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Abstract Parallel Kinematic Mechanisms (PKM) are interesting alternative designs 

for machine tools. A design method based on velocity amplification factors 

analysis is presented in this paper. The comparative study of two simple 

two-degree-of-freedom PKM dedicated to machining applications is led 

through this method: the common desired properties are the largest square 

Cartesian workspace for given kinetostatic performances. The orientation 

and position of the Cartesian workspace are chosen to avoid singularities 

and to produce the best ratio between Cartesian workspace size and 

mechanism size. The machine size of each resulting design is used as a 

comparative criterion. 

Keywords: Parallel Kinematic Machine Tool, Velocity Amplification Factors, Optimal 

Workspace Design. 

1.  Introduction  

Most industrial Machine Tools (MT) have a serial kinematic 

architecture: each axis supports the following one, including its actuators 
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 2 

and joints. High Speed Machining (HSM) highlights some drawbacks of 

such architectures: heavy moving parts require high stiffness from the 

machine structure to limit bending problems that lower the machine 

accuracy and limit the dynamic performances of the feed axes.  

Parallel Kinematic Machines (PKM) attract more and more 

researchers and companies, because they are claimed to offer several 

advantages over their serial counterparts, like high structural rigidity 

and high dynamic capacities. Indeed, the parallel kinematic arrangement 

of the links provides higher stiffness and lower moving masses that 

reduce inertia effects. Thus, PKM have better dynamic performances, 

which is interesting for HSM.  

However, most existing PKM have a complex geometrical workspace 

shape and highly non linear input/output relations. For most PKM, the 

Jacobian matrix which relates the joint velocities to the output velocities 

is not constant. Consequently, the performances may vary significantly 

for different points in the workspace and for different directions at one 

given point, which is a serious drawback for machining applications, Kim 

et al., 1997. To satisfy the needs of machining applications, a parallel 

kinematic architecture should preserve good workspace properties such 

as a regular shape and homogeneous kinetostatic performances 

throughout.  

The design method presented in this paper is conducted for two-

degree-of-freedom (2-DOF) mechanisms.  Each mechanism is defined by 

a set of three design variables. The notion of useful workspace is then 

explained. Given prescribed kinetostatic performances, the link 

dimensions and actuated joint ranges of each mechanism are calculated 

for the largest square useful workspace. The orientation and position of 

the useful workspace are chosen to avoid singularities and to produce the 

best ratio between useful workspace and Cartesian workspace. Then, the 

size of the resulting mechanisms are compared.  

The organization of this paper is as follows: the next section presents 

the kinematics of the studied mechanisms, sections 3 and 4 are devoted 

to the design of the two mechanisms through the velocity amplification 

factors analysis, and the last section concludes this paper.  

2.         Kinematic study   

2.1       Description of the mechanisms 

The two mechanisms under study  have two constant length struts 

gliding along fixed linear actuated joints with different relative 
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orientation. The two struts are of equal lengths L. Figure 1 presents the 

Biglide and Figure 2 shows the 2-DOF Orthoglide, Wenger et al. 2001.  

 
 

Figure 1. The Biglide mechanism 

The joint variables are 1 and 2 associated with the two actuated 

prismatic joints and the output variables are the Cartesian coordinates of 

the tool center point P = [x, y]T. Parameters characterizing each 

mechanism are the lengths L0, L, and the actuated joint ranges . 

 

 
 

Figure 2. The 2-DOF Orthoglide  

These two mechanisms are convenient for machining applications 

because they fit the technological constraints that a convenient PKM 

architecture for machining should respect as explained in Majou et al., 

2002: 

- only one DOF in each lower pair, for a simple design and a low cost; 

- actuators fixed on the frame, to reduce inertia effects; 

- actuated prismatic joints to allow linear motors; 

- similar legs, for a low cost. 

2.2        Velocity analysis 

The Jacobian matrix relates the velocity vector t  of the tool point P to 

the velocity vector ρ of the prismatic joints.  
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The vectors t  and ρ  are related by   

ρBtA    

where A and B are the parallel and serial Jacobian matrices, Gosselin 

and Angeles, 1990. When A and B are not singular, the following 

relations are obtained:  

 

ρJt    with J A-1 B  and ρ J-1 t  with   ρJt    

 

The inverse Jacobian matrix J-1 is used for more simplicity.  

2.3        Singularity analysis 

Six types of singularities can arise in a mechanism, Zlatanov et al. 

1996, but focusing on the three common ones, Gosselin and Angeles, 

1990, is enough for the purpose of the work presented here. 

The first type occurs when the determinant of matrix A vanishes, i.e. 

when det(A) = 0, Gosselin and Angeles, 1990. This type of singularity is 

called a parallel singularity (Fig. 3 and Fig. 4).  

 

 
 

Figure 3. Biglide parallel singularity 

In this configuration, it is possible to move the tool center point 

whereas the actuated joints are locked, thus the control of the tool point 

P is lost. These singularities have to be eliminated from the Cartesian 

workspace to prevent damaging the mechanism. 

 

 
 

Figure 4. 2-DOF Orthoglide parallel singularity 

The second type of singularity occurs when the determinant of matrix 

B vanishes, i.e. when det(B) = 0, Gosselin and Angeles, 1990. This type of 

singularity is called a serial singularity (Fig. 5 and Fig. 6). In this 

configuration, there exists a direction along which no velocity can be 

produced. For a PKM, serial singularities define the boundary of the 
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Cartesian workspace, Merlet, 1997. Because the two struts are of equal 

lengths, the serial singularity is also a structural singularity and P can 

freely rotate around the two coincident revolute centers, Gosselin and 

Angeles, 1990. 

 

 
 

 
Figure 5.  Biglide serial singularity Figure 6.  2-DOF Orthoglide serial 

singularity 

3.         Shape, position and orientation of the useful 

workspace 

3.1 Velocity amplification factor boundaries 

In order to keep reasonable and homogeneous kinetostatic properties 

inside the Cartesian workspace, the manipulability ellipsoids of velocity 

defined by the inverse Jacobian matrix J-1 are studied, Yoshikawa, 1985. 

The JJ-1 eigenvalues square roots, 1 and 2, are the lengths of the 

semiaxes of the ellipse that define the two Velocity Amplification Factors 

(from now on called VAF) between the actuated joints velocities and the 

velocity vector t , 1 = 1/1  and 2 = 1/2. To limit the variations of these 

factors inside the Cartesian workspace, the following constraints are set 

 

1/3  i  3 

 

This means that for a given joint velocity, the output velocity is at 

most three times larger or, at least, three times smaller. These 

constraints also permit to limit the loss of rigidity (velocity amplification 

lowers rigidity) and of accuracy. The boundaries on VAF were chosen as 

an example and should be revised depending on the machining tasks 

(accuracy needs for example).  

3.2 Useful workspace shape  

The Cartesian workspace (from now on called C-workspace) is the 

manipulator’s workspace defined in Cartesian space. The useful 

workspace (from now on called u-workspace) is defined as a part of the C-



 6 

workspace. Its shape and size are a design parameters and have to be 

defined. Furthermore, inside the u-workspace, VAF remain under the 

prescribed values.  

The u-workspace shape of the two mechanisms should be similar to 

the one of classical serial MT, which is parallelepipedic if the machine 

has three translational degrees of freedom for instance. The u-workspace 

of a serial three axis MT is equivalent to the C-workspace because the 

input/output relations are linear. Therefore, a square u-workspace is 

prescribed here. And it must be a t-connected region, i.e. it must be free 

of serial and parallel singularities, Chablat and Wenger, 1998. 

3.3 Isotropy continuum of the 2-DOF Orthoglide 

The 2-DOF Orthoglide mechanism, extended to three DOF in Wenger 

and Chablat, 2000, was designed to have an isotropic configuration for 

which the VAF are unitary. But this mechanism also provides an 

isotropy continuum which is a straight line (Fig. 9).  

 

  

 
Figure 9. 2-DOF Orthoglide isotropy 

continuum locus 

 
Figure 10. VAF along the isotropy 

continuum locus 

The two VAF are equal along the continuum, but not constant, 

Angeles, 1997. It means that 1 = 2, and therefore cond(J) = 1. The 

variation of the VAF along the isotropy continuum is limited (Fig. 10), 

which is interesting as it shows that isotropy brings homogeneousness to 

kinetostatic performances, which is prefered for this application. 

The Biglide isotropy continuum is not studied here because it has few 

consequences on the VAF homogeneousness inside the u-workspace. See 

section 4.1 for more details on its location. 

3.4 Useful workspace orientation  

The 2-DOF Orthoglide u-workspace is first arbitrarily centered on the 

point S where the VAF are equal to 1 (Fig. 11). Changing the u- 
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workspace center position will be discussed in section 4. Two possible u-

workspace orientations are studied (Fig. 11) and it appears that 

orientation A has a bad ratio between the u-workspace and the C-

workspace, which yields a poor machine compactness because of the 

larger joint ranges.  

 
 

Figure 11. Two orientations for the 2-DOF Orthoglide u-workspace 

Furthermore in the case of orientation A, singular configurations may 

appear inside the C-workspace, which is not acceptable. Indeed, the u-

workspace is used for the machining task, but the C-workspace can be 

used for changing the tool position between two machining operations. 

Singularities are then strictly prohibited. Thus orientation B is selected 

for the 2-DOF Orthoglide.  

 
 

Figure 12. Orientation of the Biglide u-workspace 

Same comments about compactness and singularities avoidance can be 

made for the Biglide, thus orientation B is also chosen (Fig. 12).  

4.          Optimal useful workspace design 

This section explains how the u-workspace is designed: first the best 

workspace center locus is found by computing the VAF along the u-
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workspace sides. Then the u-workspace is sized so that the VAF are 

inside the boundaries defined in section 3.1.  

4.1 Workspace center locus 

To find the best u-workspace center locus, we shift the u-workspace 

perpendicularly to () and along () (Fig. 13) and the VAF are computed 

for each configuration.  

 
 

Figure 13. Looking for the best u-workspace center locus of 2-DOF Orthoglide 

In each case, VAF extrema are located along the sides PiPj: they start 

from 1 at point S, then they vary until they reach prescribed boundaries 

on VAF (Fig. 15, section 4.2). Computing the VAF (which analytical 

expressions i (Xp,Yp) have been obtained with Maple) along the 4 sides 

of the square takes only 5 sec. with a Pentium II class PC. 

As Biglide configurations are identical along every horizontal line 

orthogonal to () (Fig. 12), VAF are constant along these lines. 

Consequently, the workspace position will only be discussed along (). 

This corresponds to the u-workspace sizing process described in section 

4.2. 

4.2 Useful workspace size 

To size the u-workspace, one initial point is chosen on the locus found 

in section 4.1 then the u-workspace is grown until the VAF meet their 

limits (Fig. 14). It appears that the VAF limits are met at points P1 and 

P3 (Fig. 15). For the 2-DOF Orthoglide, the initial u-workspace center is 

point S. It appears that the first limit met is the upper one (i < 3), and 

that it is met by 2, simultaneously at points P1 and P3, therefore point S 

remains the final u-workspace center. We see on Fig. 15 that 1 does not 

vary much compared to 2. 
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Figure 14. Sizing the 2-DOF 

Orthoglide u-workspace 

Figure 15. VAF values of the 2-DOF 

Orthoglide inside its u-workspace  

For the Biglide, the two boundary lines are found (Fig. 16) and the 

distance between them define the diagonal of the u-workspace. 

 

 
 

Figure 16. Sizing the Biglide u-workspace 

4.3 Comparison of the mechanisms envelope size 

For a square u-workspace of 1m2, the design parameters (L0, L, ) 

computed by Maple are given in Tb. 1. Obviously, the 2-DOF Orthoglide 

is more compact than the Biglide, Wenger et al. 2001.  

Table 1. Design parameters for the Biglide and for the 2-DOF Orthoglide 

 

 L0 (m) L (m)  (m) Mechanism envelope (m2) 

Biglide 5.95 3.05 1.67 16.45 

2-DOF Orthoglide 2.08 1.06 1.18 3.91 

5.         Conclusions 

The design of two 2-DOF PKM dedicated to machining applications 

has been conducted in this paper, through a novel design method based 

P3 

P4 

P2 

P1 

2 

1 
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on the analysis of VAF. The procedure applied is reminded here: first, 

boundaries on VAF and u-workspace shape and size have to be defined 

depending on the application to achieve. Secondly, the u-workspace 

orientation and position have to be found inside the C-workspace for the 

largest ratio between u-workspace and C-workspace. Then the u-

workspace is grown in the found configuration until boundaries are met.  

In the case studied here, the u-workspace is square and the 

boundaries on VAF are 1/3 and 3. The orientation and position of the u-

workspace have also been chosen to avoid singularities inside the C-

workspace and to achieve best compactness. The machine size of each 

resulting design is used as a comparative criterion and the 2-DOF 

Orthoglide appeared to have smaller dimensions than the Biglide. 

Further comparisons between the mechanisms studied in this paper 

could deal with the way VAF vary inside the u-workspace. 
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