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Abstract. Data warehouse architectural choices and optimization tech-
niques are critical to decision support query performance. To facilitate
these choices, the performance of the designed data warehouse must be
assessed. This is usually done with the help of benchmarks, which can ei-
ther help system users comparing the performances of different systems,
or help system engineers testing the effect of various design choices. While
the TPC standard decision support benchmarks address the first point,
they are not tuneable enough to address the second one and fail to model
different data warehouse schemas. By contrast, our Data Warehouse En-
gineering Benchmark (DWEB) allows to generate various ad-hoc syn-
thetic data warehouses and workloads. DWEB is fully parameterized to
fulfill data warehouse design needs. However, two levels of parameter-
ization keep it relatively easy to tune. Finally, DWEB is implemented
as a Java free software that can be interfaced with most existing rela-
tional database management systems. A sample usage of DWEB is also
provided in this paper.

1 Introduction

When designing a data warehouse, choosing an architecture is crucial. Since it
is very dependant on the domain of application and the analysis objectives that
are selected for decision support, different solutions are possible. In the ROLAP
(Relational OLAP) environment we consider, the most popular solutions are by
far star, snowflake, and constellation schemas [7,9], and other modeling possibil-
ities might exist. This choice of architecture is not neutral: it always has advan-
tages and drawbacks and greatly influences the response time of decision support
queries. Once the architecture is selected, various optimization techniques such
as indexing or materialized views further influence querying and refreshing per-
formance. Again, it is a matter of trade-off between the improvement brought by
a given technique and its overhead in terms of maintenance time and additional
disk space; and also between different optimization techniques that may cohabit.
To help users make these critical choices of architecture and optimization tech-
niques, the performance of the designed data warehouse needs to be assessed.



However, evaluating data warehousing and decision support technologies is an in-
tricate task. Though pertinent, general advice is available, notably on-line [5,12],
more quantitative elements regarding sheer performance are scarce. Thus, we
propose in this paper a data warehouse benchmark we named DWEB (the Data

Warehouse Engineering Benchmark). Different goals may be achieved by using
a benchmark: (1) compare the performances of various systems in a given set of
experimental conditions (users); (2) evaluate the impact of architectural choices
or optimisation techniques on the performances of one given system (system de-
signers). The Transaction Processing Performance Council (TPC), a non-profit
organization, defines standard benchmarks and publishes objective and verifiable
performance evaluations to the industry. Out of the TPC, few decision support
benchmarks have been designed. Some do exist, but their specification is not
fully published [3]. Some others are not available any more, such as the OLAP
APB-1 benchmark that was issued in the late nineties by the OLAP council, an
organization whose web site does not exist any more.

The TPC benchmarks mainly aim at the first benchmarking goal we identi-
fied. However, the database schema of TPC benchmarks TPC-H [15] and TPC-
R [16] is a classical product-order-supplier model, and not a typical data ware-
house schema such as a star schema and its derivatives. Furthermore, their work-
load, though decision-oriented, does not include explicit OLAP (On-Line Ana-
lytical Processing) queries either, and they do not address specific warehousing
issues such as the ETL (Extract, Transform, Load) process. These benchmarks
are indeed implicitely considered obsolete by the TPC that has issued some spec-
ifications for their successor: TPC-DS [13]. However, TPC-DS has been under
development for three years now and is not completed yet. Furthermore, al-
though the TPC decision support benchmarks are scaleable according to Gray’s
definition [4], their schema is fixed. It must be used “as is”. Different ad-hoc con-
figurations are not possible. There is only one parameter to define the database,
the Scale Factor (SF ), which sets up its size (from 1 to 100,000 GB). The user
cannot control the size of the dimensions and the fact tables separately, for in-
stance. Finally, the user has no control on the workload’s definition. The TPC
benchmarks are thus not well adapted to evaluate the impact of architectural
choices or optimisation techniques on global performance. For these reasons, we
decided to design a full data warehouse synthetic benchmark that would be able
to model various ad-hoc configurations of database (modeled as star, snowflake,
or constellation schemas) and workload, while being simpler to develop than
TPC-DS. We mainly seek to fulfill engineering needs (second benchmarking ob-
jective).

This paper presents an overview the DWEB benchmark. First, we present
our benchmark’s database (metaschema, parameterization, and instiantiation
into an actual data warehouse) in Section 2. Then, we present the benchmark’s
workload (query model, parameterization, and workload generation) in Section 3.
We illustrate how our benchmark can be used in Section 4 and finally conclude
this paper and provide future research directions in Section 5.



2 DWEB database

2.1 Schema

Our design objective for DWEB is to be able to model the different kinds of data
warehouse architectures that are popular within a ROLAP environment: classical
star schemas; snowflake schemas with hierarchical dimensions; and constellation
schemas with multiple fact tables and shared dimensions. To achieve this goal,
we propose a data warehouse metamodel (represented as a UML class diagram
in Figure 1) that can be instantiated into these different schemas. We view this
metamodel as a middle ground between the multidimensional metamodel from
the Common Warehouse Metamodel (CWM [11]) and the eventual benchmark
model. Our metamodel is actually an instance of the CWM metamodel, which
could be qualified as a meta-metamodel in our context.

Fig. 1. DWEB data warehouse metaschema

Our metamodel is relatively simple, but it is sufficient to model the data
warehouse schemas we aim at (star, snowflake, and constellation schemas). Its
upper part describes a data warehouse (or a datamart, if a datamart is viewed
as a small, dedicated data warehouse) as constituted of one or several fact tables
that are each described by several dimensions. Each dimension may also describe
several fact tables (shared dimensions). Each dimension may be constituted of
one or several hierarchies made of different levels. There can be only one level if
the dimension is not a hierarchy. Both fact tables and dimension hierarchy levels
are relational tables, which are modeled in the lower part of Figure 1. Classically,



a table or relation is defined in intention by its attributes and in extension by
its tuples or rows. At the intersection of a given attribute and a given tuple lies
the value of this attribute in this tuple.

2.2 Parameterization

DWEB’s database parameters help users selecting the data warehouse archi-
tecture they need in a given context. The main difficulty in producing a data
warehouse schema is parameterizing the instantiation of the metaschema. We
indeed try to meet the four key criteria that make a “good” benchmark, as de-
fined by Gray [4]: relevance: the benchmark must answer our engineering needs
portability: the benchmark must be easy to implement on different systems; scal-

ability: it must be possible to benchmark small and large databases, and to scale
up the benchmark; and simplicity: the benchmark must be understandable, oth-
erwise it will not be credible nor used. Relevance and simplicity are clearly two
orthogonal goals. Introducing too few parameters reduces the model’s expres-
siveness, while introducing too many parameters makes it difficult to apprehend
by potential users. Furthermore, few of these parameters are likely to be used in
practice. In parallel, the generation complexity of the instantiated schema must
be mastered. To solve this dilemna, we propose to divide the parameter set into
two subsets. The first subset of so-called low-level parameters allows an advanced
user to control everything about the data warehouse generation. However, the
number of low-level parameters can increase dramatically when the schema gets
larger. For instance, if there are several fact tables, all their characteristics, in-
cluding dimensions and their own characteristics, must be defined for each fact
table. Thus, we designed a layer above with much fewer parameters that may
be easily understood and set up (Table 1). More precisely, these high-level pa-
rameters are average values for the low-level parameters. At database generation
time, the high-level parameters are exploited by random functions (following a
gaussian distribution) to automatically set up the low-level parameters. Finally,
unlike the number of low-level parameters, the number of high-level parameters
always remains constant and reasonable (less than ten parameters). Users may
choose to set up either the full set of low-level parameters, or only the high-level
parameters, for which we propose default values that correspond to a snowflake
schema. These parameters control both schema and data generation.

Note that the cardinal of a fact table is usually lower or equal to the prod-
uct of its dimensions’ cardinals. This is why we introduce the notion of den-
sity. A density rate of one indicates that all the possible combinations of the
dimension primary keys are present in the fact table. When the density rate
decreases, we progressively eliminate some of these combinations.This parame-
ter helps controlling the size of the fact table, independantly of the size of its
dimensions.Furthermore, within a dimension, a given hierarchy level normally
has a greater cardinality than the next level. For example, in a town-region-

country hierarchy, the number of towns must be greater than the number of
regions, which must be in turn greater than the number of countries. There is
also often a significant scale factor between these cardinalities (e.g., one thousand



Parameter name Meaning Def. val.

AV G NB FT Average number of fact tables 1

AV G NB DIM Average number of dimensions per fact table 5

AV G TOT NB DIM Average total number of dimensions 5

AV G NB MEAS Average number of measures in fact tables 5

AV G DENSITY Average density rate in fact tables 0.6

AV G NB LEV ELS Average number of hierarchy levels in dimensions 3

AV G NB ATT Average number of attributes in hierarchy levels 5

AV G HHLEV EL SIZE Average number of tuples in highest hierarchy levels 10

DIM SFACTOR Average size scale factor within hierarchy levels 10

Table 1. DWEB warehouse high-level parameters

towns, one hundred regions, ten countries). Hence, we model the cardinality of
hierarchy levels by assigning a “starting” cardinality to the highest level in the
hierarchy (HHLEV EL SIZE), and then by multiplying it by a predefined scale
factor (DIM SFACTOR) for each lower-level hierarchy. Finally, since some of
DWEB’s parameters might sound abstract, the data warehouse global size (in
megabytes) is assessed at generation time so that users retain full control over it
and may adjust the parameters to better represent the kind of warehouse they
need.

2.3 Generation algorithm

The instantiation of the DWEB metaschema into an actual benchmark schema
is done in two steps: (1) build the dimensions; (2) build the fact tables. Due
to space constraints, the pseudo-code for these two steps is not provided here,
but it is available on-line [2]. Each of these steps is further subdivided, for each
dimension and each fact table, into generating its intention and extension. In
addition, hierarchies of dimensions are managed.

3 DWEB workload

In a data warehouse benchmark, the workload may be subdivided into a load
of decision support queries (mostly OLAP queries) and the ETL (data gener-
ation and maintenance) process. To design DWEB’s workload, we inspire both
from TPC-DS’ workload definition and information regarding data warehouse
performance from other sources [1,6]. However, TPC-DS’ workload is very elabo-
rate and sometimes confusing. Its reporting, ad-hoc decision support and OLAP
query classes are very similar, for instance, but none of them include any specific
OLAP operator such as Cube or Rollup. Since we want to meet Gray’s simplicity
criterion, we propose a simpler workload. Furthermore, we also have to design
a workload that is consistent with the variable nature of the DWEB data ware-
houses. We also, in a first step, mainly focus on the definition of a query model.
Modeling the full ETL process is a complex task that we postpone for now. We



consider that the current DWEB specifications provide a raw loading evaluation
framework. The DWEB database may indeed be generated into flat files, and
then loaded into a data warehouse using the ETL tools provided by the system.

3.1 Query model

The DWEB workload models two different classes of queries: purely decision-
oriented queries involving common OLAP operations, such as cube, roll-up, drill
down and slice and dice; and extraction queries (simple join queries). We define
our generic query model as a grammar that is a subset of the SQL-99 standard.
Due to space constraints, this query model is only available on-line [2].

3.2 Parameterization

DWEB’s workload parameters help users tailoring the benchmark’s load, which
is also dependent from the warehouse schema, to their needs. Just like DWEB’s
database paramameter set, DWEB’s workload parameter set (Table 2) has been
designed with Gray’s simplicity criterion in mind. These parameters determine
how the query model is instantiated. These parameters help defining the work-
load’s size and complexity, by setting up the proportion of complex OLAP queries
(i.e., the class of queries) in the workload, the number of aggregation operations,
the presence of a Having clause in the query, or the number of subsequent drill
down operations. Here, we have only a limited number of high-level parameters
Indeed, it cannot be envisaged to dive further into detail if the workload is as
large as several hundred queries, which is quite typical. Note that NB Q is only
an approximate number of queries because the number of drill down operations
after an OLAP query may vary. Hence we can stop generating queries only when
we actually have generated as many or more queries than NB Q.

Parameter name Meaning Def. val.

NB Q Approximate number of queries in the workload 100

AV G NB ATT Average number of selected attributes in a query 5

AV G NB RESTR Average number of restrictions in the query 3

PROB OLAP Probability that the query type is OLAP 0.9

PROB EXTRACT Probability that the query is an extraction query 1 − P OLAP

AV G NB AGGREG Average number of aggregations in an OLAP query 3

PROB CUBE Probability of an OLAP query to use the Cube operator 0.3

PROB ROLLUP Probability of an OLAP query to use the Rollup operator 1 − P CUBE

PROB HAV ING Probability of an OLAP query to include an Having clause 0.2

AV G NB DD Average number of drill downs after an OLAP query 3

Table 2. DWEB workload parameters



3.3 Generation algorithm

Due to space constraints, the pseudo-code of DWEB’s workload generation algo-
rithm is only available on-line [2]. However, its principle follows. The algorithm’s
purpose is to generate a set of SQL-99 queries that can be directly executed on
the synthetic data warehouse defined in Section 2. It is subdivided into two steps:
(1) generate an initial query that may either be an OLAP or an extraction (join)
query; (2) if the initial query is an OLAP query, execute a certain number of
drill down operations based on the first OLAP query. More precisely, each time
a drill down is performed, an attribute from a lower level of dimension hierarchy
is added to the attribute clause of the previous query. Step 1 is further subdi-
vided into three substeps: (1) the Select, From, and Where clauses of a query
are generated simultaneously by randomly selecting a fact table and dimensions,
including a hierarchy level within a given dimension hierarchy; (2) the Where
clause is supplemented with additional conditions; (3) eventually, it is decided
whether the query is an OLAP query or an extraction query. In the second case,
the query is complete. In the first case, aggregate functions applied to measures
of the fact table are added in the query, as well as a Group by clause that may
include either the Cube or the Rollup operator. A Having clause may optionally
be added in too. The aggregate function we apply on measures is always Sum
since it is the most common aggregate in cubes. Furthermore, other aggregate
functions bear similar time complexities, so they would not bring in any more
insight in a performance study.

4 Sample usage of DWEB

In order to illustrate one possible usage for DWEB, we tested the efficiency of
bitmap join indices, which are well suited to the data warehouse environment,
on decision support queries under Oracle. The aim of this particular example is
to compare the execution time of a given workload on a given data warehouse,
with and without using bitmap join indices.

First, we generated a data warehouse modeled as a snowflake schema. This
schema is organized around one fact table that is described by five dimensions,
each bearing two to three hierarchy levels.The fact table contains about 140,000
tuples, the dimension hierarchy levels about ten tuples on an average, for a global
size of about 4 MB (this is a voluntarily small example and not a full-scale test).
We applied different workloads on this data warehouse. Workload#1 is a typical
DWEB workload constituted of fifty queries.10% of these queries are extraction
(join) queries and the rest are decision support queries involving OLAP operators
(Cube and Rollup). In Workload#1, we limited the queries to the dimensions’
lowest hierarchy levels, i.e., to the star schema constituted of the fact table and
the “closest” hierarchy levels.Workload#2 is similar to Workload#1, but it is
extended with drill down operations that scan the dimensions’ full hierarchies
(from the highest level to the lowest level). Thus, this workload exploits the whole
snowflake schema. To evaluate the efficiency of bitmap join indices, we timed the
execution of these two workloads on our test data warehouse (response time is our



only performance metric for now), first with no index, and then by forcing the use
of five bitmap join indices defined on the five dimensions (for the lowest hierarchy
levels in Workload#1 and for the whole hierarchies in Workload#2). To flaten
any response time variation in these experiments, we replicated each test ten
times and computed the average response times. We made sure a posteriori that
the standard deviation was close to zero. These tests have been executed on a
PC with a Celeron 900 processor, 128 MB of RAM, an IDE hard drive, and
running Windows XP Professional and Oracle 9i.

The left-hand graph on Figure 2 represents the average response time achieved
for Workload#1 and #2, with and without bitmap join indices, respectively. It
shows a gain in performance of 15% for Workload#1, and 9.4% for Workload#2.
This decrease in efficiency was expected, since the drill down operations added
in Workload#2 are costly and need to access the data (bitmap join indices alone
cannot answer such queries). However, the overall performance improvement we
achieved was not as good as we expected. We formulated the hypothesis that the
extraction queries, which are costly joins and need to access the data too, were
not fully benefiting from the bitmap join indices. To confirm this hypothesis, we
generated two new workloads, Workload #3 and #4. They are actually almost
identical to Workload#1 and Workload#2, respectively, but do not include any
extraction (join) queries. Then, we repeated our experiment following the same
protocol. The right-hand graph on Figure 2 represents the average response time
achieved for Workload#3 and #4, with and without bitmap join indices, respec-
tively. This time, we obtained similar results than in our previous experiment (in
trend): response time clearly increases when drill down operations are included
into the workload. However, response time is now much better and the gain in
performance is 30.9% for Workload#3, and 19.2% for Workload#4.
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Fig. 2. Test results

In conclusion, we want to point out that these experiments are not very sig-
nificant per se, and do not do justice to Oracle. However, we illustrated how
DWEB could be used for performance evaluation purposes. These experiments



could also be seen as a (very basic) performance comparison between two dif-
ferent data warehouse architectures (star schema and snowflake schema). Our
results indeed conform to the well-known fact that introducing hierarchies into
a star schema induces more join operations in the decision support queries, and
hence degrade their response time. Finally, we were also able to witness the im-
pact of costly join operations on a data warehouse structure that is not properly
indexed to answer such queries.

5 Conclusion and perspectives

We proposed in this paper a new data warehouse benchmark called DWEB (the
Data Warehouse Engineering Benchmark) that is aimed at helping data ware-
house designers to choose between alternate warehouse architectures and perfor-
mance optimization techniques. When designing DWEB, we tried to grant it the
characteristics that make up a “good” benchmark according to Gray: relevance,
portability, scalability, and simplicity. To make DWEB relevant for evaluating
the performance of data warehouses in an engineering context, we designed it to
generate different data warehouse schemas (namely star, snowflake and constel-
lation schemas) and workloads. Note that the database schema of TPC-DS, the
future standard data warehouse benchmark currently developped by the TPC,
can be modeled with DWEB. In addition, though DWEB’s workload is not cur-
rently as elaborate as TPC-DS’s, it is also much easier to implement. It will
be important to fully include the ETL process into our workload, though, and
the specifications of TPCD-DS and some other existing studies [10] might help
us. We now need to further test DWEB’s relevance on real cases. To achieve
this goal, we plan to compare the efficiency of various index and materialized
view selection techniques.We also made DWEB very tuneable to reach both the
relevance and scalability objectives. However, too many parameters make the
benchmark complex to use and contradict the simplicity requirement. Though it
is impossible to achieve both a high simplicity and a high relevance and scalabil-
ity, we introduced a layer of high-level parameters that are both simpler than the
potentially numerous low-level parameters, and in reduced and constant num-
ber. DWEB might not be qualified as a simple benchmark, but our objective
was to keep its complexity as low as possible. Finally, portability was achieved
through a Java implementation. DWEB’s latest version is freely available on-
line [8]. Finally, we also illustrated with a practical case how DWEB can be
used.

This work opens up many perspectives for developing and enhancing DWEB.
In this paper, we assumed an execution protocol and performance metrics were
easy to define for DWEB (e.g., using TPC-DS’ as a base) and focused on the
benchmark’s database and workload model. A more elaborate execution proto-
col must be designed, especially since two executions of DWEB using the same
parameters produce different data warehouses and workloads. This is interesting
when, for instance, one optimization technique needs to be tested against many
databases. However, note that it is also possible to save a given warehouse and



its associated workload to run tests on different systems and/or with various op-
timization techniques. Defining sound metrics (beside response time) would also
improve DWEB’s usefulness. In this area, we could inspire from metrics designed
to measure the quality of data warehouse conceptual models [14]. We are also
currently working on warehousing complex, non-standard data (including multi-
media data, for instance). Such data may be stored as XML documents. Thus, we
also plan a “complex data” extension of DWEB that would take into account the
advances in XML warehousing. Finally, more experiments with DWEB should
also help us propose sounder default parameter values. We also encourage other
people to report on their own experiments.
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