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 Abstract— In this paper, a method to compute joint 

space singularity surfaces of 3-RPR planar parallel 

manipulators is first presented. Then, a procedure to determine 

maximal joint space singularity-free boxes is introduced. 

Numerical examples are given in order to illustrate graphically 

the results. This study is of high interest for planning trajectories 

in the joint space of 3-RPR parallel manipulators and for 

manipulators design as it may constitute a tool for choosing 

appropriate joint limits and thus for sizing the link lengths of the 

manipulator. 

 
 Keywords: 3-RPR parallel manipulators, singularity, 

singularity-free zones, joint space, joint limits. 

 

I. Introduction 

Most parallel manipulators have singularities that limit the 

motion of the moving platform. The most dangerous ones 

are the singularities associated with the direct kinematics, 

where two assembly-modes coalesce. Indeed, approaching 

such a singularity results in large actuator torques or 

forces, and in a loss of stiffness. Hence, these singularities 

are undesirable. There exists three main ways of coping 

with singularities, which have their own merits. A first 

approach consists in eliminating the singularities at the 

design stage by properly determining the kinematic 

architecture, the geometric parameters and the joint limits 

[4,4,7]. This approach is safe but difficult to apply in 

general and restricts the design possibilities. A second 

approach is the determination of the singularity-free 

regions in the workspace [5,15-17,20,24]. This solution 

does not involve a priori design restrictions but, because 

of the complexity of the singularity surfaces, it may be 

difficult to determine definitely safe regions. Finally, a 

third way consists in planning singularity-free trajectories 

in the manipulator workspace [2,6,19]. With this solution 

one is also faced with the complexity of the singularity 

equations but larger zones of the workspace may be 

exploited. 

In this paper, we choose to use the second approach by 

determining maximal joint space singularity-free boxes. 

This approach will help us determine appropriate joint 

limits and link dimensions. 

Planar parallel manipulators and particularly manipulators 

with three extensible leg rods, referred to as 3-RPR, have 

received a lot of attention because they have interesting 

potential applications in planar motion systems [9,21]. As 

shown in [18], moreover, the study of the 3-RPR planar 

manipulator may help better understand the kinematic 

behavior of its more complex spatial counterpart, the 6-

dof octahedral manipulator, which has also triangular base 

and platforms. 

The singularities of these manipulators have been most 

often represented in their workspace [13,14,18] but more 

rarely in their joint space [18,24,26]. 

Hunt and Primrose showed that 3-RPR planar manipulator 

could have up to 6 assembly-modes [12]. Mcaree and 

Daniel analyzed the joint space singularities through slices 

to explain non-singular changing trajectories [188], and 

Zein et al analyzed the topology of these slices in [26]. It 

was shown in [18,24,25] that, to change its assembly 

mode without meeting a singularity, a 3-RPR manipulator 

should encircle a cusp point in its joint space.  

In this paper, a method to compute and to represent joint 

space singularities of 3-RPR planar parallel manipulators 

is first proposed. A procedure is then provided to 

determine maximal joint space singularity-free boxes. 

This work is of a high interest for the determination of 

appropriate joint limits and for planning trajectories in the 

joint space.  

  

II. Manipulators under study 

The manipulators under study are 3-DOF planar parallel 

manipulators with three extensible leg rods (Fig.1). These 

manipulators have been frequently studied and have 

interesting potential applications in planar motion 

systems. The geometric parameters are the three sides of 

the moving platform d1, d2, d3 and the position of the base 

revolute joint centers defined by A1, A2 and A3. The 

reference frame is centered at A1 and the x-axis passes 

through A2. Thus, A1 = (0, 0), A2 = (A2x, 0) and A3 = (A3x, 

A3y). The parameter  is function of d1, d2 and d3.  

The joint space Q is defined by the vectors of the lengths 

of the three actuated extensible links  
T

1 2 3  q    . 
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Fig. 1. A 3-RPR parallel manipulator 

III. Kinematics of 3-RPR parallel manipulators 

The relation between the joint space Q and the workspace 

W can be expressed as a system of non-linear algebraic 

equations, which can be written as: 

( ) 0F x , q  (1) 

where x and q are respectively the vectors of the 

workspace and joint space variables. 

 Differentiating equation (1) with respect to time leads to 

the velocity model: 

At + Bq 0  (2) 

where  
T

wt  c (w is the scalar angular velocity and c  is 

the two-dimensional velocity vector of the operational 

point B1 of the platform if we used the first workspace 

parameters), A and B are 33 Jacobian matrices which are 

configuration dependent, and  
T

1 2 3  q     is the 

joint velocity vector. 

 

IV. Joint space singularities of 3-RPR parallel 

manipulators 

The singularities of 3-DOF planar parallel manipulators 

have been extensively studied (see for example 

[3,8,14,18,22]). They were defined in the workspace (x, y, 

a and to the author‟s knowledge, there exist a small 

number of works dealing with the singular configurations 

in the manipulators joint space (1, 2, 3). 

 In a parallel singularity, matrix A is singular. To derive 

the singularity equations, it is usual to expand the 

determinant of A. We use rather a geometric approach that 

does not involve complicated algebraic calculus. The 3-

RPR parallel manipulator is in a singular configuration 

whenever the axes of its three legs are concurrent or 

parallel [11] (Fig. 2). 
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Fig. 2. A 3-RPR parallel manipulator on a singular configuration. 

In order to derive this geometric condition, we derive the 

condition for the three leg axes to intersect at a common 

point (possibly at infinity). We first write the equations of 

the three leg axes: 

1 1

2 2 2

3 3 3 3 3

(Axis 1) : cos( ) sin( )

(Axis 2) : cos( ) ( )sin( )

(Axis 3) : cos( ) ( )sin( ) cos( )

x

x y

y x

y x A

y x A A

q q

q q

q q q

 


 
   

 (3) 

Eliminating x and y yields the following singularity 

equation in the task parameters (q1, q2, q3): 

 2 2 31 3 3 3 3 12 0x x yA s s A s A c s    (4) 

where  sini is q ,  cosi ic q  and  sinij i js q q  . 

It is possible to express Eq. (4) as a function of the joint 

space parameters 1, 2 and 3 by using the constraint 

equations of the 3-RPR manipulator. However, the 

resulting equation would be too complicated to yield real 

insights, and difficult to handle. 

Our approach to compute the singular configurations in 

the joint space consists in reducing the dimension of the 

problem by first considering two-dimensional slices of the 

configuration space by fixing the first leg rod length 1. 

The singular surfaces in the full joint space are then 

calculated by “stacking” the slices. 

 Step 1: We rewrite Eq. (4) as a function of 1, a and q1 

using the constraint equations of the manipulator. 

 

 

 

 

2 2 2 1 1 1

2 2 1 1 1

3 3 3 1 1 3

3 3 3 1 1 3

c c cos 0

s s sin 0

c c cos 0

s s sin 0

x

x

y

A d

d

A d

A d

  a

  a

  a 

  a 

   


  


    
     

 (5) 

The first (respectively last) two equations make it possible 

to express 2 (respectively 3) as function of 1, a and q1. 

Then, c2 and s2 (respectively c3 and s3) are calculated as 

function of 1, a and q1 from the first (respectively last) 
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two equations of (5) and their expressions are input in Eq. 

(4), which, now, depend only on L1, a and q1. 

Step 2: We fix a value for 1, so Eq. (4) depends now only 

on a and q1. By varying a or q1, we compute the roots of 

the equation, to obtain the singular configurations (as, q1s) 

for a fixed 1s. 

Step 3: For every singular configuration computed in the 

space (a, q1) in the second step of the approach, we 

calculate the corresponding values 2s and 3s using the 

equation system (6). We have thus the singular 

configurations curves in a slice of the joint space (2, 3) 

with 1 fixed. 

 

 

 

 

2

2 1 1 1

2 2

1 1 1

2

3 1 1 3

3 2

3 1 1 3

cos( ) cos( )

sin( ) sin( )

cos( ) cos( )

sin( ) sin( )

x

x

y

A d

d

A d

A d

 q a


 q a

 q a 


 q a 

    
 
 

    
 
   


 (6) 

Figure 3 shows a slice of the joint space singular 

configurations for 1=17 obtained for the same 3-RPR 

manipulator used in [14,18,21]. We refer only to this 

manipulator in this paper in order to illustrate our work. 

The geometric parameters of this manipulator are recalled 

below in an arbitrary length unit: 

A1=(0, 0) d1=17.04 

A2=(15.91, 0) d2=16.54 

A3=(0, 10) d3=20.84 

 

3

2

 

Fig. 3. Singular configurations in (2, 3) for 1=17. 

Step 4: We compute the joint space singularity slices for a 

number of 1 values, to do this we have to repeat steps 2 

and 3 while varying 1. 

Finally, we collect all the computed slices in one file to 

obtain the singularities in the joint space (1,2, 3). 

Figure 4 represents the singularities in the joint space of 

the manipulator studied when 1 varies from 0 to 50. To 

obtain this surface, we have imported the solutions 

obtained in step 4 into a CAD software, and we have 

meshed them together. 

Obviously, there is continuity between the singularities 

slices, one can claim, without any doubt, that there is 

singularity between the different slices. 

The surface depicted in Fig. 4 is of interest: 

i. for planning trajectories in the joint space because it 

shows clearly the joint space regions that are free of 

singularities.  

ii. for manipulator design, because it constitutes a tool for 

defining the values of the joint limits such that the joint 

space is a singularity-free box. 
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Fig. 4. Joint space singularity surfaces of the 3-RPR manipulator 

studied when 1 varies from 0 to 50. 

 

V. Maximal joint space singularity-free boxes 

In a context of design and/or trajectory planning, an 

important problem is to find singularity-free zones in the 

joint space. 

In this section, we introduce a new procedure to determine 

maximal singularity-free boxes in the joint space of 3-

RPR manipulators. These singularity-free boxes will help 

us fix the manipulator joints limits. 

 Two numerical examples are provided to illustrate the 

effectiveness of the procedure. 

A. Procedure 

Step 1: We choose an initial joint space configuration 

Q0(10,20,30). This configuration can be chosen 

according to several considerations, for example choosing 

Q0 as the image through the inverse kinematics of a 

prescribed workspace center, or choosing it directly in the 

joint space as the center of a large singularity-free zone. 

 Step 2: We calculate the largest singularity-free cube 

centered at Q0(10,20,30). 
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To do this, we calculate the infinity norm distance d, also 

known as Chebyshev distance, between the center point 

Q0(10,20,30) and each of the joint space singular points 

Qs(1s,2s,3s) computed in Section IV: 

 10 1 20 2 30 3max , ,s s sd           (7) 

and we keep the minimal distance dmin found over all, 

because we are searching for the distance between the 

closest joint space singularity configuration Qs from the 

center point Q0. 

The length of the singularity-free cube edge a will be: 

min2a d   (8)  

Step 3: The choice of the initial center point 

Q0(10,20,30) does not lead to an optimized solution, in 

other words varying lightly the center point position may 

lead to a largest singularity-free cube. Thus, the position 

of the initial point must be optimized, which we have 

done using a Hooke and Jeeves optimization scheme [10]. 

Note that the solution found is a local optimum. 

Step 4: The cube found in step 3 touches the closest 

singular configuration to the center point.  

In order that the cube does not touch the singularities 

surface and for more security we subtract a small security 

value s from the distance dmin. Such a value can be related 

to laws of command to stop the motion when the joint 

velocity is maximum. 

 

The manipulator joint limits corresponding to the cube 

found can be easily computed as follows: 

 

 

min 0 min

max 0 min

i i

i i

d s

d s

 

 

  


  

       with i=1,2,3 (9) 

B. Application of the procedure 

In this section, two examples are provided in order 

illustrate the application of the procedure. 

 

Example 1: 
For the same manipulator studied, we consider the center 

point Q0(35,25,45) in the joint space. This point was 

chosen in the center of a large singularity-free zone in the 

joint space. By computing the Chebyshev distances 

between each joint space singular point Qs computed in 

section IV, and Q0, the minimal distance obtained is 

dmin=5.3, so the edge length of the singularity-free cube is 

a = 10.6. 

By running the optimization algorithm, we find a maximal 

value dmin=7.175 for a center point Q(41.625, 24.875, 

44.125). 

We subtract a security value of 0.1 from dmin which 

becomes dmin=7.075. 

Figure 5 shows the joint space singularity surface and the 

maximal joint space singularity-free cube centered at 

Q(41.625, 24.875, 44.125) for the manipulator studied. 

 

1

2

3

 
 

Fig. 5. Joint space singularity surfaces and maximal joint space 

singularity-free cube centered at Q(41.625, 24.875, 44.125). 

Figures 6 shows the images through the direct kinematics 

of the maximal joint space singularity-free cube, which 

are two separate singularity-free components, each of 

them being located in an aspect of the workspace [24]. 

The projections of these two components onto the (x,y) 

plane are plotted in gray in Figure 6. 

a

y

x

 

Fig. 6. Images by direct kinematics of the joint space singularity-free 

cube (in black), and their projection on the (x,y) plane (in 
gray). 

Figures 7 shows the two workspace components and the 

workspace singularities of the 3-RPR manipulator studied, 

the singularities are plotted in color. 
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Fig. 7. Singularity-free components with workspace singularities. 

Example 2: 
For the same manipulator, we consider in this example the 

center point Q0(30,50,35) in the joint space. By computing 

the Chebyshev distances between each joint space 

singular point Qs computed in Section IV and Q0, the 

minimal distance obtained is dmin=4, so the edge length of 

the singularity-free cube is a = 8. 

By running the optimization algorithm, we find a maximal 

value dmin=5.794 for a center point Q(38.125, 50, 33). 

We subtract a security value of 0.1 from dmin, which 

becomes dmin=5.694. 

Figure 8 shows the joint space singularity surface and the 

maximal joint space singularity-free cube centered at 

Q(38.125, 50, 33) for the manipulator studied. 

 

1

2

3

 

Fig. 8. Joint space singularity curves and maximal joint space 

singularity-free cube centered at Q(38.125, 50, 33). 

Figures 9 displays the images by the direct kinematics of 

the maximal joint space singularity-free cube, which are 

two separate singularity-free components, one in each 

aspect of the workspace. The projections of these two 

components onto the (x,y) plane are plotted in gray in 

Figure 9. This figure is displayed with the same viewing 

angle as in Figure 6 to show the difference between the 

two examples. 

xy

a

 

Fig. 9. Images by direct kinematics of the joint space singularity-free 
cube (in black), and their projection on the (x,y) plane (in 

gray). 

C. Future works 

We can see in figures 6 and 9 that the components in the 

workspace do not have regular forms. Because this study 

is carried out in the joint space only, it cannot take into 

account any of the properties, in the workspace, of the 

image by direct kinematics of the singularity-free cube 

found. 

This work will be extended by taking into account the 

largest regular volume (cube, cylinder…) inside the 

workspace components images of the singularity-free 

cube. The idea will then be to optimize the location of the 

initial point Q0(10,20,30) such that the image of the 

maximal singularity-free cube in the workspace generates 

a regular volume of maximal size. 

 

VI. Conclusion 

A procedure for computing joint space singularities of 3-

RPR parallel manipulators has been presented firstly in 

this paper. Secondly, a procedure for the determination of 

maximal joint space singularity-free boxes has been 

provided. 

These two procedures are of interest for planning 

trajectories in the joint space, and for manipulators design 

because they provide a tool for choosing the values of the 

joint limits. 

Future work will optimize the choice of the cube center 

point Q0 in the joint space in order to maximize the 

volumes of the workspace components images of the 

singularity-free cube. 
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