Fadila Bentayeb

Jérôme Darmont

Decision tree modeling with relational views

Keywords: Integration, Databases, Data Mining, Decision trees, Relational views

Data mining is a useful decision support technique that can be used to discover production rules in warehouses or corporate data. Data mining research has made much effort to apply various mining algorithms efficiently on large databases. However, a serious problem in their practical application is the long processing time of such algorithms. Nowadays, one of the key challenges is to integrate data mining methods within the framework of traditional database systems. Indeed, such implementations can take advantage of the efficiency provided by SQL engines. In this paper, we propose an integrating approach for decision trees within a classical database system. In other words, we try to discover knowledge from relational databases, in the form of production rules, via a procedure embedding SQL queries. The obtained decision tree is defined by successive, related relational views. Each view corresponds to a given population in the underlying decision tree. We selected the classical Induction Decision Tree (ID3) algorithm to build the decision tree. To prove that our implementation of ID3 works properly, we successfully compared the output of our procedure with the output of an existing and validated data mining software, SIPINA. Furthermore, since our approach is tuneable, it can be generalized to any other similar decision tree-based method.

Introduction

Recently, an important research effort has been made to apply data mining operations efficiently on large databases. Indeed, data mining tool vendors tend to integrate more and more database features in their products. However, in practice, the long processing time required by data mining algorithms remains a critical issue. Current systems consume minutes or even hours to answer simple mining queries on very large databases. On the other hand, database vendors recently began to integrate data mining methods in the heart of their systems. Hence, integrating data mining algorithms within the framework of traditional database systems [START_REF] Chaudhuri | Data mining and database systems: Where is the intersection?[END_REF] becomes one of the key challenges for research in both the databases and data mining fields.

A first step in this integration process has been achieved by the rise of data warehousing, whose primary purpose is decision support rather than reliable storage. A closely related area is called On-Line Analytical Processing (OLAP) [START_REF] Codd | Providing olap (on-line analytical processing) to user-analysts: An it mandate[END_REF]. There has also been an impressive amount of work related to association rules, their generalization, and their scalability [START_REF] Meo | A new sql-like operator for mining association rules[END_REF][START_REF] Sarawagi | Integrating mining with relational database systems: Alternatives and implications[END_REF]. Relatively, less work has been done in the context of other classical data analysis techniques from the machine learning field, e.g., clustering or classification. In this area, most research focused on scaling data mining techniques to work with large data sets [START_REF] Agrawal | Fast discovery of association rules[END_REF][START_REF] Gehrke | Rainforest -a framework for fast decision tree construction of large datasets[END_REF].

To truly integrate data mining methods into their systems, database vendors recently developed extensions to SQL and Application Programming Interfaces (APIs) [START_REF]IBM. Db2 intelligent miner scoring[END_REF][START_REF]Introduction to ole-db for data mining[END_REF][START_REF]Oracle 9i data mining[END_REF][START_REF] Soni | Performance study microsoft data mining algorithms[END_REF]. These tools allow client applications to explore and manipulate existing mining models and their applications through an interface similar to that used for exploring tables, views and other first-class relational objects.

In this paper, we propose to integrate classical data analysis techniques (namely, decision tree-based methods) within relational database systems. To achieve this goal, we only use existing structures, namely, relational views that we exploit through SQL queries.

To illustrate our approach, we chose to integrate the ID3 decision tree-based method [START_REF] Quinlan | Induction of decision trees[END_REF], which is a supervised learning method generating knowledge in a production rule-set form. We selected ID3 mainly because it is quite simple to implement. However, we plan to take other, more elaborate methods into account, since our approach is now validated.

Such algorithms as ID3 generate a decision tree that is a succession of smaller and smaller partitions of an initial training set. Our key idea comes from this very definition. Indeed, we can make an analogy between building successive, related partitions (different populations) and creating successive, related relational views. Each node of the decision tree is associated with the corresponding view. Since SQL database management systems provide a rich set of primitives for data retrieval, we show that data mining algorithms can exploit them efficiently, instead of developing all requirement functionality from scratch.

To achieve this goal, we designed a PL/SQL stored procedure that uses SQL queries to generate the decision tree. Note that the views that are successively created can be stored and thus queried or analyzed after the tree is generated, if needed. The main differences between our approach and the existing ones are: [START_REF] Agrawal | Fast discovery of association rules[END_REF] existing methods extend SQL to support mining operators when our approach only uses existing SQL statements and structures; (2) existing methods use APIs when our approach does not; and (3) existing methods store the obtained mining models into an extended relational table as in [START_REF] Netz | Integration of data mining and relational databases[END_REF]. In our approach, the mining model we obtain is defined as a traditional table representing the decision tree and a set of successive, related views representing the nodes of the tree.

The remainder of this paper is organized as follows. Section 2 explains the principle of our approach. Section 3 details our implementation of ID3 and the functionality of our stored procedure. Section 4 presents the experiments we performed to validate our approach. We finally conclude this paper and discuss research perspectives in Section 5.

Principle of our approach

Induction graphs are data mining tools that produce "if-then"-like rules. They take as input a set of objects (tuples, in the relational databases vocabulary) described by a collection of attributes. Each object belongs to one of a set of mutually exclusive classes. The induction task determines the class of any object from the values of its attributes. A training set of objects whose class is known is needed to build the induction graph. Hence, an induction graph building method takes as input a set of objects defined by predictive attributes and a class attribute, which is the attribute to predict.

Then, these methods apply successive criteria on the training population to obtain groups wherein the size of one class is maximized. This process builds a tree, or more generally a graph. Rules are then produced by following the paths from the root of the tree (whole population) to the different leaves (groups wherein the one class represents the majority in the population strength). Figure 1 provides an example of decision tree with its associated rules, where p(Class #i) is the probability of objects to belong to Class #i. In our approach, the root node of the decision tree is represented by a relational view corresponding to the whole training dataset. Since each sub-node in the decision tree represents a sub-population of its parent node, we build for each node a relational view that is based on its parent view. Then, these views are used to count the population strength of each class in the node with simple GROUP BY queries. These counts are used to determine the criteria that helps either partitioning the current node into a set of disjoint sub-partitions based on the values of a specific attribute or concluding that the node is a leaf, i.e., a terminal node. To illustrate how these views are created, we represented in Figure 2 the SQL statements for creating the views associated with the sample decision tree from Figure 1. This set of views constitutes the decision tree.

Implementation

We used Oracle 8i to implement the ID3 method, under the form of a PL/SQL stored procedure named BuildTree. Its full, commented code, installation and de-installation scripts, the sample datasets we used to validate our code, and a short user manual are freely available on-line1 .

Data structures

To build a decision tree, we need to manage: (1) the nodes of the tree; and (2) the candidate attributes for splitting a node, and the associated new nodes each attribute would generate. Hence, we implemented the following data structures.

Stack of nodes.

The stack structure for nodes is justified by the fact we encountered system errors when coding our tree building procedure recursively. Hence, we handled recursivity ourselves with a stack.

An individual node is a record composed of the following fields: num, node number; nview, name of the relational view that is associated with the node; rule, the explicit rule that lead to the creation of the node, e.g., GENDER=FEMALE (this is only stored for result output); entrop, node entropy (which variation expresses the discriminating power of an attribute); and pop, node population strength.

List of candidates. Our list of candidates must contain a set of attributes, the information gain associated with these attributes (expressed as a difference in entropy weighted averages), and a list of the nodes that would be generated if the current attribute was selected for splitting the current node. Hence, we need a list of lists. Such a data structure is impossible to achieve with the usual PL/SQL collections. The solution we adopted in this first implementation is using the extented relational features of Oracle. We used a relational table as our principal list, with an embedded table (collection) as the list of nodes.

As a consequence, our table of candidates is composed of the following fields: att name, considered attribute name; gain, information gain; and nodes, embedded list of associated nodes.

Algorithm

Input parameters. The input parameters of our algorithm are given in Table 1. Pseudo-code. We suppose we can call a procedure named Entropy() that computes both the entropy and the population strength of a node. These data are used when computing the information gain. Entropy() has actually been coded in PL/SQL. Our algorithm pseudo-code for the BuildTree procedure is provided in Figure 3.

Parameter

Result output

The output of our stored procedure, namely a decision tree, is stored into a relational table whose name is specified as an input parameter. The table structure reflects the hierarchical structure of the tree. Its fields are: node, node ID number (primary key, root node is always #0 -note that there is a direct link between the node ID and the associated view name); parent, ID number of parent node in the tree (foreign key, references a node ID number); rule, the rule that lead to the creation of this node, e.g., GENDER=FEMALE; and for each value V of attribute E, a field labelled E V, population strength for the considered value of the attribute in this node. Such a table is best queried using Oracle SQL hierarchical statements. The result is directly a textual description of the output decision tree. A sample query The results provided by our procedure, BuildTree, are provided in Figure 5. Note that we added in our result query the computation of the relative populations in each node (in percentage). Due to the tree width, the results provided by SIPINA are split-up in Figures 6 and7. The common point in these two figures is the root node. As expected, the results provided by SIPINA and BuildTree are the same. --

LEVEL NODE PARENT RULE SURVIVOR NO P NO SURVIVO YES P YES

Conclusion and perspectives

Major database vendors have all started to integrate data mining features into their systems, through extensions of the SQL language and APIs. In this paper, we presented a slightly different approach for integrating data mining operators into a database system. Namely, we implemented the ID3 method, which we selected for its simplicity, as a stored procedure that builds a decision tree by associating each node of the tree with a relational view. It is very easy to deduce a set of production rules from the output of our procedure. This approach has three advantages over the "black box" tools currently proposed by database vendors: (1) no extension of the SQL language is needed; (2) no programming through an API is required; and (3) the views associated with the nodes of a decision tree can be stored for further analysis (descriptive statistics or clustering on the sub-population, deployment of a new decision tree from this node, etc.). The concurrent splitting alternatives could even be retained if needed. We sucessfully checked that the results provided by our implementation of ID3 were correct by comparing the output of our procedure to the output of the SIPINA software, which is a well-known and reliable data mining platform, on several test datasets of growing complexity.

The perspectives opened by this study are numerous. From a technical point of view, the performance of our solution could be improved at least at two levels. First, there is room for code optimization, e.g., by replacing the relational table with an embedded collection by more efficient, in-memory data structures. Second, a more global optimization scheme could be achieved by indexing the source table so that building and exploiting the views is faster.

We also need to test the results obtained by BuildTree on very large databases. This would help us determining how well our procedure scales up. We also plan to compare the performances (i.e., response time) of BuildTree and SIPINA on such very large databases (that do not fit into a computer's main memory) in order to check out that our approach indeed takes advantage of the host DBMS capabilities.

Eventually, we chose to first implement a very simple decision tree building method (ID3). It would be interesting to enrich our stored procedure with other, more elaborate methods. Our idea is to make them available through simple parameterization and keep the tree building as transparent to the user as possible. We could also integrate other procedures for helping users to complete the machine learning process, e.g., scoring and cross-validation procedures.

Class # 1 :Rule # 1 : 2 Fig. 1 .

 1121 Fig. 1. Example of decision tree

Fig. 2 .

 2 Fig. 2. Relational views associated with sample decision tree

Fig. 4 .

 4 Fig. 4. Hierarchical SQL query for decision tree display

Fig. 5 .Fig. 6 .Fig. 7 .

 567 Fig. 5. BuildTree result for TITANIC

Table 1 .

 1 Algorithm input parameters

	Name Default value

http://eric.univ-lyon2.fr/∼jdarmont/download/buildtree.zip

Fig. 3. Pseudo-code for the BuildTree stored procedure is provided in Figure 4. From this representation, it is very easy to deduce the corresponding set of production rules.

Tests and results

The aim of these experiments is to prove our implementation of the ID3 decision tree generation method functions properly. For this sake, we compared the output of our procedure with the output of a validated data mining tool, SIPINA [START_REF] Zighed | Sipina-w(c) for windows: User's guide[END_REF], which can be configured to apply ID3 as well, on several datasets. Due to space constraints, we only present here our most significant experiment. However, the full range of our experiments is available on-line 1 .

The dataset we selected is designed to test decision tree building methods. It is aimed at predicting which classes of passengers of the Titanic are more likely to