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Abstract A classification of a family of 3-revolute (3R) positioning manipulators is 

established. This classification is based on the topology of their workspace. 

The workspace is characterized in a half-cross section by the singular curves 

of the manipulator. The workspace topology is defined by the number of 

cusps and nodes that appear on these singular curves. The design 

parameters space is shown to be partitioned into nine subspaces of distinct 

workspace topologies. Each separating surface is given as an explicit 

expression in the DH-parameters. 
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1.  Introduction  

This paper focuses on positioning 3R manipulators with orthogonal 

joint axes (orthogonal manipulators). Orthogonal manipulators may have 

different global kinematic properties according to their link lengths and 

joint offsets. Unlike usual industrial manipulators, orthogonal 

manipulators may be cuspidal, that is, they can change their posture 

without meeting a singularity (Parenti and Innocenti, 1988, Burdick, 

1988). This property was unknown before 1988 (Borrel and Liégeois, 

1988). Several years later, some conditions for a manipulator to be 

noncuspidal were provided, which include simplifying geometric 

conditions like parallel and intersecting joint axes (Burdick, 1995) and 

also nonintuitive conditions (Wenger, 1997). A general necessary and 

sufficient condition for a 3-DOF manipulator to be cuspidal was 

established in (El Omri and Wenger, 1995), namely, the existence of at 

least one point in the workspace where the inverse kinematics admits 

three equal solutions. The word “cuspidal manipulator” was defined in 

accordance to this condition because a point with three equal IKS forms a 

cusp in a cross section of the workspace (Arnold, 1981). The 

categorization of all generic 3R manipulators was established in 

(Wenger, 1998) based on the homotopy class of the singular curves in the 

joint space. Wenger, 1999 proposed a procedure to take into account the 

cuspidality property in the design process of new manipulators. More 



recently, Corvez and Rouillier, 2002 applied efficient algebraic tools to 

the classification of 3R orthogonal manipulators with no offset on their 

last joint. Five surfaces were found to divide the parameters space into 

105 cells with the same number of cusps in the workspace. The equations 

of these five surfaces were derived as polynomials in the DH-parameters 

using Groebner Bases. A kinematic interpretation of this theoretical 

work showed that, in fact, only five different domains exist : two domains 

of noncuspidal manipulators, one domain where manipulators have two 

cusps and two domains where they have four cusps (Baili et al, 2003). 

However, the authors did not provide the equations of the true 

separating surfaces in the parameters space. On the other hand, they did 

not take into account the occurrence of nodes, which play an important 

role for analyzing the number of IKS in the workspace.  

The purpose of this work is to classify a family of 3R positioning 

manipulators according to the topology of their workspace, which is 

defined by the number of cusps and nodes that appear on the singular 

curves. The design parameters space is shown to be divided into nine 

domains of distinct workspace topologies. In each domain, the 

distribution of the number of IKS is the same. This study is of interest 

for the design of new manipulators.  

The rest of this article is organized as follows. Next section presents 

the manipulators under study and recalls some preliminary results. The 

classification is established in section 3. Section 4 synthesizes the results 

and section 5 concludes this paper. 

2. Preliminaries 

2.1  Manipulators under study 

The manipulators studied in this paper are orthogonal with their last 

joint offset equal to zero. The remaining lengths parameters are referred 

to as d2, d3, d4, and r2 while the angle parameters 2 and 3 are set to –

90° and 90°, respectively. The three joint variables are referred to as 1, 

2 and 3, respectively. They will be assumed unlimited in this study. 

Figure 1 shows the kinematic architecture of the manipulators under 

study in the zero configuration. The position of the end-tip (or wrist 

center) is defined by the three Cartesian coordinates x, y and z of the 

operation point P with respect to a reference frame (O, x, y, z) attached 

to the manipulator base as shown in Fig. 1.  
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Figure 1. Orthogonal manipulators 

under study. 

Figure 2. Singularity curves in joint 

space (left) and workspace (right)  

2.2. Singularities and aspects 

The determinant of the Jacobian matrix of the orthogonal 

manipulators under study is det(J) = (d3 + c3d4)(s3d2 + c2(s3d3 – c3r2)), 

where ci=cos(i) and  si=sin(i). A singularity occurs when det(J)=0. The 

contour plot of det(J)=0 forms a set of curves in 
2 3

,           .  

If d3>d4, the first factor of det(J) cannot vanish and the singularities 

form two distinct curves S1 and S2 in the joint space (El Omri, 1996), 

which divide the joint space into two singularity-free open sets A1 and A2 

called aspects (Borrel and Liégeois, 1988). The singularities can also be 

displayed in the Cartesian space (Kholi and Hsu, 1987, Ceccarelli, 1996). 

Thanks to their symmetry about the first joint axis, a 2-dimensional 

representation in a half cross-section of the workspace is sufficient. The 

singularities form two disjoint sets of curves in the workspace. These two 

sets define the internal boundary WS1 and the external boundary WS2, 

respectively, with WS1=f(S1) and WS2=f(S2). Figure 2 shows the 

singularity curves when d2=1, d3=2,  d4=1.5 and r2=1. For this 

manipulator, the internal boundary WS1 has four cusp points. It divides 

the workspace into one region with two IKS (the outer region) and one 

region with four IKS (the inner region). 

If d3d4, the operation point can meet the second joint axis whenever 

3=arccos(-d3/d4) and two horizontal lines appear in the joint space 

2 3
,           , which may intersect S1 and S2 depending on d2, 

d3, d4 and r2 (El Omri, 1996). The number of aspects depends on these 

intersections. Note that if d3<d4, no additional curve appears in the 

workspace cross-section but only two points. This is because, since the 

operation point meets the second joint axis when 3=arccos(-d3/d4), the 

location of the operation point does not change when 2 is rotated. 

3. Workspaces classification 



3.1 Classification criteria 

The classification is conducted on the basis of the topology of the 

singular curves in the workspace, which we characterize by (i) the 

number of cusps and (ii) the number of nodes. A cusp (resp. a node) is 

associated with one point with three equal IKS (resp. with two pairs of 

equal IKS). These singular points are interesting features for 

characterizing the workspace shape and the distribution of the number of 

IKS in the workspace. 

3.2 Number of cusps 

For now on and without loss of generality, d2 is set to 1. Thus, only 

three parameters d3, d4 and r2 need to be handled. Baili et al, 2003 

showed that one or more surfaces among the five ones found by Corvez 

and Rouillier, 2002, are not relevant. However, they did not try to find 

which surfaces are really separating. To derive the equations of the 

separating surfaces, we investigate the transitions between the five 

domains. First, let us recall the five different manipulator types 

associated with the five domains found by Corvez and Rouillier, 2002. 

The first type is a binary manipulator (i.e. it has only two IKS) with no 

cusp and a hole (Fig. 3). The remaining four types are quaternary 

manipulators (i.e. with four IKS). The second type is a manipulator with 

four cusps on the internal boundary.  

 

 
 

Figure 3. Manipulator of type 1. Figure 4. Manipulator of type 2. 

There are three instances of type 2 according to the number of nodes, 

as will be shown in section 3.3. The first one is shown in Fig. 4 with two 

nodes. The second one was shown in Fig. 2 with no node. The last one is 

such that d3d4 and will be shown in Fig. 10. 

Transition between type 1 and type 2 is a manipulator having a pair of 

points with four equal IKS, where two nodes and one cusp coincide. Proof 

of this result can be obtained as a straightforward consequence of 

transitions in quartics root patterns (Baili, 2003). Deriving the condition 

for the inverse kinematic polynomial to have four equal roots yields the 



equation of the separating surface (Baili, 2003) 
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The third type is a manipulator with only two cusps on the internal 

boundary, which looks like a fish with one tail (Fig. 5).  

As shown by Baili, 2003, transition between type 2 and type 3 is 

characterized by a manipulator for which the singular line given by 3=–

arccos(-d3/d4) is tangent to the singularity curve S1. Expressing this 

condition yields the equation of the separating surface  
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Figure 5. Manipulator of type 3. Figure 6. Manipulator of type 4. 

The fourth type is a manipulator with four cusps. Unlike type 2, the 

cusps are not located on the same boundary (Fig. 6).  

Transition between type 3 and type 4 is characterized by a 

manipulator for which the singular line given by 3=–arccos(-d3/d4) is 

tangent to the singularity curve S2 (Baili, 2003). Expressing this 

condition yields the equation of the separating surface 
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Last type is a manipulator with no cusp (Fig. 7).  

Unlike type 1, the internal boundary does not bound a hole but a 

region with 4 IKS. The two isolated singular points inside the inner 

region are associated with the two singularity lines. Transition between 

type 4 and type 5 is characterized by a manipulator for which the 

singular line given by 3=+arccos(-d3/d4) is tangent to the singularity 

curve S1 (Baili, 2003). 



 

Figure 7. Manipulator of type 5. 

Expressing this condition yields the equation of the separating surface  
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Figure 8. Plots of the four separating surfaces in a section (d3, d4) of the 

parameter space for r2=1. 

We have provided the equations of four surfaces that divide the 

parameters space into five domains where the number of cusps is 

constant. Figure 8 shows the plots of these surfaces in a section (d3, d4) of 

the parameter space for r2=1. Domains 1, 2, 3, 4 and 5 are associated 

with manipulators of type 1, 2, 3, 4 and 5, respectively. C1, C2, C3 and C4 

are the right hand side of (1), (2), (3) and (4), respectively. It is 

interesting to see the correspondence between the equations found with 

pure algebraic reasoning in (Corvez and Rouillier, 2002) and those 

provided in this paper. The five equations found by Corvez and Rouillier 

are: 
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Equation (7) is a second-degree polynomial in d4
2. Solving this 

quadratics for d4
 shows that (7) has the following two branches: 
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The first branch is the separating surface d4=C1 between domains 1 

and 2.  

Equation (8) is a second-degree polynomial in d4. Solving this 

quadratics for d4
 and assuming strictly positive values for d4

 and r2 yields 

the following two branches for (8): 
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These two branches are the separating surfaces d4=C3 and d4=C4, 

respectively. In the same way, (9) can be rewritten as d4=C2.  

In conclusion, (5) and (6) do not define separating surfaces and only 

one branch of (7) defines a separating surface. 

3.3 Number of nodes 

In this section, we investigate each domain according to the number of 

nodes in the workspace.  

Domain 1: Since all manipulators in this domain are binary, they 

cannot have any node in their workspace. Thus, all manipulators in 

domain 1 have the same workspace topology, namely, 0 node, 0 cusp and 

a hole inside their workspace. This workspace topology is referred to as 

WT1 (Workspace Topology #1). 

Domain 2: Figures 4 and 2 show two distinct workspace topologies of 

manipulators in domain 2, which feature 2 nodes and 0 node and which 

we call WT2 and WT3, respectively. Transition between these two 

workspace topologies is one such that the two lateral segments of the 

internal boundary meet tangentially (Fig. 9). Equation of this transition 

can be derived geometrically and the following equation is found (Baili, 

2003): 

 
4 ( ) / 2d A B   (10) 

As noted in section 3.2, a third topology exists in this domain, where 

the internal boundary exhibits a „2-tail fish‟. 



 
 

Figure 9. Transition WT2-WT3. Figure 10. Workspace topology WT4. 

This workspace topology, which we call WT4, features two nodes like in 

Fig. 4, but these nodes do not play the same role. They coincide with two 

isolated singular points, which are associated with the two singularity 

lines defined by 3=arccos(-d3/d4) (the operation point lies on the second 

joint axis and the inverse kinematics admits infinitely many solutions). 

Also, the nodes do not bound a hole like in Fig. 4 but a region with four 

IKS (Fig. 10). 

Transition between WT3 and WT4 is a workspace topology such that 

the upper and lower segments of the internal boundary meet tangentially 

(Fig. 11). As shown in (Baili, 2003), this transition is the occurrence of 

the additional singularity d3 + c3d4 = 0. This transition is defined by: 
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Figure 11. Transition WT3-WT4. 

Domains 3 and 5: The internal boundary has either 2 cusps (domain 3) 

or 0 cusp (domain 5). This boundary is either fully inside the external 

boundary (like in Figs 5 and 7), or it can cross the external boundary, 

yielding two nodes like in Fig. 12. Thus, domain 3 (resp. domain 5) 

contains two distinct workspace topologies, which we call WT5 (2 nodes) 

and WT6 (resp. WT8 and WT9). 

Transition between WT5 and WT6 and transition between WT8 and 

WT9 are such that the internal boundary meets the external boundary 

tangentially (Fig. 13). This transition can be derived geometrically and 



the following equation is found (Baili, 2003): 

 4

1
( )

2
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Domains 4: Manipulators in domain 4 have four cusps and four nodes. 

No subcase exists in this domain (Baili, 2003). Such topologies are 

referred to as WT7. 

 

  

Figure 12. Workspace topologies 

WT6 (left) and WT9 (right) 

Figure 13. Transition WT5-WT6 (left) and 

WT8-WT9 (right). 

4. Results synthesis 

The partition with cusps and nodes is shown in a section (d3, d4) of the 

parameter space for r2=1(Fig. 14), where E1, E2 and E3 are the right hand 

side of (10), (11) and (12), respectively. Plots of the separating curves in 

sections for different values of r2 show that they deform smoothly with 

the same intersections when r2 varies. The areas of WT1, WT2, WT7 and 

WT9 increase when r2 decreases, whereas those of WT3, WT4, WT5 and 

WT6 decrease. The area of WT4 is very narrow when r2<1 and almost 

disappears when r2<0.1. 
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Figure 14. Parameter space partition in a 

section r2=1. 

Figure 15. A manipulator  

with 8 cusps when r30. 



5. Conclusions 

A family of 3R manipulators was classified according to the topology of 

the workspace, which was defined as the number of cusps and nodes. The 

design parameters space was shown to be partitioned into nine subspaces 

of distinct workspace topologies. Each separating surface was given as an 

explicit expression in the DH-parameters. This study is being extended 

to manipulators with r3  0. First results show that some may have 6 or 8 

cusps (Fig. 15). But for small values of r3, the partition is nearly the same 

as in Fig.  14. The subspace WT4 does not exist any more. It is replaced 

by two adjacent tiny subspaces with 6 and 8 cusps. For high values of r3, 

the partition gets complicated since more workspace topologies exist. 

6. References 

C.V. Parenti and C. Innocenti (1988), Position Analysis of Robot Manipulators: 

Regions and Sub-regions, in Proc. Int. Conf. on Advances in Robot Kinematics, 

pp 150-158. 

J. W. Burdick (1988), Kinematic analysis and design of redundant manipulators, 

PhD Dissertation, Stanford. 

P. Borrel and A. Liegeois (1986), A study of manipulator inverse kinematic 

solutions with application to trajectory planning and workspace 

determination, in Proc. IEEE Int. Conf. Rob. and Aut., pp 1180-1185. 

J. W. Burdick (1995), A classification of 3R regional manipulator sin-gularities 

and geometries, Mech. and Machine Theory, Vol 30(1), pp 71-89. 

P. Wenger (1997), Design of cuspidal and noncuspidal manipulators, in Proc. 

IEEE Int. Conf. on Rob. and Aut., pp 2172-2177. 

J. El Omri and P. Wenger (1995), How to recognize simply a non-singular posture 

changing 3-DOF manipulator, Proc. 7th ICAR, pp 215-222. 

V.I. Arnold (1981), Singularity Theory, Cambridge University Press. 

P. Wenger (1998), Classification of 3R positioning manipulators, ASME Journal 

of Mechanical Design, Vol. 120(2), pp 327-332. 

P. Wenger (1999), Some guidelines for the kinematic design of new Manipulators, 

Mechanisms and Machine Theory, Vol 35(3), pp 437-449. 

S. Corvez and F. Rouiller (2002), Using computer algebra tools to classify serial 

manipulators, in Proc. Fourth International Workshop on Automated 

Deduction in Geometry, Linz. 

M. Baili, P. Wenger and D. Chablat (2003), Classification of one family of 3R 

positioning manipulators, in Proc. 11th Int. Conf. on Adv. Rob. 

J. El Omri (1996), Kinematic analysis of robotic manipulators, PhD Thesis, 

University of Nantes (in french). 

D. Kohli and M. S. Hsu (1987), The Jacobian analysis of workspaces of me-

chanical manipulators, Mech. & Machine Theory, Vol. 22(3), pp 265-275. 

M. Ceccarelli (1996), A formulation for the workspace boundary of general n-

revolute manipulators, Mech. & Mach. Theory, Vol 31, pp 637-646. 

M. Baili (2003), Classification of 3R Orthogonal positioning manipulators, 

technical report, University of Nantes, September. 


