space constraint, the profit/space ratio

objective function R/S(ij) =
P/S(ij)

size(ij) is used. This function computes the profit

provided by ij in regard to the storage space size(ij) that it occupies.

C.3 Hybrid objective function

The constraint on the storage space may be relaxed if this space is relatively
large. The hybrid objective function H does not penalize space–“greedy” indexes
if the ratio remaining space

storage space is lower or equal than a given threshold α (0 < α ≤

1), where remaining space and storage space are respectively the remaining

space after adding ij and the allotted space needed for storing all the indexes.
This function is computed by combining the two functions P and R as follows:

H/S(ij) =

{

P/S(ij) if remaining space
storage space > α,

R/S(ij) otherwise.

D Index selection algorithm

Algorithm 1 Index construction algorithm

S ← ∅
repeat

imax ← ∅
Fmax ← 0
for all ij ∈ I − S do

if F/S(ij) > Fmax then

Fmax ← F/S(ij)
imax ← ij

end if

end for

if F/S(imax) > 0 then

S ← S ∪ {imax}
end if

until (F/S(imax) ≤ 0 ou I − S = ∅)

