
HAL Id: hal-00145420
https://hal.science/hal-00145420

Submitted on 10 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixing the Objective Caml and C# Programming
Models in the .Net Framework

Emmanuel Chailloux, Grégoire Henry, Raphaël Montelatici

To cite this version:
Emmanuel Chailloux, Grégoire Henry, Raphaël Montelatici. Mixing the Objective Caml and C#
Programming Models in the .Net Framework. Workshop on Multiparadigm Programming with Object-
Oriented Languages (MPOOL), Jun 2004, Oslo, Norway. �hal-00145420�

https://hal.science/hal-00145420
https://hal.archives-ouvertes.fr

ha
l-

00
14

54
20

, v
er

si
on

 1
 -

 1
0

M
ay

 2
00

7

Mixing the Objective Caml and C#

Programming Models in the .NET Framework

Emmanuel Chailloux1, Grégoire Henry1, and Raphaël Montelatici2

1 Equipe Preuves, Programmes et Systèmes (CNRS UMR 7126)
Université Pierre et Marie Curie (Paris 6) - 4 place Jussieu, 75005 Paris, France

Emmanuel.Chailloux@pps.jussieu.fr,Gregoire.Henry@pps.jussieu.fr
2 Equipe Preuves, Programmes et Systèmes (CNRS UMR 7126)

Université Denis Diderot (Paris 7) - 2 place Jussieu, 75005 Paris, France
Raphael.Montelatici@pps.jussieu.fr

Abstract. We present a new code generator, called O’Jacaré.net, to
inter-operate between C# and Objective Caml through their object mod-
els. O’Jacaré.net defines a basic IDL (Interface Definition Language)
that describes classes and interfaces in order to communicate between
Objective Caml and C#. O’Jacaré.net generates all needed wrapper
classes and takes advantage of static type checking in both worlds. Al-
though the IDL intersects these two object models, O’Jacaré.net allows
to combine features from both.

1 Introduction

The .NET platform claims to be a melting pot that allows the integration of dif-
ferent languages in a common framework, sharing a common type system, CTS,
and a runtime environment, CLR (Common Language Runtime). Each .NET
compiler generates portable MSIL byte-code (MicroSoft Intermediate Language).
By assuming compliance to the CTS type system, components inter-operate
safely.

The .NET framework is actually well suited for object-oriented languages
which have an object model close to the one of C# or Java. Unfortunately,
languages with other kinds of object models, type systems or supporting different
programming paradigms (such as functional programming . . .) do not fit in .NET
as well as C# does. Writing .NET compilers for them requires much more efforts.

However, the .NET framework still gives us a good opportunity to experiment
inter-operability between two languages as different as Objective Caml[1] (short-
ened as O’Caml) and C#. O’Caml is an ML dialect: it is a functional/imperative
statically typed language, featuring parametric polymorphism, an exception
mechanism, an object layer and parameterized modules. By achieving inter-
operability, each language gains access to a wider set of libraries and program-
mers take advantage of a richer programming model.

We use the experimental OCamIL compiler[2], which compiles the whole
O’Caml distribution (including toplevel) to .NET managed code. We intend
to communicate between O’Caml and C# by means of their respective object

2

models. Difficulties arise because neither the type system nor the object model
of O’Caml natively fit in the CTS. O’Caml objects cannot be directly compiled
to CTS objects. Communication cannot be direct: C# and O’Caml objects have
to be interfaced. We use an IDL (Interface Description Language) and a code
generator called O’Jacaré.net. It is based on our previous work[3] on inter-
operability of O’Caml and Java.

We first describe the O’Caml object model and compare it to the C# model.
We then introduce O’Jacaré.net, using a small example as an illustration of its
features. The last section is dedicated to expressiveness issues. We show that the
combination of two object models allows to take advantage of features of both,
and also discuss the current limitations of O’Jacaré.net, giving hints on how
they can be solved in further developments.

2 Comparing Object Models

O’Caml is a statically typed language based on a functional and imperative
kernel. It also integrates a class-based object-oriented extension in its type sys-
tem, for which inheritance relation and subtyping relation for classes are well
distinguished[4]. One key feature of O’Caml type system is type inference. The
programmer does not annotate programs with typing indications: the compiler
gives each expression the most general type it cans.

A class declaration defines:

– a new type abbreviation of an object type,
– a constructor function to build class instances.

An object type is characterized by the name and the type of its methods. For
instance, the following type can be inferred for class instances which declare
moveto and toString methods:

< moveto : (int * int) -> unit; toString : unit -> string >

At each method call site, static typing checks that the type of the receiving
instance is an object type and that it contains the relevant method name with a
compatible type. The following example is correct if the class point defines (or
inherits) a method moveto expecting a couple of integers as argument. Within
the O’Caml type inference, the most general types given to objects are expressed
by means of “open” types (<..>). The function f can be used with any object
having a method moveto (’a denotes a universally quantified type variable):

method call functional-object style
let p = new point(1,1);;
p#moveto(10,2);;

let f o = o # moveto (10,20);;
val f : < moveto : int * int −> ’a; . . > −> ’a

3

Here are some of O’Caml object model most important characteristics:

– Class declarations allow multiple inheritance and parametric classes.

– Method overloading is not supported.

– The methods binding is always delayed.

The C# language model is well known and will not be described here. We
compare its main features with O’Caml in the following table:

Features C# O’Caml Features C# O’Caml

classes
√ √

inheritance ≡ sub-typing? yes no

late binding
√ √

overloading
√

3

early binding
√

1 multiple inheritance 4
√

static typing
√ √

parametric classes 5
√

dynamic typing
√

2 packages/modules 6 6

sub-typing
√ √

1) static methods are global functions of a O’Caml module and class vari-
ables are global declarations;

2) no downcast in O’Caml (only available in the coca-ml [5] extension);
3) no overloading in O’Caml but the type of self can appear in the type of

a method eventually overridden in a subclass;
4) no multiple inheritance for C# classes, only for interfaces;
5) generics[6] are expected in C# 2.0;
6) simple modules of O’Caml correspond to public parts of C# namespaces;

there is no parameterized modules in C#.

The intersection of these two models corresponds to a basic class-based lan-
guage, where method calls are delayed, and inheritance and subtyping relations
are equivalent. Concerning type system, there is no overloading and no binary
methods. For the sake of simplicity, there is no multiple inheritance nor para-
metric classes. This model inspires a basic IDL for interfacing C# and O’Caml
classes.

3 Introducing O’Jacaré.net

O’Jacaré.net is based on our previous work O’Jacaré on O’Caml and Java.
Its purpose was to use Java objects in O’Caml. We encountered difficulties with
the management of two different runtimes (Java runtime and O’Caml runtime),
especially for handling threads and garbage collection. Adapting this work to
C# and the OCamIL implementation of O’Caml on .NET makes things easier,
mainly because there is only one runtime.

O’Jacaré.net allows to use C# objects in O’Caml, and O’Caml objects in
C# as well.

4

3.1 C# in O’Caml

Our current communication model between O’Caml and C# affords two levels
of communication: as the first level provides a basic encapsulation mechanism of
C# objects inside O’Caml objects, the second level adds a callback mechanism
that allows to override C# methods in O’Caml using late binding.

Basic encapsulation Starting from the description of classes and interfaces
in an IDL file, O’Jacaré.net generates wrappers in the target language (here,
O’Caml), allowing to allocate objects and call methods upon classes of the foreign
language (here, C#) as if those classes were native.

Let us illustrate this mechanism on a small example: we want to handle two
C# classes, Point and ColoredPoint. They are described in the IDL file below.

File p.idl

package [assembly point] mypack;

class Point {
int x; int y;

[name default point] <init> ();
[name point] <init> (int,int);
void moveTo(int,int);
string toString();
void display();
boolean equals(Point);

}

interface Colored {
string getColor();
void setColor(string);

}

class ColoredPoint extends Point
implements Colored {

[name default colored point] <init> ();
[name colored point] <init> (int,int,string);

[name equals pc] boolean equals(ColoredPoint)
}

The IDL syntax borrows from Java syntax and is extended with attributes
(i.e. for name-aliasing because overloading is not allowed).

For the p.idl file, O’Jacaré.net generates an O’Caml module, named p.ml,
that contains:

– 3 class types: csPoint, csColored and csColoredPoint ;
– 3 wrapper classes exposed with previous class types ;
– 4 constructors that allocate and initialize C# objects, wrapping them inside

the previous classes.

An example of use is illustrated in an O’Caml toplevel session below (the equals
method compares two objects using their instance variables x and y).

O’Caml toplevel session
open P;;

let p = new point 1 2;;
val p : point = <obj>
let p2 = new default point ();;
val p2 : default point = <obj>
let pc = new colored point 3 4 ”blue”;;
val pc : colored point = <obj>
let pc2 = new default colored point ();;
val pc2 : default colored point = <obj>
p#toString ();;
- : string = ”(1,2)”

pc#toString ();;
- : string = ”(3,4):blue”
p#equals (pc :> csPoint);;
- : bool = false
pc#moveTo 1 2;;
- : unit = ()
pc#equals p;;
- : bool = true
pc#equals pc pc2;;
- : bool = false

The type coercion operator :> allows to consider the type of an object as a
supertype, according to the subtyping relation.

5

Callback mechanism We go on with the previous example. The C# implemen-
tation of the toString method of class ColoredPoint concatenates the results
of a call to the superclass toString method and a call to the getColor method
on itself. We want to redefine the getColor method in O’Caml, and so specialize
the toString method through late binding.

With basic encapsulation, a C# instance of ColoredPoint has no knowledge
of the O’Caml instance. We need a second level of communication, introduced
by the callback attribute :

[callback] class ColoredPoint extends Point implements Colored { . . . }

With this attribute, the compilation of the file p.idl generates a new file
called ColoredPointStub.cs and add stub classes to the generated O’Caml file.
As shown in right column of the below example, inheriting the stub in O’Caml
allows the expected behavior, whereas inheriting the wrapper (left column) does
not!

class wrong ml colored point x y c =
object

inherit

colored point x y c as super
method getColor () =

”ML” ˆ super#getColor ()
end;;

class wrong ml colored point :
int -> int -> string -> csColoredPoint

let wml cp =
new wrong ml colored point 6 7 ”green”;;

val wml cp : wrong ml colored point = <obj>
wml cp#toString ();;
- : string = ”(6,7):green”

class ml colored point x y c =
object

inherit

callback colored point x y c as super
method getColor () =

”ML” ˆ super#getColor ()
end;;

class ml colored point :
int -> int -> string -> csColoredPoint

let ml cp =
new ml colored point 8 9 ”red”;;

val ml cp : ml colored point = <obj>
ml cp#toString ();;
- : string = ”(8,9):MLred”

How is this achieved ? The two stubs in C# and O’Caml own a reference
upon each other. The C# stub overrides each method as a callback to O’Caml,
and the O’Caml stub define each method as a non-virtual call to ColoredPoint,
the base-class of ColoredPointStub. See figure 1 for the complete class diagram.

3.2 Safety considerations

O’Caml ensures execution safety by static typing, but what happens when it
uses foreign pieces of code ? We distinguish two kinds of errors:

– Runtime errors during C# code execution (dynamic cast errors for instance),
that are not a consequence of inter-operation.

– Inconsistency between the IDL and the implementation. For example, C#
components described in the IDL may not be available at runtime, or incor-
rectly described.

The first class of errors will fortunately raise runtime exceptions. They can
be considered as “normal” runtime errors. They can be caught by the C# com-
ponent or, by default, by O’Caml code itself. As O’Caml exceptions and C#

6

callback_point_colorecallback_point_colorecallback_colored_point

pointpointPoint

ColoredPoint

point

C# OCaml

ColoredPointStub

Callback

mixed_colored_point

Keeps a reference upon ...

Legend

Hand-written codeGenerated code (starting from the IDL)

colored_point_ml

Generated code with the callback attribute

pointcolored_point

Fig. 1. Relationship between classes

exceptions are both compiled to exceptions of the underlying runtime, they can
easily cross languages boundaries.

The second class of errors is a consequence of inter-operation itself. We choose
to detect those errors very soon. O’Caml programs that incorrectly use foreign
components are detected by static typing at compile time; type checking is done
with the assumption that IDL types as correct. This hypothesis can only be
checked at runtime with the reflection mechanism. The code which is generated
by O’Jacaré.net performs tests at startup time, immediately acknowledging
the programmer of mismatches between components and IDL files.

3.3 A few words about O’Caml in C#

In order to call O’Caml methods from C# we reuse the technology behind cal-
backs from C# to O’Caml (see subsection 3.1). Basic encapsulation can similarly
be extended with a callback mechanism.

Let us stress the lack of symmetry between O’Caml and C# from an im-
plementation point of view. Whereas C# objects are directly compiled to CTS
objects, O’Caml objects are not: the current implementation provides its own
mechanisms of inheritance and late binding. Calls from O’Caml to C# directly
use reflection mechanisms provided by the .NET runtime but calls from C# to
O’Caml have to deal with the peculiarities of O’Caml implementation. A future
release of OCamIL may solve this problem.

As O’Caml does not offer any introspection mechanism for type informa-
tion, we need to adapt our dynamic checking. Even with basic encapsulation,
we generate some O’Caml code, that will statically check IDL against O’Caml
implementation, and dynamically check it against the generated C# at startup
time.

7

4 Expressiveness and limitations

The introductory example of section 3 only involved a simple form of commu-
nication. In this section we try to go a little bit further. We first give a positive
result about the expressiveness of the blending of two different object models.
Then we apply O’Jacaré.net technology to a real example that involves com-
plex communication. It is used as the starting point of a discussion about the
actual limitations of O’Jacaré.net.

4.1 Combining the two Objects Models

O’Jacaré.net allows to partially handle both object models. We illustrate these
new possibilities by showing a case of multiple inheritance in O’Caml of C#
classes and an example of dynamic type checking (downcast) in O’Caml.

Multiple inheritance of C# classes The following example is taken from [7].
We define two class hierarchies in C#: graphical objects and geometrical objects.
Each class hierarchy has a class Rectangle. The following O’Caml program
defines a class inheriting both C# classes.

The file rect.idl The O’Caml program
package mypack;

class Point {
[name point] <init> (int, int);
}
class GraphRectangle {
[name graph rect] <init>(Point, Point);
string toString();
}
class GeomRectangle {
[name geom rect] <init>(Point, Point);
double compute area();
}

open Rect;;

class geom graph rect p1 p2 =
object

inherit geom rect p1 p2 as super geo
inherit graph rect p1 p2 as super graph

end;;

let p1 = new point 10 10;;
let p2 = new point 20 20;;
let ggr = new geom graph rect p1 p2;;
Printf.printf "area=%g\n" (ggr#compute area ());;
Printf.printf "toString=%s\n" (ggr#toString ());;

Downcasting C# objects in O’Caml. O’Caml does not allow any dy-
namic typing operations on objects, however inter-operating with C# makes
them necessary, at least for objects coming from a computation on C# side.
The example below builds a list l of csPoint objects, even though these actu-
ally are colored points. For each C# class hierarchy described in an IDL file,
O’Jacaré.net generates a O’Caml class hierarchy, which root class is denoted
by top. O’Jacaré.net also generates type coercion functions from top to the
O’Caml type of a C# class. These functions raise an exception in case of type
inadequacy.

let l = [(ml cp :> csPoint); (wml cp :> csPoint)];;
val l : csPoint list = <obj>
let lc = List.map (fun x −> csColoredPoint of top (x :> top)) l;;
val l : csColoredPoint list = <obj>

8

4.2 Application: a Ray-tracer Program

We illustrate inter-operability on the following example: extending an O’Caml
program with a graphical interface written in C#. We use the winning en-
try of the ICFP’2000 programming contest[8] which implements a ray-tracer
in O’Caml. Let us state the problem:

– The O’Caml class Render defines a compute method. This method expects
a string (the name of a file that represents the 3D scene to draw) and a
class Display to render pixels on (thanks to calls to a so-called drawPixel

method).
– The graphical interface is a class Display inheriting from (or holding a

reference to an instance of) the root widget System.Windows.Forms.Form

of .NET windowing API, with a drawPixel method. A file dialog helps
selecting a 3D scene.

Communication is round tripping between the two components. This can be im-
plemented with O’Jacaré.net using cross-language late binding. Two solutions
work:

+ drawPixel(int x, int y, int r, int g ,int b)

Render

+ compute(Display view, string file)

Display

+ drawPixel(int x, int y, int r, int g, int b)

+ Display(Render r)

Display Render

+ compute(Display view,string file)

Display

+ drawPixel(int x, int y, int r, int g, int b)

+ Display(Render r)

Render

+ compute(Display view, string file)

with main in ML

ML

with main in C#

ML

C#

C#

1. The C# interface is parameterized on an abstract class Render which defines
a compute method. The interface constructor expects an instance of this
class. When the user chooses a 3D scene file, compute is called. The O’Caml
program implements the class Render. The Main method is on O’Caml side:
it passes an instance of Render to the constructor of Display (starting the
graphical interface). When called, the compute method calls drawPixel for
each computed pixel.

2. The Main method is on C# side: it builds an instance of Display which
specializes an abstract class defined in O’Caml. Here, because multiple in-
heritance is not allowed in C#, Display only holds a reference to an object
that inherits System.Windows.Forms.Form. When a scene file is selected, it
builds a Render object and calls compute with the filename and self.

9

4.3 How perfect is the blending ?

O’Jacaré.net allows to use components from one language to another, in both
ways. However we still cannot claim that this can reduce the two worlds into a
single one.

Let us go on with the ray-tracer program. If we had a single world, we could
use IDL files to declare the drawPixel method from the C# class Display and
the compute method from the O’Caml class Render, making them accessible to
both components without using the “trick” of redefinition of abstract classes.
Unfortunately, IDL files can only be used to expose classes from one language
to the other one.

We cannot simulate one world with two IDL files, one for describing the
C# Display class, then one for the O’Caml Render class because those classes
are mutually recursive. The point is: the compute method expects an instance
of Display, so the latter IDL needs to describe the O’Caml wrapper for the
Display generated from the first IDL. This leads to typing errors at C# compile
time, because there is no inheritance relationship between the original Display
and the twice encapsulated Display.

5 Conclusion and further work

Our approach differs from MLj[9], SML.NET[10] and F#[11] projects which
embed Java or C# object models inside ML dialects. We do not modify O’Caml
at all, keeping the specificities of its object model. This leads to a richer model
that combines O’Caml polymorphisms with C# dynamic typing.

Each community can use O’Jacaré.net to import components from the other
one. However O’Jacaré.net needs to be improved. Some interesting features
from the .NET runtime (such as methods delegates, genericity, . . .) should be
addressed and made available in the IDL. By making the IDL closer to the CTS,
one can also imagine to solve the problem discussed in subsection 4.3.

10

References

1. Leroy, X.: The Objective Caml system release 3.06 : Documentation and user’s
manual. Technical report, Inria (2002) on-line version : http://caml.inria.fr.

2. Montelatici, R., Chailloux, E., Pagano, B.: Objective Caml on .NET: the OCamIL
compiler and toplevel. Technical Report 29, PPS (2004) on-line version : http:
//www.pps.jussieu.fr/~montela.

3. Chailloux, E., Henry, G.: O’Jacaré : une interface objet entre Objective Caml et
Java. In: Langages et Modèles à objets (LMO). (2004) http://www.pps.jussieu.
fr/~henry/ojacare.

4. Remy, D., Vouillon, J.: Objective ML: An effective object-oriented extension to
ML. Theory and Practice of Object Systems 4 (1998) 27–50

5. Chailloux, E.: Dynamic object typing in Objective Caml. In: International Lisp
Conference. (2002)

6. Kennedy, A., Syme, D.: Design and implementation of generics for the .NET com-
mon language runtime. In: Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation. (2001) 1–12

7. Chailloux, E., Manoury, P., Pagano, B.: Développement d’Applications avec Objec-
tive Caml. 1st edn. O’Reilly (2000) on-line english version : http://caml.inria.
fr.

8. TeamPLClub: Winning entry of ICFP programming contest (2000) Web page :
http://www.cis.upenn.edu/~sumii/icfp.

9. Benton, N., Kennedy, A., Russel, G.: Compiling Standard ML to Java Bytecodes.
In: Proceedings of the 3rd ACM SIGPLAN Conference on Functional Program-
ming. (1998)

10. Benton, N., Kennedy, A., Russo, C., Russell, G.: sml.net : Functional programming
on the .NET CLR (2003) http://www.cl.cam.ac.uk/Research/TSG/SMLNET/.

11. Syme, D.: ILX: Extending the .NET common IL for functional language in-
teroperability. Electronic Notes in Theoretical Computer Science 59 (2001)
http://research.microsoft.com/projects/ilx/fsharp.aspx.

http://caml.inria.fr
http://www.pps.jussieu.fr/~montela
http://www.pps.jussieu.fr/~montela
http://www.pps.jussieu.fr/~henry/ojacare
http://www.pps.jussieu.fr/~henry/ojacare
http://caml.inria.fr
http://caml.inria.fr
http://www.cis.upenn.edu/~sumii/icfp
http://www.cl.cam.ac.uk/Research/TSG/SMLNET/
http://research.microsoft.com/projects/ilx/fsharp.aspx

