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I. Introduction

Parallel kinematic machines (PKM) are known for their high structural rigidity, better payload-to-weight ratio, high dynamic performances and high accuracy [START_REF] Merlet | Parallel Robots[END_REF], [START_REF] Tlusty | Fundamental comparison of the use of serial and parallel kinematics for machine tools[END_REF], [START_REF] Wenger Ph | A comparative study of serial and parallel mechanism topologies for machine tools[END_REF]. Thus, they are prudently considered as attractive alternatives designs for demanding tasks such as highspeed machining [START_REF] Weck | Parallel Kinematic Machine Tools -Current State and Future Potentials[END_REF].

Most of the existing PKM can be classified into two main families. The PKM of the first family have fixed foot and variable-length struts, while the PKM of the second family have fixed length struts with moveable foot points gliding on fixed linear joints [START_REF] Chablat | Architecture O ptimization of a 3-DO F Parallel Mechanism for Machining Applications, the O rthoglide[END_REF]. In the first family, we distinguish between PKM with six degrees of freedom generally called Hexapods and PKM with three degrees of freedom called Tripods [START_REF] Hervé | Structural synthesis of parallel robots generating spatial translation[END_REF], [START_REF] Kong | Type synthesis of linear translational parallel manipulators[END_REF]. Hexapods have a Stewart-Gough parallel kinematic architecture. Many prototypes and commercial hexapod PKM already exist, including the VARIAX (Gidding and Lewis), the TORNADO 2000 (Hexel). We can also find hybrid architectures like the TRICEPT machine from Neos-robotics [START_REF] Neumann | [END_REF] which is composed of a two-axis wrist mounted in series to a 3-DOF "tripod" positioning structure. In the second family, we find the HEXAGLIDE (ETH Zürich) which features six parallel and coplanar linear joints. The HexaM (Toyoda) is another example with three pairs of adjacent linear joints lying on a vertical cone [START_REF] Toyama | Machine tool having parallel structure[END_REF]. A hybrid parallel/kinematic PKM with three inclined linear joints and a two-axis wrist is the GEORGE V (IFW Uni Hanover). Many three-axis translational PKMs belong to this second family and use architecture close to the linear Delta robot originally designed by Clavel for pick-and-place operations [START_REF] Clavel | DELTA, a fast robot with parallel geometry[END_REF]. The Urane SX (Renault Automation) and the QUICKSTEP (Krause and Mauser) have three noncoplanar horizontal linear joints [START_REF] Company | Modeling and preliminary design issues of a 3-axis parallel machine tool[END_REF].

Many researches have made contributions to the study of the kinematics of these PKMs. Most of these articles focused on the discussion of both the analytical and numerical methods [START_REF] Liu | On the analysis of a new spatial three-degree-of freedom parallel manipulator[END_REF], [START_REF] Nair | On the forward kinematics of parallel manipulators[END_REF].

The purpose of this paper is to formulate analytic expressions in order to find all possible solutions for the inverse and forward kinematics problem of the VERNE machine. Then we identify these solutions in order to find the solution that satisfies the end-user. The VERNE machine is a 5-axis machine-tool that was designed by Fatronik for IRCCyN [START_REF] Martin | A new 5axes hybrid architecture machining center[END_REF], [START_REF] Terrier | VERNE -A five axis Parallel Kinematics Milling Machine[END_REF]. This machine-tool consists of a parallel module and a tilting table as shown in figure 1. The parallel module moves the spindle mostly in translation while the tilting table is used to rotate the workpiece about two orthogonal axes.

In the following three sections, we present the VERNE parallel module, its geometric equations and mobility analysis. Symbolic solutions of the inverse kinematics problem are reported in Section V. Section VI is devoted to the resolution of the forward kinematics problem. Finally a conclusion is given in Section VII. Figure 2 shows a scheme of the parallel module of the VERNE machine. The kinematic architecture can be described by a simple scheme shown in figure 3, where joints are represented by rectangles and links between those joints are represented by lines (P and S indicate prismatic and spherical joint, respectively). The moving platform is rectangular. The vertices of this platform are connected to a fixed-base plate through three legs Ι, ΙΙ and ΙΙΙ. Each leg uses pairs of rods linking a prismatic joint to the moving platform through two pair spherical joints. Legs ΙΙ and ΙΙΙ are two identical parallelograms. Leg Ι differs from the other two legs in that 11 12 [START_REF] Company | Modeling and preliminary design issues of a 3-axis parallel machine tool[END_REF] 

12

A A B B 

, that is, it is not an articulated parallelograms. The movement of the moving platform is generated by the slide of three actuators along three vertical guideways. Using the Grubler formula recalled in Equation (1), it can be proved that the mobility m of the platform is equal to three:

  int 1 61 t N p t i i m N N f m       (1)
where m denotes the mobility of the manipulator, p N is the total number of rigid bodies of the manipulator, 

III. Kinematic equations

In order to analyse the kinematics of our parallel module, two relative coordinates are assigned as shown in figures 2. A static Cartesian frame xyz is fixed at the base of the machine tool, with the z-axis pointing downward along the vertical direction. The mobile Cartesian frame,

P P P
x y z , is attached to the moving platform at point P and remains parallel to xyz.

In any constrained mechanical system, joints connecting bodies restrict their relative motion and impose constraints on the generalized coordinates, geometric constraints are then formulated as algebraic expressions involving generalized coordinates. Using the parameters defined in figure 4, the constraint equations of the parallel manipulator are expressed as:

      2 2 2 2 0 Bij Aij Bij Aij Bij Aij i x x y y z z L        (2)
where ij A (respectively ij B ) is the center of spherical joint number j on the prismatic joint number i (respectively on the moving platform side), i = 1..3, j = 1..2.
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Leg Ι is represented by two different equations ( 3) and ( 4). This is due to the fact that 11 12

11 12 A A B B  (figure 4).       2 2 1 1 1 1 2 2 1 1 1
cos( ) sin( ) 0

P P P x D d y R r z R L             (3)       2 2 1 1 1 1 2 2 1 1 1
cos( ) sin( ) 0

P P P x D d y R r z R L             (4)
Leg ΙΙ is represented by a single equations [START_REF] Chablat | Architecture O ptimization of a 3-DO F Parallel Mechanism for Machining Applications, the O rthoglide[END_REF].

      22 2 2 2 4 2 2 2 2 2 cos( ) sin( ) - 0 PP P x D d y R r z R L            (5) 
The leg ІІІ, which is similar to leg ІІ (figure 4), is also represented by a single equation [START_REF] Hervé | Structural synthesis of parallel robots generating spatial translation[END_REF].

      22 2 2 2 4 2 2 2 3 3 cos( ) sin( ) 0 PP P x D d y R r z R L             (6)

IV. Coupling between the position and the orientation of the platform

The parallel module of the VERNE machine possesses three actuators and three degrees of freedom. However, there is a coupling between the position and the orientation angle of the platform. The object of this section is to study the coupling constraint imposed by leg I.

By eliminating 1

 from equations ( 3) and ( 4), we obtain a relation [START_REF] Kong | Type synthesis of linear translational parallel manipulators[END_REF] between , and

PP xy  independently of z .         2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1
sin( ) 2 cos( ) sin( ) 2 cos( ) 0

P P R x D d r R r R y R L R r R r               (7) 
We notice that for a given  , equation ( 7) represents an ellipse [START_REF] Neumann | [END_REF]. The size of this ellipse is determined by a and b , where a is the length of the semi major axis and b is the length of the semi minor axis. 

 

where

          2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 22 1 1 1 1 2 cos( ) sin( ) 2 cos( ) 2 cos( ) a L R r R r R L R r R r b r R r R                   
These ellipses define the locus of points reachable with the same orientation . 

V. The Inverse kinematics

The inverse kinematics deals with the determination of the joint coordinates as function of the moving platform position. For the inverse kinematics problem of our spatial parallel manipulator, the position coordinates ( , , To solve the inverse kinematics problem, we first find all the possible orientation angles  for prescribed values of the position of the platform ( , ,

P P P
x y z ). These orientations are determined by solving equation ( 9), a third degree characteristic polynomial in cos( )

 derived from equation (7). 32 1 2 3 4 cos( ) cos( ) cos( ) p p p p     (9) 
where

          3 3 2 1 1 1 3 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 4 1 1 1 1 1 2 2 2 2 1 1 1 1 2 , 2 2 
P P P P p R r p R r R r y p R L R r R x D d p R x D d R r y R L R r                           
However this equation also represents ellipses of isovalues of  . So if we plot all ellipses together by varying  from -to   (figure 5), we notice that every point (defined by , P x P y and P z ) is obtained by the intersection of two ellipses and each ellipse represent two opposite orientations so each point can have a maximum of four different orientations. This conclusion is verified by the fact that we can only find four real solutions to the polynomial (Table I). After finding all the possible orientations, we use the equations derived in section III to calculate the joint coordinates i  for each orientation angle  . To make this task easier, we introduce two new points 1 A and 1 B as the middle of 11 12 AA and 11 12 BB , respectively.
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P P P x D d y z L R r R r             (10)
Then, for prescribed values of the position and orientation of the platform, the required actuator inputs can be directly computed from equations ( 10), ( 5) and ( 6):

      2 2 2 1 1 1 1 1 11 2 2 11 2 cos( ) - P PP L R r R r zs x D d y              (11)     2 2 2 2 2 2 2 2 2 24
sin( ) cos( )

P P P L x D d z R s y R r                (12)     2 2 3 2 2 3 2 3 2 24
sin( ) cos( )

P P P L x D d z R s y R r                (13)
where   , respectively. Subtracting equation (3) from equation ( 4), yields: Observing equations ( 11), ( 12), ( 13), Table I and Table II, we conclude that the three legs, with four postures for leg Ι and two postures for leg ΙΙ and ΙΙΙ results in sixteen inverse kinematic solutions (figure 6). From the sixteen theoretical inverse kinematics solutions shown in figure 6, only one is used by the VERNE machine: the one referred to as (m) in figure 6, which characterized by the fact that each leg must have its slider attachment points upper than the moving platform attachment points, i.e. 1 i s  (remember that the z-axis

    P 1 1 1 1 P y R cos( ) r =R sin( ) z     (14)      
is directed downward). (a) (b) (c) (d) (e) (f) (g) (h) 
(i) (j) (k) (l)
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Fig. 6. the sixteen solutions to the inverse kinematics problem when -240 mm, -86 mm and 1000 mm

P P P x y z   
For the remaining 15 solutions one of the sliders leave its joint limits, or the two rods of leg I cross. Most of these solutions are characterized by the fact that at least one of the legs has its slider attachment points lower than the moving platform attachment points. So only , , 1 s s s  in equations ( 11), ( 12) and ( 13) must be selected (remember that the z-axis is directed downward). To prevent rod crossing, we also add a condition on the orientation of the moving platform. This condition is 11 cos( ) .

Rr  

Finally, we check the joint limits of the sliders and the serial singularities [START_REF] Kanaan | Kinematic analysis of the VERNE machine[END_REF].

For the VERNE parallel module, applying the above conditions will always yield to a unique solution for practical applications (solution (m) shown in figure 6).

VI. The forward kinematics

The forward kinematics deals with the determination of the moving platform position as function of the joint coordinates. For the forward kinematics of our spatial parallel manipulator, the values of the joint coordinates S to obtain a new system ( 2) S of three equations ( 15), ( 16) and ( 17) derived from equations (3), ( 5) and ( 6) respectively. We then compute P z as function of ( 1..3) i i   and  by subtracting equation ( 16) from equation (17). We replace this variable in system ( 2)

S

to obtain a new system ( 3) S of two equations ( 18) and ( 19) derived from equations ( 15) and ( 16) respectively. Finally, we compute P x as function of ( 1..3)

i i  
and  by subtracting equation (18) from equation ( 19) and we replace this variable in the system ( 3) S in order to eliminate P x . Equations of system ( ) (i=2..3)

Si

are not reported here because of space limitation. They are available in [START_REF] Kanaan | Kinematic analysis of the VERNE machine[END_REF].

For each step, we determine solutions existence conditions by studying the denominators that appear in the expressions of 

     2 3 1 1 4 1 1 2 cos( ) 2sin( ) 0 R r r R r R          (21) 
Equation (20) obtained from ( 14) implies that 11 AB is perpendicular to the slider plane of leg І. In this case equation ( 8 5)  ( 6)). To finish the resolution of the system, we perform the tangent-half-angle substitution tan( / 2) t   . As a consequence, the forward kinematics of our parallel manipulator results in a eight degree characteristic polynomial in t , whose coefficients are relatively large expressions in 1  , 2  and 3  . For the VERNE machine, only 4 assembly-modes have been found (figure 7). It was possible to find up to 6 assembly-modes but only for input joint out of the reachable joint space of the machine. Only one assembly-mode is actually reachable by the machine (solution (a) shown in figure 7) because the other ones lead to either rod crossing, collisions, or joint limit violation. The right assembly mode can be recognized, like for the right working mode, by the fact that each leg must have its slider attachment points upper than the moving platform attachment points, i.e. 1 i s  (keep in mind that the z-axis is directed downwards). The proposed method for calculating the various solutions of the forward kinematic problem has been implemented in Maple (Table III). 

VII. Conclusion

This paper was devoted to the kinematic analysis of the parallel module of a 5-DOF hybrid machine tool, the VERNE machine. The degrees of freedom, the inverse kinematics and the different assembly modes were derived. The forward kinematics was solved with the substitution method. It was shown that the inverse kinematics has sixteen solutions and the forward kinematics may have six real solutions. Examples were provided to illustrate the results. The forward and inverse kinematics of the full VERNE machine is quite easy to derive [START_REF] Kanaan | Kinematic analysis of the VERNE machine[END_REF]. The controller of the actual VERNE machine resorts to an iterative Newton-Raphson resolution of the kinematics models. A comparative study will be conducted by the authors between the analytical and the iterative approaches. It is expected that the analytical method could decrease the Cpu-time and improve the quality of the control.
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 1 Fig. 1. Overall view of the VERNE machine

12th

  Fig. 2. Schematic representation of the parallel module
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 3 Fig. 3. Joints and loops graph of VERNE

  -rods, one base, one moving platform and 6 rods. t N is the number of the joints, , 3 prismatic joints P. i f denotes the number of degrees of freedom (DOF) of the th i joint, and m int is the number of internal DOF, which do not the motion of manipulator.Based on equation (1), the mobility of the platform is given by   . Due to the arrangement of the links and joints, as shown in figure2, legs ΙΙ and ΙΙΙ prevent the platform from rotating about y and z axes. Leg Ι prevents the platforms from rotating about z-axis but, because 11 coupled rotation about x-axis exists.
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 4 Fig. 4. Dimensions of the parallel kinematic structure in the frame supplied by Fatronik

  ) are given but the joint coordinates ( 1..3) i i   of the actuated prismatic and the orientation angle  of the moving platform are unknown.
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 5 Fig. 5. Curves of iso-values of the orientation  from -to   following a constant step of / 90.
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 111 This means that for prescribed values of the position and orientation of the platform, the joint coordinate can take on both values +1 and -1. As a result

  system ( 1) S of four equations ((3), (4), (5) and (6)) to lead to an equation function of the joint coordinates ( orientation angle  of the platform. To do so, we first compute P y as function of P z by subtracting equation (3) from equation (4) and we replace this variable in system[START_REF] Merlet | Parallel Robots[END_REF] 
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 7 Fig. 7. The four assembly-modes of the VERNE parallel module for 1 250 mm,  
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 III the numerical results of the forward kinematic problem of the example where 1 674 mm,  
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