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. Corresponding long wave model equations are derived.

Résumé

. Un modèle d'ondes longues est obtenu à partir de ces nouvelles équations.

gravité, p la pression, ρ la densité, t le temps, et d'utiliser la décomposition de Helmholtz-Leray (2) pour la vitesse. Ensuite l'on exprime la composante rotationnelle ψ de la vitesse en fonction de la composante potentielle φ et de la déformation η de la surface libre. Nous présentons ici une extension au cas d'une couche de fluide de profondeur finie. Dans ce cas-là il faut tenir compte des frottements au fond.

En utilisant la transformée de Fourier-Laplace, on écrit la solution générale pour φ et ψ. Ensuite l'on utilise la condition dynamique sur la surface libre. La nullité des deux composantes tangentielles de la contrainte donne les équations (3) et [START_REF] Dutykh | Dissipative boussinesq equations[END_REF], qui peuvent être recombinées pour donner l'équation [START_REF] Dyachenko | Weak turbulence of gravity waves[END_REF]. Cette même équation, combinée avec la condition cinématique sur la surface libre [START_REF] Dyachenko | Weak turbulent kolmogorov spectrum for surface gravity waves[END_REF], donne un lien entre η et ψ [START_REF] Joseph | The dissipation approximation and viscous potential flow[END_REF] et un autre lien entre η et φ [START_REF] Kakutani | Effect of viscosity on long gravity waves[END_REF]. Le remplacement de la composante rotationnelle dans la condition cinématique à la surface libre donne la première équation modifiée [START_REF] Lamb | Hydrodynamics[END_REF]. De même l'équilibre de la contrainte normale au niveau de la surface libre donne l'équation de Bernoulli modifiée [START_REF] Mei | The applied dynamics of ocean surface waves[END_REF].

La seconde partie de la note consiste à incorporer une correction de type couche limite dans la condition cinématique au fond. L'idée est d'introduire l'épaisseur de la couche limite proportionnelle à δ = √ ν, la coordonnée de couche limite ζ = (z + h)/δ, puis d'effectuer un développement du potentiel et de la vitesse rotationnelle en fonction du petit paramètre δ. On obtient ensuite une hiérarchie de problèmes à résoudre. Ce qui nous intéresse, c'est la correction à apporter à la condition cinématique au fond (13). Après quelques calculs, on obtient la correction présentée dans l'équation (14). Finalement nous proposons le nouveau système d'équations (15)-( 18) pour l'étude des vagues avec faible viscosité en profondeur finie. Notons que les termes nonlinéaires ont été ajoutés de façon heuristique. A partir de ce système, nous pouvons dériver le système de Boussinesq faiblement dissipatif donné par les équations (19)-(20).

Introduction

The effects of viscosity on gravity waves have been addressed since the end of the nineteenth century in the context of the linearized Navier-Stokes (NS) equations. It is well-known that Lamb [START_REF] Lamb | Hydrodynamics[END_REF] studied this question in the case of oscillatory waves on deep water. What is less known is that Boussinesq studied this effect as well [START_REF] Boussinesq | Lois de l'extinction de la houle en haute mer[END_REF]. In this particular case they both showed that

∂α ∂t = -2νk 2 α,
where α denotes the wave amplitude, ν the kinematic viscosity of the fluid and k the wavenumber of the decaying wave. This equation leads to the classical law for viscous decay, namely α(t) = α 0 e -2νk 2 t . In this work we keep the features of undamped free-surface flows while adding dissipative effects. The classical theory of viscous potential flows [START_REF] Joseph | The dissipation approximation and viscous potential flow[END_REF] is based on pressure and boundary conditions corrections due to the presence of viscous stresses. We present here a novel approach.

Currently, potential flows with ad-hoc dissipative terms are used for example in direct numerical simulations of weak turbulence of gravity waves [START_REF] Dyachenko | Weak turbulence of gravity waves[END_REF][START_REF] Dyachenko | Weak turbulent kolmogorov spectrum for surface gravity waves[END_REF][START_REF] Zakharov | Mesoscopic wave turbulence[END_REF]. There have also been several attempts to introduce dissipative effects into long wave modelling [START_REF] Mei | The applied dynamics of ocean surface waves[END_REF][START_REF] Dutykh | Dissipative boussinesq equations[END_REF][START_REF] Chen | Long-time asymptotic behaviour of dissipative boussinesq systems[END_REF].

The present article is a direct continuation of the recent study [START_REF] Dias | Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions[END_REF]. In that work the authors considered two-dimensional (2D) periodic waves in infinite depth, while in the present study we remove these two hypotheses and all the computations are done in 3D. This point is important since the vorticity structure is more complicated in 3D. In other words we consider a general wavetrain on the free surface of a fluid layer of finite depth. As a result we obtain a qualitatively different formulation which contains a nonlocal term in the bottom kinematic condition. The inclusion of this term is natural since it represents the correction to potential flow due to the presence of a boundary layer. Moreover, this term is predominant since its magnitude scales with O( √ ν), while other terms in the free-surface boundary conditions are of order O(ν). Other researchers have obtained nonlocal corrections but they differ from ours [START_REF] Kakutani | Effect of viscosity on long gravity waves[END_REF].

Derivation

Consider the linearized 3D incompressible NS equations describing free-surface flows in a fluid layer of uniform depth h:

∂v ∂t = - 1 ρ ∇p + ν∆v + g, ∇ • v = 0, (1) 
with v the velocity vector, p the pressure, ρ the fluid density and g the acceleration due to gravity. We represent v = (u, v, w) in the form of the Helmholtz-Leray decomposition:

v = ∇φ + ∇ × ψ, ψ = (ψ 1 , ψ 2 , ψ 3 ). ( 2 
)
After substitution of the decomposition ( 2) into (1), one notices that the equations are verified provided that the functions φ and ψ satisfy the following equations:

∆φ = 0, φ t + p -p 0 ρ + gz = 0, ∂ψ ∂t = ν∆ψ.
Next we discuss the boundary conditions. We assume that the velocity field satisfies the conventional no-slip condition at the bottom v| z=-h = 0, while at the free surface we have the usual kinematic condition η t = w and three dynamic conditions [σ • n] = 0, where σ is the stress tensor, [f ] denotes the jump of a function f across the free surface, and the normal vector n equals (0, 0, 1) due to linearization.

Using Fourier-Laplace transforms, which we denote by

L F ≡ L • F, f (x, t) LF -→ f (k, s), k = (k x , k y )
we can determine the structure of the unknown functions φ, ψ in the transform space. We assume that all the functions involved in the present computation satisfy the necessary regularity requirements and have sufficient decay at infinity so that the integral transforms can be applied. The solution for φ is obtained from the transformed continuity equation ∆φ = 0

LF -→ φzz -|k| 2 φ = 0 and ψ from the corresponding transformed equation ψ t = ν∆ψ LF -→ s ψ = ν ψzz -|k| 2 ψ : φ = φ+ 0 (k, s)e |k|z + φ- 0 (k, s)e -|k|z , ψi = ψi0 (k, s) e |m|z + C i (k, s)e -|m|z ,
where m 2 := |k| 2 + s/ν and φ+ 0 , φ-0 , ψ0 , C := (C 1 , C 2 , C 3 ) are unknown functions of the transform parameters (k, s), determined by the initial and appropriate boundary conditions.

There are three dynamic conditions on the free surface. Let us use first those related to the tangential stresses (the third one will be used later), where µ = ρν:

σ xz = µ ∂w ∂x + ∂u ∂z = 0, σ yz = µ ∂w ∂y + ∂v ∂z = 0, at z = 0.
Substituting decomposition (2) into these two identities yields

2 ∂ 2 φ ∂x∂z + ∂ 2 ψ 2 ∂x 2 - ∂ 2 ψ 1 ∂x∂y + ∂ 2 ψ 3 ∂y∂z - ∂ 2 ψ 2 ∂z 2 = 0, z = 0, (3) 2 
∂ 2 φ ∂y∂z + ∂ 2 ψ 2 ∂x∂y - ∂ 2 ψ 1 ∂y 2 + ∂ 2 ψ 1 ∂z 2 - ∂ 2 ψ 3 ∂x∂z = 0, z = 0. ( 4 
)
The next step consists in taking the Fourier-Laplace transform to these relations. We do not give here the explicit expressions since this operation is straightforward. The combination (-ik x ) (3) + (-ik y ) (4) gives the important relation

ik y ψ10 (1 + C 1 ) -ik x ψ20 (1 + C 2 ) = - 2 |k| 3 m 2 + |k| 2 ( φ+ 0 -φ- 0 ). (5) 
Let us turn to the free-surface kinematic condition ∂η ∂t = w ≡ ∂φ ∂z + ∂ψ2 ∂x -∂ψ1 ∂y , z = 0. In transform space it becomes sη = |k| ( φ+

0 -φ- 0 ) + ik y ψ10 (1 + C 1 ) -ik x ψ20 (1 + C 2 ). (6) 
Equations ( 5) and ( 6) can be rewritten as

|k| ( φ+ 0 -φ- 0 ) ν(m 2 + |k| 2 ) = η, (7) 
ik y ψ10 (1 + C 1 ) -ik x ψ20 (1 + C 2 ) = -2ν |k| 2 η. (8) 
Using ( 8) one can replace the rotational part in the kinematic free-surface condition:

η t = φ z + L -1 F -2ν |k| 2 η = φ z + 2ν∆η. (9) 
In order to account for the presence of viscous stresses, we have to modify the dynamic free-surface condition as well. This is done using the balance of normal stresses at the free surface:

σ zz = 0 at z = 0 ⇒ p -p 0 = 2ρν ∂w ∂z ≡ 2ρν ∂ 2 φ ∂z 2 + ∂ 2 ψ 2 ∂x∂z - ∂ 2 ψ 1 ∂y∂z .
Using (8) one can show that

∂ 2 ψ2 ∂x∂z -∂ 2 ψ1 ∂y∂z = O(ν 1 
2 ), so Bernoulli's equation becomes

φ t + gη + 2νφ zz + O(ν 3 2 ) = 0. ( 10 
)
Since we only consider weak dissipation (ν ∼ 10 -6 -10 -3 m 2 /s), we neglect terms of order o(ν).

The second step in our derivation consists in introducing a boundary layer correction at the bottom. Obviously, this was not done in the previous study [START_REF] Dias | Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions[END_REF], since the derivation dealt with the infinite depth case. In order to include this modification, we consider a semi-infinite fluid layer as it is usually done in boundary layer theory. The fluid occupies the domain z > -h. In this derivation we use the pure Leray decomposition of the velocity field v = ∇φ + u together with the divergence-free constraint ∇ • u = 0. Expecting that the rotational part u varies rapidly in a distance δ = √ ν, 1 we introduce the boundarylayer coordinate ζ ≡ (z + h)/δ, so that u = u(x, ζ) = u x , u z (x, ζ). The solid boundary is given by ζ = 0, and the potential part of the flow is not subject to this change of variables. With the new scaling, the divergence-free condition becomes

∂u z ∂ζ + δ∇ x • u x = 0. ( 11 
)
As done in [START_REF] Mei | The applied dynamics of ocean surface waves[END_REF], we expand the unknown functions in powers of the small parameter δ:

φ = φ 0 (x, z, t) + δφ 1 (x, z, t) + . . . , u = q 0 (x, ζ, t) + δq 1 (x, ζ, t) + . . . .
Substituting the expansion for u into [START_REF] Zakharov | Mesoscopic wave turbulence[END_REF] gives the following relations:

δ 0 : ∂q 0z ∂ζ = 0, δ 1 : ∂q 1z ∂ζ = -∇ x • q 0x , (12) 
where q 0x denotes the first two components of the vector q 0 corresponding to the horizontal coordinates x. Recall that we would like to determine the correction to the bottom boundary condition

φ z = -u z | ζ=0 = -(q 0z + δq 1z )| ζ=0 + o(δ). (13) 
So we only need to compute q 0z and q 1z at the bottom ζ = 0.

1 Of course we should nondimensionalize all quantities in order to define small numbers. One would find that δ is in fact equivalent to √ Re -1 × L, where Re is the Reynolds number and L a typical length.

Using the same asymptotic considerations as above, we can write down the following sequence of problems:

∆φ 0 = 0, ∂φ 0 ∂z z=-h = 0, ∂q 0 ∂t = ∂ 2 q 0 ∂ζ 2 , q 0 = -∇φ 0 | ζ=0 , ∆φ 1 = 0, ∂φ 1 ∂z z=-h = -q 1z , ∂q 1 ∂t = ∂ 2 q 1 ∂ζ 2 , q 1 = -∇φ 1 | ζ=0 , together with the radiation condition q → 0 as ζ → ∞.
This sequence of linear problems can be solved using Fourier transforms. In Fourier space one finds immediately that φ0 (t, z, k) = φ0 (t, k) e |k|z + e -|k|z . Since we know φ0 , we can determine the rotational component q0 .

Analytical solutions to the equation ∂q 0x /∂t = ∂ 2 q0x /∂ζ 2 are well-known. If we assume that initially the flow is potential and the boundary condition is q0x = ik φ0 (z = -h; k), the solution is

q0x = 1 2 √ π t 0 ζ (t -τ ) 3 2 e -ζ 2 4(t-τ ) ik φ0 (τ, z = -h, k) dτ.
Let us now integrate the second equation in (12) from 0 to ∞, using the appropriate decay at infinity:

q1z | ζ=0 = - ∞ 0 ik • q0x dζ = 1 2 √ π ∞ 0 t 0 ζ (t -τ ) 3 2 e -ζ 2 4(t-τ ) |k| 2 φ0 (τ, z = -h, k) dτ dζ.
One can interchange integral signs and evaluate the inner integral on ζ to obtain: q1z

| ζ=0 = 1 √ π t 0 |k| 2 φ0(τ,z=-h,k) √ t-τ dτ.
Hence, the bottom boundary condition becomes, at order δ,

∂φ ∂z z=-h = - ν π t 0 F -1 |k| 2 φ0 (-h, k) √ t -τ dτ = ν π t 0 ∇ 2 x φ 0 z=-h √ t -τ dτ = - ν π t 0 φ 0zz | z=-h √ t -τ dτ. (14) 
One recognizes on the right-hand side a half-order integral operator. Summarizing the developments made above and generalizing our equations by including nonlinear terms (this is a conjecture at this stage), we obtain a new set of viscous potential free-surface flow equations:

∆φ = 0, (x, z) ∈ Ω = R 2 × [-h, η] (15) 
η t + ∇η • ∇φ = φ z + 2ν∆η, z = η (16) φ t + 1 2 |∇φ| 2 + gη = -2νφ zz , z = η (17) φ z = - ν π t 0 φ zz √ t -τ dτ, z = -h. (18) 
Using this weakly damped potential flow formulation one can derive the following system of Boussinesq equations with horizontal velocity u h defined at the depth z θ = -θh, 0 ≤ θ ≤ 1:

η t + ∇ • ((h + η)u h ) + h 3 θ 2 2 -θ + 1 3 ∇ 2 (∇ • u h ) = 2ν∆η + ν π t 0 ∇ • u h √ t -τ dτ, (19) 
u ht + 1 2 ∇|u h | 2 + g∇η -h 2 θ 1 - θ 2 ∇(∇ • u ht ) = 2ν∆u h . (20) 

Conclusion

In the present paper we have shown how to express the rotational component of the velocity field in terms of the potential part of Helmholtz-Leray decomposition. This expression contains differential and integral operators. Obviously, this analysis is only linear. In future work we will try to extend the present derivation to the nonlinear case. A long wave approximation was derived from this new potential flow formulation.

It is interesting to note that dissipative terms of this form have been used to verify the theory of weak turbulence of surface gravity waves in deep water [START_REF] Dyachenko | Weak turbulence of gravity waves[END_REF][START_REF] Dyachenko | Weak turbulent kolmogorov spectrum for surface gravity waves[END_REF][START_REF] Zakharov | Mesoscopic wave turbulence[END_REF]. They were added without justification to model dissipation at small scales. Note that a good qualitative agreement was obtained between the Kolmogorov spectrum predicted by weak turbulence theory and the results of DNS. Hence, the present work can be considered as an attempt to justify the inclusion of these terms.

Our final remark concerns the nonlocal term in the kinematic bottom boundary condition. This term can be also considered as a boundary layer correction at the bottom. In modelling viscous effects this term plays the main role, since its magnitude is O( √ ν). Of course, the numerical implementation of this term is another matter. What is the value of ν to be taken in numerical simulations? There is surprisingly little published information of this subject. What is clear is that the molecular diffusion is too small to model true viscous damping and one should rather consider the eddy viscosity parameter.
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