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Abstract The paper addresses kinematic and geometrical aspects of the Orthoglide, a 

three-DOF parallel mechanism. This machine consists of three fixed linear 

joints, which are mounted orthogonally, three identical legs and a mobile 

platform, which moves in the Cartesian x-y-z space with fixed orientation. 

New solutions to solve inverse/direct kinematics are proposed and a detailed 

workspace analysis is performed taking into account specific joint limit 

constraints. 

Keywords: Parallel manipulators; Workspace; Inverse and direct kinematics. 

1. Introduction 

For two decades, parallel manipulators attract the attention of more 

and more researchers who consider them as valuable alternative design 

for robotic mechanisms (Asada et al, 1986, Fu et al., 1987, Craig, 1989). 

As stated by a number of authors (Tsai, 1999), conventional serial 

kinematic machines have already reached their dynamic performance 

limits, which are bounded by high stiffness of the machine components 

required to support sequential joints, links and actuators. Thus, while 

having good operating characteristics (large workspace and high 

flexibility), serial manipulators have disadvantages of low precision, low 

stiffness and low power. Also, they are generally operated at low speed to 

avoid excessive vibration and deflection. 

Conversely, parallel kinematic machines offer essential advantages 

over their serial counterparts (lower moving masses and higher rigidity) 

that obviously should lead to higher dynamic capabilities. However, most 

existing parallel manipulators have limited and complicated workspace 

with singularities, and highly non-isotropic input/output relations 
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(Angeles, 2002). Hence, the performances may significantly vary over the 

workspace and depend on the direction of the motion, which is a serious 

disadvantage for machining applications. Research in the field of parallel 

manipulators began with the Stewart-platform used in flight simulators 

(Stewart, 1965). Many such structures have been investigated since then, 

which are composed of six linearly actuated legs with different 

combinations of link-to-platform connections (Merlet, 2000). In recent 

years, several new kinematic structures have been proposed that possess 

higher isotropy. In particular, a 3-dof translational mechanism with 

gliding foot points was found in three separate works to be fully isotropic 

throughout the Cartesian workspace (Carricato et all, 2002 and Kong et 

all, 2002). It consists of a mobile platform, which is connected to three 

orthogonal linear drives through three identical planar 3-revolute jointed 

serial chains. Although this manipulator behaves like a conventional 

Cartesian machine, bulky legs are required to assure stiffness because 

these legs are subject to bending.  

In this paper, the Orthoglide manipulator proposed by Wenger et all, 

2000, is studied. As follows from previous research, this manipulator has 

good kinetostatic performances and some technological advantages, such 

as (i) symmetrical design consisting of similar 1-d.o.f. joints; (ii) regular 

workspace shape properties with bounded velocity amplification factor; 

and (iii) low inertia effects (Chablat et all, 2003). This article analyses 

the kinematics and the workspace of the Orthoglide. Section 2 describes 

the Orthoglide geometry. Section 3 proposes new solutions for its inverse 

and direct kinematics. Sections 4, 5 present a detailed analysis of the 

workspace and jointspace respectively. Finally, Section 6 summarises the 

main contributions of the paper. 

2. Manipulator geometry 

The kinematic architecture of the Orthoglide is shown in Fig. 1. It 

consists of three identical kinematic chains that are formally described 

as PRPaR, where P, R and Pa denote the prismatic, revolute, and 

parallelogram joints respectively. The mechanism input is made up by 

three actuated orthogonal prismatic joints. The output body is connected 

to the prismatic joints through a set of three kinematic chains. Each 

chain includes a parallelogram, so that the output body is restricted to 

translational movements. To get the Orthoglide kinematic equations, let 

us locate the reference frame at the intersection of the prismatic joint 

axes and align the coordinate axis with them (Fig. 2), following the 

“right-hand” rule. Let us also denote the input vector of the prismatic 

joints variables as  , ,x y z    and the output position vector of the 

tool centre point as  , ,x y zp p pp . Taking into account obvious 
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properties of the parallelograms, the Orthoglide geometrical model can 

be presented in a simplified form, which consists of three bar links 

connected by spherical joints to the tool centre point at one side and to 

the corresponding prismatic joints at another side.  
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Fig. 1. Orthoglide architecture Fig. 2. Orthoglide geometrical model 

Using this notation, the kinematic equations of the Orthoglide can be 

written as follows 

      
22 22 2 2 2 2 2 2 2 2, ,x x y z x y y z x y z zp p p L p p p L p p p L               (1) 

where L is the length of the parallelogram principal links and the 

“zero” position  0 0, 0, 0p  corresponds to the joints variables 

 , ,L L L . It should be stressed that the Orthoglide geometry and 

relevant manufacturing technology impose the following constraints on 

the joint variables 

 0 2 ; 0 2 ; 0 2x y zL L L        , (2) 

which essentially influence on the workspace shape. While the upper 

bound ( 2L  ) is implicit and obvious, the lower one ( 0  ) is caused by 

practical reasons, since safe mechanical design encourages avoiding risk 

of simultaneous location of prismatic joints in the same point of the 

Cartesian workspace (here and in the following sections, while referring 

to symmetrical constraints are subscript omitted, i.e.  , ,x y z    ).  

3. Orthoglide Kinematics 

3.1 Inverse kinematics 

For the inverse kinematics, the position of the end-point ( , ,x y zp p p ) is 

treated as known and the goal is to find the joint variables ( , ,x y z   ) 

that yield the given location of the tool. Since in the general case the 

inverse kinematics can produce several solutions corresponding to the 

same tool location, the solutions must be distinguished with respect to 

the algorithm “branch”. For instance, if the aim is to generate a sequence 

of points to move the tool along an arc, care must be taken to avoid 

branch switching during motion, which may cause inefficient (or even 
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impossible) manipulator motions. Moreover, leg singularities may occur 

at which the manipulator loses degrees of freedom and the joint variables 

become linearly dependent. Hence, the complete investigation of the 

Orthoglide kinematics must cover all the above-mentioned topics.  

From the Orthoglide geometrical model (1), the inverse kinematic 

equations can be derived in a straightforward way as: 

 2 2 2

x x x y zp s L p p      2 2 2

y y y x zp s L p p    
2 2 2

z z z x yp s L p p      (3) 

where sx, sy, sz are the branch (or configuration) indices that are equal 

to 1. It is obvious that (3) yields eight different branches of the inverse 

kinematic algorithm, which will be further referred to as PPP, 

MPP…MMM following the sign of the corresponding index (i.e. the 

notation MPP corresponds to the indices 1; 1; 1x y zs s s      ). The 

geometrical meaning of these indices is illustrated by Fig. 2, where x, y, 

z are the angles between the bar links and the corresponding prismatic 

joint axes. It can be proved that 1s   if o o(90 ,180 )   and 1s    if 
o o(0 ,90 )  . The branch transition ( o90  ) corresponds to the serial 

singularity (where the leg is orthogonal to the relevant translational axis 

and the input joint motion does not produce the end-point displacement). 

It is obvious that if the inverse kinematic solution exists, then the target 

point (px, py, pz) belongs to a volume bounded by the intersection of three 

cylinders  

  2 2 2 2 2 2 2 2 2; ;L x y x z y zC p p L p p L p p L      p  (4)  

that guarantees non-negative values under the square roots in (3). 

However, it is not sufficient, since the lower joint limits (2) impose the 

following additional constraints 

 2 2 2

x x y zp s L p p    ; 2 2 2

y y x zp s L p p    ; 2 2 2

z z x yp s L p p     (5)  

which reduce a potential solution set. For example, it can be easily 

computed that for the “zero” workspace point  0 0, 0, 0p , the inverse 

kinematic equations (3) give eight solutions  , ,L L L     but only one 

of them is feasible. To analyse in details the influence of the joint 

constraints impact, let us start from separate a study of the inequalities 

(5) and then summarise results for all possible combinations of the three 

configuration indices. If 1xs  , then consideration of two cases, 0xp   

and 0xp  , yields the following workspace set satisfying the constraint 

0x    

    2 2 2 2| 0 | 0;x

L L x L x x y zW C p C p p p p L        p p  (6)  

which consists of two fractions (½ of the cylinder intersection denoted 

LC  and ½ of the sphere whose geometric center is (0,0,0) and radius is L). 
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If 1xs   , then the second case 0xp   does not give any solution and the 

joint constraint 0x   is expressed in the workspace as 

  2 2 2 2| 0;x

L L x x y zW C p p p p L      p . (7)  

The latter defines a solid bounded by three cylindrical surfaces and 

the sphere. The remaining constrains 0y   and 0z   can be derived 

similarly, which differ from (6), (7) by subscripts only.  

Then, there can be found intersection of the obtained sets for different 

combinations of the configuration indices. It can be easily proved that the 

case “PPP” yields 

    2 2 2 2| , , 0 |PPP

L L x y z L x y zW C p p p C p p p L      p p  (8)  

while the remaining cases give 

    2 2 2 2... | , , 0 |MPP MMM

L L L x y z L x y zW W C p p p C p p p L        p p  (9)  

Expressions (8) and (9) can be put in the form  

    ; ...PPP MPP MMM

L L L L L LW S G W W G      (10)  

where   2 2 2 2

L L x y zS C p p p L    p ;   

 2 2 2 2| , , 0;L L x y z x y zG C p p p p p p L     p ;   
L LS G  . 

Therefore, for the considered positive joint limits (2), the existence of 

the inverse kinematic solutions may be summarised as follows (i) inside 

the sphere SL there exist exactly one inverse kinematic solution PPP 

with positive configuration indices sx, sy, sz, (ii) outside the sphere SL , but 

within the positive part of the cylinder intersection CL, there exist 8 

solutions of the inverse kinematics (PPP, MPP, … MMM) corresponding 

to all possible combinations of the configuration indices sx, sy, sz . These 

conclusions may be illustrated when 1L   by numerical examples. If the 

target point =(-0.5, 0.4, 0.3)p  is within the sphere SL, then the joint 

coordinates must be taken from the sets  0.37,-1.37x  , 

  1.21,  -0.41  x  ,  1.07,-0.47x  , which allow only one positive 

combination. In contrast, for the target point =(0.7, 0.7, 0.7)p , which is 

outside the sphere, the inverse kinematics yields solutions with two 

positive values  , , 0.84, 0.56x y z     that allow 8 positive combinations 

of the joint variables. An interesting feature is that intermediate cases 

(with 2 or 4 feasible solutions) are not possible. 

3.2 Direct kinematics 

For the direct kinematics, the values of the joint variables (x, y, z) 

are known and the goal is to find the tool centre point location (px, py, pz) 

that corresponds to the given joint positions. While, in general, the 

inverse kinematics of parallel mechanisms is straightforward, the direct 
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kinematics is usually very complex. The Orthoglide has the advantage 

leave an analytical direct kinematics. Like for the previous section, the 

solutions must be distinguished with respect to the algorithm “branch” 

that should be also defined both geometrically and algebraically, via a 

configuration index. 

To solve the system (1) for px, py, pz, first, let us derive linear relations 

between the unknowns. By subtracting three possible pairs of the 

equations (1), we leave 

 2 2 2 2 2 2
2 2 2 2 2 2 ,  , 

x x y y x y x x z z x z y y z z y z
p p p p p p                     (11) 

As follows from these expressions, the relation between px, py, pz may 

be presented as  

 / 2 / ; / 2 / ; / 2 /x x x y y y z z zp t p t p t           , (12) 

where t is an auxiliary scalar parameter. From a geometrical point of 

view, the expression (12) defines the set of equidistant points for the 

prismatic joint centres (Fig. 6). Also, it can be easily proved that the full 

set of equidistant points is the line perpendicular to   and passing 

through ( , ,x y z   )/2, where.  

  | / / / 1x x y y z zp p p      p  (13) 

After substituting (12) into any of the equations (1), the direct 

kinematic problem is reduced to the solution of a quadratic equation in 

the auxiliary variable t, 

 2 0At Bt C   , (14) 

where 2 2 2( ) ( ) ( )x y x z y zA         , 2( )x y zB    , 2 2 2 2( 4 ) / 4x y zC L B      . 

The quadratic formula yields two solutions 

 2( 4 ) /(2 ); 1t B m B AC A m       (15)  

that geometrically correspond to different locations of the target point 

P (see Fig. 6) with respect to the plane passing through the prismatic 

joint centres (it should be noted that the intersection point of the plane 

and the set of equidistant point corresponds to  0 2t B A  ). Hence, the 

Orthoglide direct kinematics is solved analytically, via the quadratic 

formula (14) for the auxiliary variable t and its substitution into 

expressions (12). The direct kinematic solution exists if and only if the 

joint variables satisfy the inequality 2 4B AC , which defines a closed 

region in the joint variable space  

    2 2 2 2 2 2 2| 4 1L x y z x y zL                (16)  

Taking into account the joint limits (2), the feasible joint space may be 

presented as  | , , 0L L x y z      . Therefore, for the considered 
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positive joint limits (2), the existence of the direct kinematic solutions 

may be summarised as follows: (i) inside the region 
L

 , there exist 

exactly two direct kinematic solutions, which differ by the target point 

location relative to the plane  (Fig. 7a). (ii) On the border of the region 

L

  located inside the first octant, there exist a single direct kinematic 

solution, which corresponds to the “flat” manipulator configuration, 

where both the target point and prismatic joint centres belong to the 

plane  (Fig. 7b). 
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Fig. 6. Geometrical solution of 

the direct kinematics 

Fig. 7. Double (a) and single (b) solutions of 

the direct kinematics 

These conclusions may be illustrated by the following numerical 

examples (for the “unit” manipulator, L=1). Since the joint variables 

0.3x y z      are within L

 , then the end-point coordinates are either 

0.46x y zp p p     or 0.66x y zp p p    . In contrast, for the joint variables 

1.5x y z     , which are exactly on the surface 
L

 , the direct 

kinematics yields a single solution 1 6x y zp p p    corresponding to the 

“flat” configuration (see Fig. 7b). 

3.3 Configuration indices 

As follows from the previous sub-sections, both the inverse and direct 

kinematics of the Orthoglide may produce several solutions. The problem 

is how to define numerically the configuration indices, which allow 

choosing among the corresponding algorithm branches. 

For the inverse kinematics, when the configuration is defined by the 

angle between the leg and the corresponding prismatic joint axis, the 

decision equations for the configuration indices are trivial: 

      sgn ; sgn ; sgnx x x y y y z z zs p s p s p          

Geometrically, 0s   means that (see Fig. 2),  , , / 2  3 / 2x y z     . 

For the direct kinematics, the configuration is defined by the end-point 

location relative to the plane that passes through the prismatic joint 

centres (see Figs. 6-7). Hence, the decision equation may be derived by 

analysing the dot-product of the plane normal vector  1 1 1, ,x y z      and 

the vector directed along any of the bar links (for instance, 
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 , ,x x y zp p p  for the first link:   sgn 1yx z

x y z

pp pm        which is 

equivalent to  sgn x y z x y z x y z x y zm p p p             for the positive 

joint limits. 

It should be stressed that the feasible solutions for the inverse/direct 

kinematics, located in the neighbourhood of the “zero” point, have the 

configuration indices 1x y zs s s     and 1m  . 

4. Workspace analysis 

As follows from Eq. (10), Orthoglide workspace WL is composed of two 

fractions: (i) the sphere SL of radius L and centre point (0, 0, 0), and (ii) 

the thin non-convex solid GL, which is located in the first octant and 

bounded by the surfaces of the sphere SL and the cylinder intersection 

CL. It can be proved that the volume of CL, SL and WL is defined by the 

expressions 

   3( ) 8 2 2LVol C L  ,   3( ) 2 2 / 6LVol G L   ,   3( ) 2 7 / 6 2LVol W L    (17) 

As follows from (17), the Orthoglide with the joint limits (2) uses about 

53% of the workspace 
PPPV  of its serial counterpart (a Cartesian PPP 

machine with 2 2 2L L L   workspace). Also, the volume of GL ( 30.062 L ) is 

insignificant in comparison to the volume of sphere SL ( 34.189 L ), which 

is equal to 52% of 
PPPV . On the other hand, releasing the lower joint limit 

( 0  ) leads to an increases the workspace volume of up to 59% of 
PPPV  

only, since the volume of the workspace is, then, equal to 
LC . The mutual 

location of GL and SL (and their size ratio) may be also evaluated by the 

intersection points of the first octant bisector. In particular, for the 

sphere SL the bisector intersection point is located at distance 1 3 0.58  

from the origin, while for the solid GL the corresponding distance is 

1 2 0.71  (assuming that L=1). Moreover, GL touches the sphere by its 

circular edges, which are located on the borders of the first octant. 

5. Joint Space Analysis 

The properties of the feasible jointspace are essential for the 

Orthoglide control, in order to avoid impossible combinations of the 

prismatic joint variables x, y, z, which are generated by the control 

system and are followed by the actuators. For serial manipulators, this 

problem does not usually exist because the jointspace is bounded by a 

parallelepiped and mechanical limitations of the joint values may be 

verified easily and independently. For parallel manipulators, however, 

we needs to check both (i) separate input coordinates (to satisfy the joint 

limits), and (ii) their combinations that must be feasible to produce a 

direct kinematic solution. 
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As follows from Sub-Section 3.3, the Orthoglide jointspace 
L

  is 

located within the first octant and is bounded by a surface, which 

corresponds to a single solution of the direct kinematics. Therefore, the 

jointspace boundary is defined by the relation 2 4B AC  (see equation 

(14)), which may be rewritten as 

    2 2 2 2 2 2 24 1x y z x y zL              (18) 

and solved for x assuming that y, z are known, 4 2 0x xD DE E    , 

where 2 2

y zD     ; 2 2 24y zE L    . However, this equation is non-

symmetrical with respect to , ,x y z    and, therefore, is not convenient 

the real-time control. An alternative way to obtain the jointspace 

boundary, which is more computationally efficient, is based on the 

conversion from Cartesian to spherical coordinates, 

, ,x x y y z ze t e t e t     , where t  0 is the length of the vector , and 

(ex, ey, ez) are the components of the unit direction vector, which are 

expressed via two angles ,   with cos cosxe   , cos sinye   , 

sinze  , where  , 0, / 2   . For such a notation, the original equation 

(18) is transformed into a linear equation for 2t ,   2 21 4F t L F  , 
2 2 2

x y zF e e e     , with an obvious solution  2 1t L F F  . As follows 

from its analyses, the bounding surface is close to the 1/8th of the sphere 

S2L. At the edges, which are exactly quarters of the circles of the radius 

2L, the surface touches the sphere. However, in the middle, the surface is 

located out of the sphere. In particular, the intersection point of the first 

octant bisector is located at the distance 3 2 1.22  from the coordinate 

system origin for the jointspace border and at the distance 2 3 1.15  for 

the sphere S2L (assuming L=1). 

6. Conclusions  

This article focuses on the kinematics and workspace analysis of the 

Orthoglide, a 3-DOF parallel mechanism with a kinematic behaviour 

close to the conventional Cartesian machine taking into account the 

specific manufacturing constraints in the joint variables. We proposed a 

formal definition of the configuration indices and developed new simple 

analytical expressions for the Orthoglide inverse/direct kinematics. It 

was proved that, for the considered joint limits, the Orthoglide 

workspace is composed of two fractions, the sphere and a thin non-convex 

solid in which there are 1 and 8 inverse kinematic solutions, respectively. 

The total workspace volume comprises about 53% of the corresponding 

serial machine workspace, where over 52% belongs to the sphere (for 

comparison, releasing of the joint limits yields to an increase of up to 59% 

in the workspace volume). It was also shown, that the Orthoglide 

jointspace is bounded by surface with circular edges, which is more 
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convex than the sphere but is rather close to it. These results can be 

further used for the optimisation of the Orthoglide parameters, which is 

the subject of our future research work. 
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