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Abstract 

The subject of this paper is the optimal design of a parallel 
mechanism intended for three-axis machining 
applications. Parallel mechanisms are interesting 
alternative designs in this context but most of them are 
designed for three- or six-axis machining applications. In 
the last case, the position and the orientation of the tool 
are coupled and the shape of the workspace is complex. 
The aim of this paper is to use a simple parallel 
mechanism with two-degree-of-freedom (dof) for 
translational motions and to add one leg to have one-dof 
rotational motion. The kinematics and singular 
configurations are studied as well as an optimization 
method. The three-degree-of-freedom mechanisms 
analyzed in this paper can be extended to four-axis 
machines by adding a fourth axis in series with the first 
two. 
Key Words: Parallel Machine Tool, Isotropic Design, and 
Singularity. 

1 Introduction 
Parallel kinematic machines (PKM) are commonly 
claimed to offer several advantages over their serial 
counterparts, like high structural rigidity, high dynamic 
capacities and high accuracy [1]. Thus, PKM are 
interesting alternative designs for high-speed machining 
applications. 
The first industrial application of PKMs was the Gough 
platform, designed in 1957 to test tyres [2]. PKMs have 
then been used for many years in flight simulators and 
robotic applications [3] because of their low moving mass 
and high dynamic performances [1]. This is why parallel 
kinematic machine tools attract the interest of most 
researchers and companies. Since the first prototype 
presented in 1994 during the IMTS in Chicago by 

Gidding&Lewis (the VARIAX), many other prototypes 
have appeared. 
To design a parallel mechanism, two important problems 
must be solved. The first one is the identification of 
singular configurations, which can be located inside the 
workspace. For a six-dof parallel mechanism, like the 
Gough-Stewart platform, the location of the singular 
configurations is very difficult to characterize and can 
change under small variations in the design parameters 
[3]. The second problem is the non-homogeneity of the 
performance indices (condition number, stiffness...) 
throughout the workspace [1]. To the authors' knowledge, 
only one parallel mechanism is isotropic throughout the 
workspace [4] but the legs are subject to bending. 
Moreover, this concept is limited to three-dof mechanisms 
and cannot be extended to four or five-dof parallel 
mechanisms. 
Numerous papers deal with the design of parallel 
mechanisms [4,5]. However, there is a lack of four- or 
five-dof parallel mechanisms, which are especially 
required for machining applications [6]. 
To decrease the cost of industrialization of new PKM and 
to reduce the problems of design, a modular strategy can 
be applied. The translational and rotational motions can be 
divided into two separated parts to produce a mechanism 
where the direct kinematic problem is decoupled. This 
simplification yields also some simplifications in the 
definition of the singular configurations. 
The organization of this paper is as follows. Next section 
presents design problems of parallel mechanisms. The 
kinematic description and singularity analysis of the 
parallel mechanism used, are reported in sections 3.1 and 
3.2. Sections 3.3 and 3.4 are devoted to design and the 
optimization.  
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2 About parallel kinematic machines 

2.1 General remarks 

In a PKM, the tool is connected to the base through 
several kinematic chains or legs that are mounted in 
parallel. The legs are generally made of telescopic struts 
with fixed foot points (Figure 1a), or fixed length struts 
with moveable foot points (Figure 1b). 

P

 

P

Figure 1a: A bipod PKM Figure  1b: A biglide PKM 

For machining applications, the second architecture is 
more appropriate because the masses in motion are lower. 
The linear joints can be actuated by means of linear 
motors or by conventional rotary motors with ball screws. 
A classification of the legs suitable to produce motions for 
parallel kinematic machines is provided by [6] with their 
degrees of freedom and constraints. The connection of 
identical or different kinematic legs permits the authors to 
define two-, three-, four- and five-dof parallel 
mechanisms. However, it is not possible to remove one 
leg from a four-dof to produce a three-dof mechanism 
because no modular approach is used. 

2.2 Singularities 

The singular configurations (also called singularities) of a 
PKM may appear inside the workspace or at its 
boundaries. There are two types of singularities [7]. A 
configuration where a finite tool velocity requires infinite 
joint rates is called a serial singularity. These 
configurations are located at the boundary of the 
workspace. A configuration where the tool cannot resist 
any effort and in turn, becomes uncontrollable is called a 
parallel singularity. Parallel singularities are particularly 
undesirable because they induce the following problems 
(i) a high increase in forces in joints and links, that may 
damage the structure, and (ii) a decrease of the mechanism 
stiffness that can lead to uncontrolled motions of the tool 
though actuated joints are locked. 

Figures  2a and  2b show the singularities for the 
biglide mechanism of Fig.  1b. In Fig.  2a, we have a 
serial singularity. The velocity amplification factor along 

the vertical direction is null and the force amplification 
factor is infinite. 

Figure  2b shows a parallel singularity. The velocity 
amplification factor is infinite along the vertical direction 
and the force amplification factor is close to zero. Note 
that a high velocity amplification factor is not necessarily 
desirable because the actuator encoder resolution is 
amplified and thus the accuracy is lower. 

P  
 

P
 

Figure 2a: A serial 
singularity 

Figure  2b: A parallel 
singularity 

The determination of the singular configurations for two-
dof mechanisms is very simple; conversely, for a six-dof 
mechanism like the Gough-Stewart platform, a 
mechanism with six-dof, the problem is very difficult [3]. 
With a modular architecture, when the position and the 
orientation of the mobile platform are decoupled, the 
determination of the singularities is easier. 

2.3 Kinetostatic performance of parallel mechanism 

Various performance indices have been devised to assess 
the kinetostatic performances of serial and parallel 
mechanisms. The literature on performance indices is 
extremely rich to fit in the limits of this paper (service 
angle, dexterous workspace and manipulability…) [9]. 
The main problem of these performance indices is that 
they do not take into account the location of the tool 
frame. However, the Jacobian determinant depends on this 
location [9] and this location depends on the tool used.  
To the authors' knowledge there is no parallel mechanism, 
suitable for machining, for which the kinetostatic 
performance indices are constant throughout the 
workspace (like the condition number or the stiffness…). 
For a serial three-axis machine tool, a motion of an 
actuated joint yields the same motion of the tool (the 
transmission factors are equal to one). For a parallel 
machine, these motions are generally not equivalent. 
When the mechanism is close to a parallel singularity, a 
small joint rate can generate a large velocity of the tool. 
This means that the positioning accuracy of the tool is 
lower in some directions for some configurations close to 
parallel singularities because the encoder resolution is 



Submitted to ICAR 2003 D. Chablat Ph. Wenger F. Majou 

  3/6 

amplified. In addition, a high velocity amplification factor 
in one direction is equivalent to a loss of stiffness in this 
direction. The manipulability ellipsoid of the Jacobian 
matrix of robotic manipulators was defined two decades 
ago [8]. The JJ-1 eigenvalues square roots, γ1 and γ2, are 
the lengths of the semi-axes of the ellipse that define the 
two velocity amplification factors between the actuated 
joints velocities and the velocity vector t&  (λ1 = 1/γ1 and 
λ2 = 1/γ2). For parallel mechanisms with only pure 
translation or pure rotation motions, the variations of these 
factors inside the Cartesian workspace can be limited by 
the following constraints 
 min maxi i iλ λ λ≤ ≤  

Unfortunately, this concept is quite difficult to apply when 
the tool frame can produce both rotational and 
translational motions. In this case, indeed the Jacobian 
matrix is not homogeneous [9].  
A first way to solve this problem is its normalization by 
computing its characteristic length [9-10]. The second 
approach is to limit the values of all terms of the Jacobian 
matrix to avoid singular configuration and to associate 
these values to a physical measurement (See section 3.4). 

3 Kinematics of mechanisms studied 

3.1 Kinematics of a parallel mechanism for 
translational motions 

The aim of this section is to define the kinematics and the 
singular configuration of a two-dof translational 
mechanism (Figure 3), which can be extended to three-
axis machines by adding a third axis in series with the first 
two. The output body is connected to the linear joints 
through a set of two parallelograms of equal lengths 

i iL A B= , so that it can move only in translation.  
The two legs are PPa identical chains, where P and Pa 
stand for Prismatic and Parallelogram joints, respectively. 
This mechanism can be optimized to have a workspace 
whose shape is close to a square workspace and the 
velocity amplification factors are bounded [11]. 
The joint variables 1ρ  and 2ρ  are associated with the two 
prismatic joints. The output variables are the Cartesian 
coordinates of the tool center point TyxP ][= . To control 
the orientation of the reference frame attached to P, two 
parallelograms can be used, which also increase the 
rigidity of the structure, Figure 3. 

i e1
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z  
Figure 3: Parallel mechanism with two-dof  

To produce the third translational motion, it is possible to 
place orthogonally a third prismatic joint.  
The velocity p&  of point P can be expressed in two 
different ways. By traversing the closed loop 

)( 2211 PBAPBA −  in two possible directions, we obtain 
 )( 1111 abiap −×θ+= &&&  (1a) 

 )( 2222 abiap −×θ+= &&&  (1b) 
where 1a , 1b , 2a  and 2b  represent the position vectors 
of the points 1A , 1B , 2A  and 2B , respectively. Moreover, 
the velocities 1a&  and 2a&  of 1A  and 2A  are given by 

111 ρ= && ea  and 222 ρ= && ea , respectively. 
For an isotropic configuration to exist where the velocity 
amplification factors are equal to one, we must have 

0. 21 =ee  [11] (Figure 5).  
We would like to eliminate the two passive joint rates 1θ&  
and 2θ&  from Eqs. (1a-b), which we do upon dot-multiply 
the former by T)( 11 ab −  and the latter by T)( 22 ab − , thus 
obtaining 
 111111 )()( ρ−=− && eabpab TT  (2a) 

 222222 )()( ρ−=− && eabpab TT  (2b) 
Equations (2a-b) can be cast in vector form, namely 

ρ&& BpA = , with A and B denoted, respectively, as the 
parallel and serial Jacobian matrices,  

 ⎥
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where ρ&  is defined as the vector of actuated joint rates 
and p&  is the velocity of point P, i.e., 
 [ ]1 2

Tρ ρ=& & &ρ  and [ ]Tx y=p& & &  

When A and B are not singular, we obtain the relations, 
 ρ&& Jp =  with BAJ 1−=   
Parallel singularities occur whenever the lines 1 1A B  and 

2 2A B  are colinear, i.e. when 1 2 ,kθ θ π− =  for k = 1,2,.... 
Serial singularities occur whenever 1 1 1⊥ −e b a  or 

2 2 2⊥ −e b a . To avoid these two singularities, the range 
limits are defined in using suitable bounds on the velocity 
factor amplification (See section 3.3).  
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3.2 Kinematics of a spatial parallel mechanism with 
one-dof of rotation  

The aim of this section is to define the kinematics of a 
simple mechanism with two-dof of translation and one-
dof of rotation. To be modular, the direct kinematic 
problem must be decoupled between position and 
orientation equations. A decoupled version of the Gough-
Stewart Platform exists but it is very difficult to build 
because three spherical joints must coincide [12]. Thus, it 
cannot be used to perform milling applications. The main 
idea of the proposed architecture is to attach a new body 
with the tool frame to the mobile platform of the two-dof 
mechanism defined in the previous section. The new joint 
admits one or two-dofs according to the prescribed tasks. 
To add one-dof on the mechanism defined in section 3, we 
introduce one revolute joint between the previous mobile 
platform and the tool frame. Only one leg is necessary to 
hold the tool frame in position. Figure 4 shows the 
mechanism obtained with two translational dofs and one 
rotational dof.  
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Figure 4: Parallel mechanism with two-dof of translation 
and one-dof of rotation 

The architecture of the leg added is PUU where P and U 
stand for Prismatic and Universal joints, respectively [6]. 
The new prismatic joint is located orthogonaly to the first 
two prismatic joints. This location can be easily justified 
because on this configuration, i.e. when 1 1 2 2− ⊥ −b a b a  
and 3 3 3− ⊥ −b a b p , the third leg is far away from serial 
and parallel singularities. 
Let ρ&  be referred to as the vector of actuated joint rates 
and p&  as the velocity vector of point P, 
  1 2 2[ ]Tρ ρ ρ=& & & &ρ  and [ ]Tx y=p& & &  
Due to the architecture of the two-dof mechanism and the 
location of P, its velocity on the z-axis is equal to zero. p&  
can be written in three different ways by traversing the 
three chains PBA ii , 

 1 1 1 1( )θ= + × −p a i b a&& &  (3a) 

 2 2 2 2( )θ= + × −p a i b a&& &  (3b) 

 3 3 3 3 3( ) ( ) ( )θ α β= + + × − + × −p a j k b a j p b& && & &  (3c) 
where ia  and ib  are the position vectors of the points iA  
and iB  for 1, 2,3i = , respectively. Moreover, the 
velocities 1a& , 2a&  and 3a&  of 1A , 2A  and 3A  are given by 

111 ρ= && ea , 222 ρ= && ea  and 3 3 3ρ=a e& & , respectively. 
We want to eliminate the passive joint rates iθ&  and α&  
from Eqs. (3a-c), which we do upon dot-multiplying 
Eqs. (3a-c) by ii ab − , 
 1 1 1 1 1 1( ) ( )T T ρ− = −b a p b a e& &  (4a) 
 2 2 2 2 2 2( ) ( )T T ρ− = −b a p b a e& &  (4b) 

 3 3 3 3 3 3

3 3 3

( ) ( )

( ) ( )

T T

T

ρ

β

− = −

+ − × −

b a p b a e

b a j p b

& &

&
 (4c) 

Equations (4a-c) can be cast in vector form, namely, 
 =t J &ρ  with BAJ 1−=  and Tyx ][ β= &&&t  
where A and B are the parallel and serial Jacobian 
matrices, respectively, 
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There are two new singularities when one leg is added. 
The first one is a parallel singularity when 

3 3 3( ) ( ) 0T− × − =b a j p b , i.e., when the lines )( 33BA  and 
)( 3PB  are colinear, and the second one is a serial 

singularity when 3 3 3( ) 0T− =b a e , i.e., 3 3 3− ⊥a b e . 
However, these singular configurations are simple and can 
be avoided by proper limits on the actuated joints.  

3.3 Optimization of the useful workspace for 
translational motions 

Two types of workspaces can be defined, (i) the Cartesian 
workspace is the manipulator’s workspace defined in the 
Cartesian space, and (ii) the useful workspace is defined 
as a subset of the Cartesian workspace. Workspace and 
size are prescribed where some performance indices are 
prescribed.  
For parallel mechanism, the useful workspace shape 
should be similar to the one of classical serial machine 
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tools, which is parallelepipedic if the machine has three 
translational degrees of freedom for instance. So, a square 
useful workspace is prescribed here where the velocity 
amplification factors remain under the prescribed values. 
Two square useful workspaces can be used, (i) he first one 
has horizontal and vertical sides (Figure 5a) and (ii) the 
second one has oblique sides but its size is higher 
(Figure 5b).  

P
B1

A1

e1 e2

B2

Useful workspace
PCartesian workspace

B1

A1

e1 e2

B2

Close to singularity locus
(a) (b)  

Figure 5: Cartesian workspace and isotropic configuration  

To find the best useful workspace (center locus and size), 
we can shift the useful workspace along x-axis ( )xΔ  and 
y-axis ( )yΔ  (Figure 6) and the velocity amplification 
factors are computed for each configuration. This method 
was developed in [13]. 

P1 P2

P4 P3
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P2
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P3
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Δu
Δu

Δx

Δy x

y y

x

 

Figure 6: Looking for the best useful workspace  
(center locus and size)  

In each case, velocity amplification factor extrema are 
located along the sides i jPP : they start from 1 at point S, 
then they vary until they reach prescribed boundaries 
(1/ 3 3iλ≤ ≤ ). Then computation (which analytical 
expressions λi) has been obtained with Maple along the 
four sides of the square and for the same length of the leg 
equal to one. 
For the first mechanism, solution (a), the size of the 
optimal surface is equal to 0,89 m2 and for the second 
mechanism, solution (b), the size is equal to 0,62 m2. The 
result obtained for the solution (b) is smaller than for the 
solution (a) but is more appropriate for the extension 
three-axis mechanism of Figure 4. In effect, we want the 
axis of rotation to be parallel to one of the side of the 

useful workspace.  
In the next section, the lengths of the third leg will 
optimize to achieve this square useful workspace without 
singularity. 

3.4 Optimization of the third-axis for rotational 
motions 

The aim of this section is to define the two lengths of the 
leg, 1 3L B P= and 2 3 3L A B=  such that it is possible to 
achieve the maximum range variation of third axis β  
without meeting a singular configuration throughout the 
square workspace with the size defined in the previous 
section. The fist step of this optimization is to find the 
location of the prismatic joint. When P is on the center of 
the square workspace, we chose to place the third leg 
furthest away from singular configuration, i.e. when 

3 3−b a  and 3e  are colinear and 3 3 3− ⊥ −b a p b  
(Figure 7a). 
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β
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Figure 7: Optimal, serial and parallel configuration of the 
third leg 

As it is defined in Section 3.2, the third leg is in a singular 
configuration whenever 3 3 3( ) ( ) 0T− × − =b a j p b  
(Figure 7b-c) or 3 3 3( ) 0T− =b a e  (Figure 7d). In the 
optimization function, we set: 

 3 3
3

3 3

( ) 0, 2
T−

>
−

b a e
b a

 (4a) 

3 3 3

3 3 3

( ) ( ) 0, 2
T− −

× >
− −

b a p bj
b a p b

 (4b) 

with arcsin(0, 2) 11,53= °  
This means that 3 3A B Pγ = ∠  is in [ ]11,5168,5  and 

3 3 3A Bσ = ∠ e  is in [ ]78,5 78,5− . The result of this 
optimization as a function of 1L  and 2L  is depicted in 
Fig. 8.  



Submitted to ICAR 2003 D. Chablat Ph. Wenger F. Majou 

  6/6 

1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

L1

L2
L2=1,8L1

 

Figure 8: Range of variation in degrees of β  as a function 
of 1L  and 2L  

With a suitable chose of lengths, it is easy to obtain a 
range variation of β  higher than 180°. So, this value can 
be reduced if we increase the constraint defined in Eqs. 
(4). However, when 2 11,8L L= , the range of variation is 
optimal. 

4 Conclusions 
In this paper, a parallel mechanism with two degrees of 
position and one degree of rotation is studied. All the 
actuated joints are fixed prismatic joints, which can be 
actuated by means of linear motors or by conventional 
rotary motors with ball screws. Only three types of joints 
are used, i.e., prismatic, revolute and universal joints. All 
the singularities are characterized easily because position 
and orientation are decoupled for the direct kinematic 
problem and can be avoided by proper design. The lengths 
of the legs as well as their positions is optimized, to take 
into account the velocity amplification factors for the 
translational motions and to avoid the singular 
configuration for the rotational motions. 
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