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 Abstract—The paper derives the inverse and forward 

kinematic equations of a spatial three-degree-of-freedom 

parallel mechanism, which is the parallel module of a hybrid 

serial-parallel 5-axis machine tool. This parallel mechanism 

consists of a moving platform that is connected to a fixed base by 

three non-identical legs. Each leg is made up of one prismatic 

and two pair spherical joint, which are connected in a way that 

the combined effects of the three legs lead to an over-

constrained mechanism with complex motion. This motion is 

defined as a simultaneous combination of rotation and 

translation.  

 Keywords: Parallel manipulators, Parallel kinematic 

machines, inverse kinematics, forward kinematics, complex 

motion. 

 

I. Introduction 

 Parallel kinematic machines (PKM) are known for their 

high structural rigidity, better payload-to-weight ratio, 

high dynamic performances and high accuracy [1], [2], 

[3]. Thus, they are prudently considered as attractive 

alternatives designs for demanding tasks such as high-

speed machining [4]. 

 Most of the existing PKM can be classified into two 

main families. The PKM of the first family have fixed 

foot and variable–length struts, while the PKM of the 

second family have fixed length struts with moveable foot 

points gliding on fixed linear joints [5]. 

In the first family, we distinguish between PKM with six 

degrees of freedom generally called Hexapods and PKM 

with three degrees of freedom called Tripods [6], [7]. 

Hexapods have a Stewart–Gough parallel kinematic 

architecture. Many prototypes and commercial hexapod 

PKM already exist, including the VARIAX (Gidding and 

Lewis), the TORNADO 2000 (Hexel). 

We can also find hybrid architectures like the TRICEPT 

machine from Neos-robotics [8] which is composed of a 

two-axis wrist mounted in series to a 3-DOF “tripod” 

positioning structure. 

In the second family, we find the HEXAGLIDE (ETH 

Zürich) which features six parallel and coplanar linear 

joints. The HexaM (Toyoda) is another example with 

three pairs of adjacent linear joints lying on a vertical cone 

[9]. A hybrid parallel/kinematic PKM with three inclined 

linear joints and a two-axis wrist is the GEORGE V (IFW 
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Uni Hanover). 

Many three-axis translational PKMs belong to this second 

family and use architecture close to the linear Delta robot 

originally designed by Clavel for pick-and-place 

operations [10]. The Urane SX (Renault Automation) and 

the QUICKSTEP (Krause and Mauser) have three non-

coplanar horizontal linear joints [11]. 

 Many researches have made contributions to the study 

of the kinematics of these PKMs. Most of these articles 

focused on the discussion of both the analytical and 

numerical methods [12], [13]. 

 The purpose of this paper is to formulate analytic 

expressions in order to find all possible solutions for the 

inverse and forward kinematics problem of the VERNE 

machine. Then we identify these solutions in order to find 

the solution that satisfies the end-user. 

 
Fig. 1. Overall view of the VERNE machine 

 

 The VERNE machine is a 5-axis machine-tool that was 

designed by Fatronik for IRCCyN [14], [15]. This 

machine-tool consists of a parallel module and a tilting 

table as shown in figure 1. The parallel module moves the 

spindle mostly in translation while the tilting table is used 

to rotate the workpiece about two orthogonal axes. 

 In the following three sections, we present the VERNE 

parallel module, its geometric equations and mobility 

analysis. Symbolic solutions of the inverse kinematics 

problem are reported in Section V. Section VI is devoted 

to the resolution of the forward kinematics problem. 

Finally a conclusion is given in Section VII. 

mailto:daniel.kanaan@irccyn.ec-nantes.fr
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II. Description and mobility of the parallel module 

 
Fig. 2. Schematic representation of the parallel module 

 

 Figure 2 shows a scheme of the parallel module of the 

VERNE machine. The kinematic architecture can be 

described by a simple scheme shown in figure 3, where 

joints are represented by rectangles and links between 

those joints are represented by lines (P and S indicate 

prismatic and spherical joint, respectively). The moving 

platform is rectangular. The vertices of this platform are 

connected to a fixed-base plate through three legs Ι, ΙΙ and 

ΙΙΙ. Each leg uses pairs of rods linking a prismatic joint to 

the moving platform through two pair spherical joints. 

Legs ΙΙ and ΙΙΙ are two identical parallelograms. Leg Ι 

differs from the other two legs in that 
11 12 11 12A A B B , that 

is, it is not an articulated parallelograms. The movement 

of the moving platform is generated by the slide of three 

actuators along three vertical guideways. 

 
s
s

s
s

s
s

s
s

s
s

s
s

P

P

P

B
as

e

P
la

tf
o

rm

 
Fig. 3. Joints and loops graph of VERNE 

 

  Using the Grubler formula recalled in Equation (1), it 

can be proved that the mobility m of the platform is equal 

to three: 

               int

1

6 1
tN

p t i

i

m N N f m


                 (1) 

where m  denotes the mobility of the manipulator, pN  is 

the total number of rigid bodies of the manipulator, 

11pN   for 3 piston-rods, one base, one moving platform 

and 6 rods. 
tN  is the number of the joints, 15tN   for 12 

spherical joints S, 3 prismatic joints P. 
if  denotes the 

number of degrees of freedom (DOF) of the thi  joint, and 

mint is the number of internal DOF, which do not influence 

the motion of manipulator. 

Based on equation (1), the mobility of the platform is 

given by  6 11 15 1 39 6 3m       . 

 Due to the arrangement of the links and joints, as shown 

in figure 2, legs ΙΙ and ΙΙΙ prevent the platform from 

rotating about y and z axes. Leg Ι prevents the platforms 

from rotating about z-axis but, because 
11 12 11 12A A B B , a 

slight coupled rotation about x-axis exists. 

III. Kinematic equations 

 In order to analyse the kinematics of our parallel 

module, two relative coordinates are assigned as shown in 

figures 2. A static Cartesian frame xyz is fixed at the base 

of the machine tool, with the z-axis pointing downward 

along the vertical direction. The mobile Cartesian frame, 

P P Px y z , is attached to the moving platform at point P and 

remains parallel to xyz. 

 In any constrained mechanical system, joints connecting 

bodies restrict their relative motion and impose constraints 

on the generalized coordinates, geometric constraints are 

then formulated as algebraic expressions involving 

generalized coordinates. 

 
Fig. 4. Dimensions of the parallel kinematic structure in the frame 

supplied by Fatronik 

 

 Using the parameters defined in figure 4, the constraint 

equations of the parallel manipulator are expressed as: 

       
2 2 2

2 0Bij Aij Bij Aij Bij Aij ix x y y z z L              (2) 

where ijA  (respectively ijB ) is the center of spherical joint 

number j on the prismatic joint number i (respectively on 

the moving platform side), i = 1..3, j = 1..2. 
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Leg Ι is represented by two different equations (3) and (4). 

This is due to the fact that 
11 12 11 12A A B B  (figure 4). 
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            (4) 

 Leg ΙΙ is represented by a single equations (5).  

   
   

 

2 2
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           (5) 

 The leg ІІІ, which is similar to leg ІІ (figure 4), is also 

represented by a single equation (6). 
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            (6) 

IV. Coupling between the position and the orientation 

of the platform 

 The parallel module of the VERNE machine possesses 

three actuators and three degrees of freedom. However, 

there is a coupling between the position and the 

orientation angle of the platform. The object of this 

section is to study the coupling constraint imposed by leg 

I.  

 By eliminating 
1  from equations (3) and (4), we obtain 

a relation (7) between ,   and P Px y   independently of 
Pz . 

  
   

  

22 2 2 2 2

1 1 1 1 1 1 1

2 2 2 2 2

1 1 1 1 1 1

sin( ) 2 cos( )

sin( ) 2 cos( ) 0

P PR x D d r R r R y

R L R r R r

 

 

    

    

    (7) 

 We notice that for a given  , equation (7) represents an 

ellipse (8). The size of this ellipse is determined by a  and 

b , where a is the length of the semi major axis and b  is 

the length of the semi minor axis.  

    
 

2 2
1 1

2 2
1

P P
x D d y

a b

 
                    (8) 

where
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R L R r R r
b

r R r R



 



    


   
 
  


 

These ellipses define the locus of points reachable with 

the same orientation .  

V. The Inverse kinematics 

 The inverse kinematics deals with the determination of 

the joint coordinates as function of the moving platform 

position. For the inverse kinematics problem of our spatial 

parallel manipulator, the position coordinates ( ,  ,  P P Px y z ) 

are given but the joint coordinates  ( 1..3)i i   of the 

actuated prismatic and the orientation angle   of the 

moving platform are unknown. 

 

Fig. 5. Curves of iso-values of the orientation   from -  to    

following a constant step of / 90.  

 

 To solve the inverse kinematics problem, we first find 

all the possible orientation angles   for prescribed values 

of the position of the platform ( ,  ,  P P Px y z ). These 

orientations are determined by solving equation (9), a 

third degree characteristic polynomial in cos( )  derived 

from equation (7). 

         3 2

1 2 3 4cos( ) cos( ) cos( )p p p p                  (9) 

where 
   

   

 

3 3 2

1 1 1 3 1 1 1 1
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2 1 1 1 1 1 1 1
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2 2 2 2
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R L R r

    


     



    


  

 

However this equation also represents ellipses of iso-

values of  . So if we plot all ellipses together by varying 

  from -  to   (figure 5), we notice that every point 

(defined by ,Px  
Py  and 

Pz ) is obtained by the 

intersection of two ellipses and each ellipse represent two 

opposite orientations so each point can have a maximum 

of four different orientations. This conclusion is verified 

by the fact that we can only find four real solutions to the 

polynomial (Table I). 

 

,  ,  

0

P P P

P

x y z
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 and       

,  ,  

0

P P P

P

x y z

y





  10,  ,       

 
TABLE I. the possible orientations for a fixed position of the platform 

 

 After finding all the possible orientations, we use the 

equations derived in section III to calculate the joint 

coordinates 
i  for each orientation angle  . To make 

this task easier, we introduce two new points 
1A  and 

1B  

as the middle of 
11 12A A  and 

11 12B B , respectively. 
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            (10) 

Then, for prescribed values of the position and orientation 

of the platform, the required actuator inputs can be 

directly computed from equations (10), (5) and (6): 
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where  1 2 3,  ,   1s s s    are the configuration indices 

defined as the signs of 
1  Pz  , 

2 2 sin( )Pz R   , 

3 2 sin( )Pz R   , respectively. 

Subtracting equation (3) from equation (4), yields: 

                 
P 1 1 1 1 P

y R cos( ) r =R sin( ) z                   (14) 

     1 1 P1(14) sgn sgn sin( ) sgn R cos( ) r sgn(y )pz    

This means that for prescribed values of the position and 

orientation of the platform, the joint coordinate 
1  

possesses one solution, except when {0,  }.   In this 

case 
1s  can take on both values +1 and –1. As a result 

1  

can take on two values when {0,  }.    

 

 0,     
1 1s    

1 1

p

cos( )  

y 0 with 0

R r






 
 1 pz   

others 1 1 or -1s    

 

TABLE II. the solution of the joint coordinate 1  according to the 

values of   

 

 Observing equations (11), (12), (13), Table I and Table 

II, we conclude that the three legs, with four postures for 

leg Ι and two postures for leg ΙΙ and ΙΙΙ results in sixteen 

inverse kinematic solutions (figure 6). 

From the sixteen theoretical inverse kinematics solutions 

shown in figure 6, only one is used by the VERNE 

machine: the one referred to as (m) in figure 6, which 

characterized by the fact that each leg must have its slider 

attachment points upper than the moving platform 

attachment points, i.e. 1is    (remember that the z-axis 

is directed downward). 

 
 

(a) (b) 
 

  
(c) (d) 

 

  
(e) (f) 

 

  
(g) (h) 

 

  
(i) (j) 

 

  

(k) (l) 
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(m) (n) 

 

  
(o) (p) 

 

Fig. 6. the sixteen solutions to the inverse kinematics problem when 

-240 mm,  -86 mm and 1000 mmP P Px y z    
 

 For the remaining 15 solutions one of the sliders leave 

its joint limits, or the two rods of leg I cross. Most of these 

solutions are characterized by the fact that at least one of 

the legs has its slider attachment points lower than the 

moving platform attachment points. So only 

1 2 3,  ,   1s s s    in equations (11), (12) and (13) must be 

selected (remember that the z-axis is directed downward). 

To prevent rod crossing, we also add a condition on the 

orientation of the moving platform. This condition is 

1 1cos( ) .R r   Finally, we check the joint limits of the 

sliders and the serial singularities [16]. 

 For the VERNE parallel module, applying the above 

conditions will always yield to a unique solution for 

practical applications (solution (m) shown in figure 6). 

VI. The forward kinematics 

 The forward kinematics deals with the determination of 

the moving platform position as function of the joint 

coordinates. For the forward kinematics of our spatial 

parallel manipulator, the values of the joint coordinates 

 ( 1..3)i i   are known and the goal is to find the 

coordinates 
Px , 

Py  and 
Pz of the tool centre point P  

 To solve the forward kinematics, we successively 

eliminate variables 
Px , 

Py  and 
Pz  from the system ( 1)S  

of four equations ((3), (4), (5) and (6)) to lead to an 

equation function of the joint coordinates  ( 1..3)i i   and 

function of the orientation angle   of the platform. To do 

so, we first compute 
Py  as function of 

Pz  by subtracting 

equation (3) from equation (4) and we replace this 

variable in system ( 1)S  to obtain a new system ( 2)S  of 

three equations (15), (16) and (17) derived from equations 

(3), (5) and (6) respectively. We then compute 
Pz  as 

function of  ( 1..3)i i   and   by subtracting equation 

(16) from equation (17). We replace this variable in 

system ( 2)S  to obtain a new system ( 3)S  of two 

equations (18) and (19) derived from equations (15) and 

(16) respectively. Finally, we compute 
Px  as function of 

 ( 1..3)i i   and   by subtracting equation (18) from 

equation (19) and we replace this variable in the system 

( 3)S  in order to eliminate 
Px . 

Equations of system ( ) (i=2..3)Si  are not reported here 

because of space limitation. They are available in [16]. 

 For each step, we determine solutions existence 

conditions by studying the denominators that appear in the 

expressions of 
Px , 

Py  and 
Pz . These conditions are: 

       1 1cos( ) 0R r                              (20) 

       2 3 1 1 4 1 1 2cos( ) 2sin( ) 0R r r R r R           (21) 

Equation (20) obtained from (14) implies that 
1 1A B  is 

perpendicular to the slider plane of leg І. In this case 

equation (8) represents a circle because a b . 

When 
2 3=    in equation (21), we have {0,  }  . This 

means that 0Py   (obtained from Equations. (5)  (6)). 

 To finish the resolution of the system, we perform the 

tangent-half-angle substitution tan( / 2)t  . As a 

consequence, the forward kinematics of our parallel 

manipulator results in a eight degree characteristic 

polynomial in t , whose coefficients are relatively large 

expressions in 
1 , 

2  and 
3 . For the VERNE machine, 

only 4 assembly-modes have been found (figure 7). It was 

possible to find up to 6 assembly-modes but only for input 

joint values out of the reachable joint space of the 

machine. 

 

  
(a) (b) 
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(c) (d) 

 
Fig. 7. The four assembly-modes of the VERNE parallel module for 

1 250 mm,   2 1000 mm   and 
3 750 mm   

 

 Only one assembly-mode is actually reachable by the 

machine (solution (a) shown in figure 7) because the other 

ones lead to either rod crossing, collisions, or joint limit 

violation. The right assembly mode can be recognized, 

like for the right working mode, by the fact that each leg 

must have its slider attachment points upper than the 

moving platform attachment points, i.e. 1is    (keep in 

mind that the z-axis is directed downwards).  

The proposed method for calculating the various solutions 

of the forward kinematic problem has been implemented 

in Maple (Table III). 

 

1 674 mm,   
2 685 mm   and 

3 250 mm   

Case t  (rd) Px  (mm) 
Py  (mm) 

Pz  (mm) 

(a) -0.22 -199.80 355.92 1242 

(b) -0.14 298.35 -297.53 -120.22 

(c) 1.81 -393.6 322.82 958.21 

(d) 2.70 -115.62 -189.68 -0.26 

 
TABLE III. the numerical results of the forward kinematic problem of 

the example where 1 674 mm,   2 685 mm   and 
3 250 mm   

VII. Conclusion 

  This paper was devoted to the kinematic analysis of the 

parallel module of a 5-DOF hybrid machine tool, the 

VERNE machine. The degrees of freedom, the inverse 

kinematics and the different assembly modes were 

derived. The forward kinematics was solved with the 

substitution method. It was shown that the inverse 

kinematics has sixteen solutions and the forward 

kinematics may have six real solutions. Examples were 

provided to illustrate the results. The forward and inverse 

kinematics of the full VERNE machine is quite easy to 

derive [16]. The controller of the actual VERNE machine 

resorts to an iterative Newton-Raphson resolution of the 

kinematics models. A comparative study will be 

conducted by the authors between the analytical and the 

iterative approaches. It is expected that the analytical 

method could decrease the Cpu-time and improve the 

quality of the control. 
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