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A classification of a family of 3-revolute (3R) positioning manipulators is established. This classification is based on the topology of their workspace. The workspace is characterized in a half-cross section by the singular curves of the manipulator. The workspace topology is defined by the number of cusps and nodes that appear on these singular curves. The design parameters space is shown to be partitioned into nine subspaces of distinct workspace topologies. Each separating surface is given as an explicit expression in the DH-parameters.

Introduction

This paper focuses on positioning 3R manipulators with orthogonal joint axes (orthogonal manipulators). Orthogonal manipulators may have different global kinematic properties according to their link lengths and joint offsets. Unlike usual industrial manipulators, orthogonal manipulators may be cuspidal, that is, they can change their posture without meeting a singularity [START_REF] Parenti | Position Analysis of Robot Manipulators: Regions and Sub-regions[END_REF]Innocenti, 1988, Burdick, 1988). This property was unknown before 1988 (Borrel and Liégeois, 1988). Several years later, some conditions for a manipulator to be noncuspidal were provided, which include simplifying geometric conditions like parallel and intersecting joint axes [START_REF] Burdick | A classification of 3R regional manipulator sin-gularities and geometries[END_REF] and also nonintuitive conditions [START_REF] Wenger | Design of cuspidal and noncuspidal manipulators[END_REF]. A general necessary and sufficient condition for a 3-DOF manipulator to be cuspidal was established in (El [START_REF] Omri | How to recognize simply a non-singular posture changing 3-DOF manipulator[END_REF], namely, the existence of at least one point in the workspace where the inverse kinematics admits three equal solutions. The word "cuspidal manipulator" was defined in accordance to this condition because a point with three equal IKS forms a cusp in a cross section of the workspace [START_REF] Arnold | Singularity Theory[END_REF]. The categorization of all generic 3R manipulators was established in [START_REF] Wenger | Classification of 3R positioning manipulators[END_REF] based on the homotopy class of the singular curves in the joint space. [START_REF] Wenger | Some guidelines for the kinematic design of new Manipulators[END_REF] proposed a procedure to take into account the cuspidality property in the design process of new manipulators. More recently, Corvez and Rouillier, 2002 applied efficient algebraic tools to the classification of 3R orthogonal manipulators with no offset on their last joint. Five surfaces were found to divide the parameters space into 105 cells with the same number of cusps in the workspace. The equations of these five surfaces were derived as polynomials in the DH-parameters using Groebner Bases. A kinematic interpretation of this theoretical work showed that, in fact, only five different domains exist : two domains of noncuspidal manipulators, one domain where manipulators have two cusps and two domains where they have four cusps [START_REF] Baili | Classification of one family of 3R positioning manipulators[END_REF]. However, the authors did not provide the equations of the true separating surfaces in the parameters space. On the other hand, they did not take into account the occurrence of nodes, which play an important role for analyzing the number of IKS in the workspace.

The purpose of this work is to classify a family of 3R positioning manipulators according to the topology of their workspace, which is defined by the number of cusps and nodes that appear on the singular curves. The design parameters space is shown to be divided into nine domains of distinct workspace topologies. In each domain, the distribution of the number of IKS is the same. This study is of interest for the design of new manipulators.

The rest of this article is organized as follows. Next section presents the manipulators under study and recalls some preliminary results. The classification is established in section 3. Section 4 synthesizes the results and section 5 concludes this paper.

Preliminaries

Manipulators under study

The manipulators studied in this paper are orthogonal with their last joint offset equal to zero. The remaining lengths parameters are referred to as d2, d3, d4, and r2 while the angle parameters 2 and 3 are set to -90° and 90°, respectively. The three joint variables are referred to as 1, 2 and 3, respectively. They will be assumed unlimited in this study.

Figure 1 shows the kinematic architecture of the manipulators under study in the zero configuration. The position of the end-tip (or wrist center) is defined by the three Cartesian coordinates x, y and z of the operation point P with respect to a reference frame (O, x, y, z) attached to the manipulator base as shown in Fig. 1. 

Singularities and aspects

The determinant of the Jacobian matrix of the orthogonal manipulators under study is det(J) = (d3 + c3d4)(s3d2 + c2(s3d3 -c3r2)), where c i =cos( i ) and s i =sin( i ). A singularity occurs when det(J)=0. The contour plot of det(J)=0 forms a set of curves in
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, the first factor of det(J) cannot vanish and the singularities form two distinct curves S1 and S2 in the joint space [START_REF] Omri | Kinematic analysis of robotic manipulators[END_REF], which divide the joint space into two singularity-free open sets A1 and A2 called aspects (Borrel and Liégeois, 1988). The singularities can also be displayed in the Cartesian space (Kholi andHsu, 1987, Ceccarelli, 1996). Thanks to their symmetry about the first joint axis, a 2-dimensional representation in a half cross-section of the workspace is sufficient. The singularities form two disjoint sets of curves in the workspace. These two sets define the internal boundary WS1 and the external boundary WS2, respectively, with WS1=f(S1) and WS2=f(S2). Figure 2 shows the singularity curves when d2=1, d3=2, d4=1.5 and r2=1. For this manipulator, the internal boundary WS1 has four cusp points. It divides the workspace into one region with two IKS (the outer region) and one region with four IKS (the inner region).

If d3d4, the operation point can meet the second joint axis whenever 3=arccos(-d3/d4) and two horizontal lines appear in the joint space
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, which may intersect S1 and S2 depending on d2, d3, d4 and r2 (El [START_REF] Omri | Kinematic analysis of robotic manipulators[END_REF]. The number of aspects depends on these intersections. Note that if d3<d4, no additional curve appears in the workspace cross-section but only two points. This is because, since the operation point meets the second joint axis when 3=arccos(-d3/d4), the location of the operation point does not change when 2 is rotated.

Workspaces classification

Classification criteria

The classification is conducted on the basis of the topology of the singular curves in the workspace, which we characterize by (i) the number of cusps and (ii) the number of nodes. A cusp (resp. a node) is associated with one point with three equal IKS (resp. with two pairs of equal IKS). These singular points are interesting features for characterizing the workspace shape and the distribution of the number of IKS in the workspace.

Number of cusps

For now on and without loss of generality, d2 is set to 1. Thus, only three parameters d3, d4 and r2 need to be handled. [START_REF] Baili | Classification of one family of 3R positioning manipulators[END_REF] showed that one or more surfaces among the five ones found by Corvez and Rouillier, 2002, are not relevant. However, they did not try to find which surfaces are really separating. To derive the equations of the separating surfaces, we investigate the transitions between the five domains. First, let us recall the five different manipulator types associated with the five domains found by Corvez and Rouillier, 2002. The first type is a binary manipulator (i.e. it has only two IKS) with no cusp and a hole (Fig. 3). The remaining four types are quaternary manipulators (i.e. with four IKS). The second type is a manipulator with four cusps on the internal boundary. There are three instances of type 2 according to the number of nodes, as will be shown in section 3.3. The first one is shown in Fig. 4 with two nodes. The second one was shown in Fig. 2 with no node. The last one is such that d3d4 and will be shown in Fig. 10.

Transition between type 1 and type 2 is a manipulator having a pair of points with four equal IKS, where two nodes and one cusp coincide. Proof of this result can be obtained as a straightforward consequence of transitions in quartics root patterns [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF]. Deriving the condition for the inverse kinematic polynomial to have four equal roots yields the equation of the separating surface [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF] 
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The third type is a manipulator with only two cusps on the internal boundary, which looks like a fish with one tail (Fig. 5).

As shown by [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF], transition between type 2 and type 3 is characterized by a manipulator for which the singular line given by 3=arccos(-d3/d4) is tangent to the singularity curve S1. Expressing this condition yields the equation of the separating surface The fourth type is a manipulator with four cusps. Unlike type 2, the cusps are not located on the same boundary (Fig. 6).

Transition between type 3 and type 4 is characterized by a manipulator for which the singular line given by 3=-arccos(-d3/d4) is tangent to the singularity curve S2 [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF]. Expressing this condition yields the equation of the separating surface
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Last type is a manipulator with no cusp (Fig. 7).

Unlike type 1, the internal boundary does not bound a hole but a region with 4 IKS. The two isolated singular points inside the inner region are associated with the two singularity lines. Transition between type 4 and type 5 is characterized by a manipulator for which the singular line given by 3=+arccos(-d3/d4) is tangent to the singularity curve S1 [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF]. We have provided the equations of four surfaces that divide the parameters space into five domains where the number of cusps is constant. Figure 8 shows the plots of these surfaces in a section (d3, d4) of the parameter space for r2=1. Domains 1, 2, 3, 4 and 5 are associated with manipulators of type 1, 2, 3, 4 and 5, respectively. C1, C2, C3 and C4 are the right hand side of ( 1), ( 2), ( 3) and ( 4), respectively. It is interesting to see the correspondence between the equations found with pure algebraic reasoning in (Corvez and Rouillier, 2002) and those provided in this paper. The five equations found by Corvez and Rouillier are: 
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Equation ( 7) is a second-degree polynomial in d 4 2 . Solving this quadratics for d 4 shows that (7) has the following two branches:

2 2 2 2 2 22 3 2 3 2 4 3 2 () 1 2 d r d r d d r AB               or 2 2 2 2 2 22 3 2 3 2 4 3 2 () 1 2 d r d r d d r AB              
The first branch is the separating surface d 4 =C1 between domains 1 and 2.

Equation ( 8) is a second-degree polynomial in d 4 . Solving this quadratics for d 4 and assuming strictly positive values for d 4 and r2 yields the following two branches for (8): and1) 1 and1) 1
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These two branches are the separating surfaces d 4 =C3 and d 4 =C4, respectively. In the same way, (9) can be rewritten as d 4 =C2.

In conclusion, ( 5) and ( 6) do not define separating surfaces and only one branch of (7) defines a separating surface.

Number of nodes

In this section, we investigate each domain according to the number of nodes in the workspace.

Domain 1: Since all manipulators in this domain are binary, they cannot have any node in their workspace. Thus, all manipulators in domain 1 have the same workspace topology, namely, 0 node, 0 cusp and a hole inside their workspace. This workspace topology is referred to as WT1 (Workspace Topology #1).

Domain 2: Figures 4 and 2 show two distinct workspace topologies of manipulators in domain 2, which feature 2 nodes and 0 node and which we call WT2 and WT3, respectively. Transition between these two workspace topologies is one such that the two lateral segments of the internal boundary meet tangentially (Fig. 9). Equation of this transition can be derived geometrically and the following equation is found [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF]:
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As noted in section 3.2, a third topology exists in this domain, where the internal boundary exhibits a "2-tail fish". This workspace topology, which we call WT4, features two nodes like in Fig. 4, but these nodes do not play the same role. They coincide with two isolated singular points, which are associated with the two singularity lines defined by 3=arccos(-d3/d4) (the operation point lies on the second joint axis and the inverse kinematics admits infinitely many solutions). Also, the nodes do not bound a hole like in Fig. 4 but a region with four IKS (Fig. 10).

Transition between WT3 and WT4 is a workspace topology such that the upper and lower segments of the internal boundary meet tangentially (Fig. 11). As shown in [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF], this transition is the occurrence of the additional singularity d3 + c3d4 = 0. This transition is defined by: Transition between WT5 and WT6 and transition between WT8 and WT9 are such that the internal boundary meets the external boundary tangentially (Fig. 13). This transition can be derived geometrically and the following equation is found [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF]:
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Domains 4: Manipulators in domain 4 have four cusps and four nodes. No subcase exists in this domain [START_REF] Baili | Classification of 3R Orthogonal positioning manipulators[END_REF]. Such topologies are referred to as WT7. 

Results synthesis

The partition with cusps and nodes is shown in a section (d3, d4) of the parameter space for r2=1(Fig. 14), where E1, E2 and E3 are the right hand side of (10), ( 11) and ( 12), respectively. Plots of the separating curves in sections for different values of r2 show that they deform smoothly with the same intersections when r2 varies. The areas of WT1, WT2, WT7 and WT9 increase when r2 decreases, whereas those of WT3, WT4, WT5 and WT6 decrease. The area of WT4 is very narrow when r2<1 and almost disappears when r2<0.1. 

Conclusions

A family of 3R manipulators was classified according to the topology of the workspace, which was defined as the number of cusps and nodes. The design parameters space was shown to be partitioned into nine subspaces of distinct workspace topologies. Each separating surface was given as an explicit expression in the DH-parameters. This study is being extended to manipulators with r3  0. First results show that some may have 6 or 8 cusps (Fig. 15). But for small values of r3, the partition is nearly the same as in Fig. 14. The subspace WT4 does not exist any more. It is replaced by two adjacent tiny subspaces with 6 and 8 cusps. For high values of r3, the partition gets complicated since more workspace topologies exist.
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