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Abstract: The orthoglide is a 3-DOF parallel mechanism de-
signed at IRCCyN for machining applications. It featuregéh
fixed parallel linear joints which are mounted orthogonalhd a
obile platform which moves in the Cartesiany-z space with
Cixed orientation. The orthoglide has been designed as iamct
Q\¢f a prescribed Cartesian workspace with prescribed kisteztiic
erformances. The interesting features of the orthogliceaa
gular Cartesian workspace shape, uniform performancedl i
girections and good compactness. A small-scale prototyfieeo
rthoglide under development is presented at the end opthis

ovper.
1
\_} Introduction

%arallel kinematic machines (PKM) are interesting altéviea

-—designs for high-speed machining applications and have bee
ﬂttracting the interest of more and more researchers and com
@panies. Since the first prototype presented in 1994 duriag th

>IMTS in Chicago by Gidding&Lewis (the Variax), many other
prototypes have appeared.

However, the existing PKM suffer from two major draw-

rion is not taking into account in the algorithmic methodsdis

for the optimization of the workspace volu [{996);
(T9%)).

The orthoglide optimization is conducted to defing-axis
PKM with the advantages a classical serial PPP machine toc
but not its drawbacks. Most industrial 3-axis machine-twle
a serial PPP kinematic architecture with orthogonal lifeaut
axes along the x, y and z directions. Thus, the motion of the
tool in any of these directions is linearly related to the immt
of one of the three actuated axes. Also, the performances a
constant in the most part of the Cartesian workspace, wisich i
a parallelepiped. The main drawback is inherent to the Iseriz
arrangement of the links, namely, poor dynamic performance

The orthoglide is a PKM with three fixed linear joints
mounted orthogonally. The mobile platform is connectecht t
linear joints by three articulated parallelograms and rsonehe
Cartesian x-y-z space with fixed orientation. Its worksspe
is close to a cube whose sides are parallel to the plapesgz
andzxz respectively. The optimization is conducted on the basis
of the size of a prescribed cubic workspace with boundedcvelo
ity and force transmission factors. Two criteria are usedte

acks, namely, a complex Cartesian workspace and highly non architecture optimization of the orthoglide, (i) the cafating

near input/output relations. For most PKM, the Jacobiaa m

ix which relates the joint rates to the output velocitiesnt
—fonstant and not isotropic. Consequently, the perforneafecg.

aximum speeds, forces accuracy and rigidity) vary comside
Cbly for different points in the Cartesian workspace anddiér
_Iferent directions at one given point. This is a serious demkb
(Tor machining applicationg (Kim | (19P7); Treiét al. | (1998);
Wengeret al.| (1999)). To be of interest for machining applica-
tions, a PKM should preserve good workspace propertiesigha
regular shape and acceptable kinetostatic performancasgh-
out. In milling applications, the machining conditions mues-

of the Jacobian matrix of the PKM (Golur al. (1989); Salis-
bury et al. (T982);[Angele$ [(1997)) and (ii) the manipulability
ellipsoid (Yoshikawa [(1985)).

The first criterion leads to an isotropic architecture and to
homogeneous performances in the workspace. The second ¢
terion permits to optimize the actuated joint limits and kink
lengths of the orthoglide with respect to the aforementicm®
criteria.

Next section presents the orthoglide. The kinematic equa
tions and the singularity analysis is detailed in SectiorS8c-

main constant along the whole tool path (Rehstejner (1999); tion 4 is devoted to the optimization process of the orthegli
Rehsteineet al. | (999)). In many research papers, this crite- and to the presentation of the prototype.




2 Description of the Orthoglide

Most existing PKM can be classified into two main families.
The PKM of the first family have fixed foot points and vari-
able length struts and are generally called “hexapods”. yThe
have a Stewart-Gought parallel kinematic architecture.nyia
prototypes and commercial hexapod PKM already exist like
the Variax-Hexacenter (Gidding&Lewis), the CMW300 (Com-
pagnie Mécanique des Vosges), the TORNADO 2000 (Hexel),
the MIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA
(Okuma), the hexapod G500 (GEODETIC). In this first family,
we find also hybrid architectures with a 2-axis wrist mounted
in series to a 3-DOF tripod positioning structure (the TRRJE
from Neos Robotics).

The second family of PKM has been more recently investi-
gated. In this category we find the HEXAGLIDE (ETH Zrich)
which features six parallel (also in the geometrical sease)
coplanar linear joints. The HexaM (Toyoda) is another exam-
ple with non coplanar linear joints. A 3-axis translatiomal-
sion of the hexaglide is the TRIGLIDE (Mikron), which has
three coplanar and parallel linear joints. Another 3-ards$-
lational PKM is proposed by the ISW Uni Stuttgart with the
LINAPOD. This PKM has three vertical (non coplanar) linear
joints. The URANE SX (Renault Automation) and the QUICK-
STEP (Krause & Mauser) are 3-axis PKM with three non copla-
nar horizontal linear joints. The SPRINT Z3 (DS Technology)
is a 3-axis PKM with one degree of translation and two degrees
of rotations. A hybrid parallel/serial PKM with three pdedin-
clined linear joints and a two-axis wrist is the GEORGE V (IFW
Uni Hanover).

PKMs of the second family are more interesting because the
actuators are fixed and thus the moving masses are lowenthan i
the hexapods and tripods.

The orthoglide presented in this article i3@xis transla-
tional parallel kinematic machine with variable foot paitaind
fixed length struts. Figurﬂ 1 shows the general kinematikiarc
tecture of the orthoglide.

The orthoglide has three parallBIR PaR identical chains
(whereP, R andPa stands for Prismatic, Revolute and Parallel-
ogram joint, respectively). The actuated joints are thedtor-
thogonal linear joints. These joints can be actuated by sefn
linear motors or by conventional rotary motors with balleses.
The output body is connected to the linear joints throughta se
of three parallelograms of equal lengths = B;C;, so that
it can move only in translation. The first linear joint axis is
parallel to thex-axis, the second one is parallel to thexis
and the third one is parallel to theaxis. In figure[ll, the base
points A;, A, and A; are fixed on the*” linear axis such that
A1Ay = A1A3 = AsAs, B; is at the intersection of the first
revolute axisi; and the second revolute ajisof thei*" paral-
lelogram, andC; is at the intersection of the last two revolute
joints of thei'” parallelogram. When eadB;C; is aligned with
the linear joint axisd; B; , the orthoglide is in an isotropic con-
figuration (see[ 4]4) and the tool center pafhis located at the

intersection of the three linear joint axes. In this confagion,
the base pointsl;, A, and A3 are equally distant fron¥. The
symmetric design and the simplicity of the kinematic chdaik
joints have only one degree of freedom, FE|g. 2) should cbutei
to lower the manufacturing cost of the orthoglide.

The orthoglide is free of singularities and self-collisson
The workspace has a regular, quasi-cubic shape. The ir
put/output equations are simple and the velocity trandoriss
factors are equal to one along the y and z direction at the
isotropic configuration, like in a serid® P P machine (Wenger

et al.(200)).

Figure 2: Leg kinematics

3 Kinematic Equations and Singularity Analysis

3.1 Static Equations

Let §; and3; denote the joint angles of the parallelogram about
the axed; andj;, respectively (fig[|2). Lepy, p2, p3 denote the
linear joint variablesp; = A; B;. In a reference frame (Q, y,

z) centered at the intersection of the three linear joint gmete
that the reference frame has been translated inlj]iig. 1 foe mor
legibility) , the position vectop of the tool center poinf can

be defined in three different ways:

a+ p1 + cos(f1) cos(B1)L + e
sin(6;) cos(B1)L
—sin(f1)L

(1a)



—sin(B2)L
a + pa + cos(b2) cos(B2)L + e
sin(fz) cos(B2)L
sin(f3) cos(B3) L
—sin(fs)L
| @+ p3 +cos(03) cos(fB3)L +e |

(1b)

(1c)

wherea = OA;, e = C; P and we recall thal = B;C;, p; =
AzBl

3.2 Kinematic Equations

Let p be referred to as the vector of actuated joint ratesfand

the velocity vector of poinP:
p=1pp2psl”, b=y

p can be written in three different ways by traversing the éhre

chainsA; B;C; P:

p =nip + (91i1 + 51j1) X (c1 —bq) (2a)
p = npp1 + (b2iz + F2j2) X (c2 — by) (2b)
p = n3p3 + (63i3 + F3j3) % (c3 — by) (2¢)

whereb; andc; are the position vectors of the poirfts andC;,
respectively, and; is the direction vector of the linear joints, for
i=1,23.

3.3 Singular configurations

We want to eliminate the two idle joint rates and 3; from
Egs. [Pa—c), which we do upon dot-multiplying Edg. (2a—c) by
c; — b;:

(c1 —=b)'p = (c1 —b1) nip (3a)
(c2—b2)"p = (ca—ba) naps (3b)
(cs—b3)"p = (c3—bs) nzps (3¢)

EquationsﬂSa—c) can now be cast in vector form, namely
Ap=Bp

whereA andB are the parallel and serial Jacobian matrices, re-
spectively:

[ (c1 —by)” ]

A= (cg—by)T (4a)
| (c3 —bg)”
'm0 0

B=|0 n 0 (4b)
L 0 0 3

with 0, = (Ci — bi)Tni fori = 1, 2, 3.

The parallel singularitieg (Chablat a). (1998)) occur when
the determinant of the matri vanishesi.e. whendet(A) = 0.
In such configurations, it is possible to move locally the iteob

platform whereas the actuated joints are locked. Theseising
larities are particularly undesirable because the straatannot
resist any force. Eq[|(4a) shows that the parallel singiigaroc-
cur when:

(Cl — bl) = a(02 — b2) + )\(C3 — b3)

that is when the point®,, C1, B2, C2, B3 andCs are copla-
nar (Fig.|]3). A particular case occurs when the lidkg™; are
parallel (Fig.ﬂl):

(Cl — bl) // (C2 — bg) and
(CQ — b2) // (Cg — bg) and
(c3 =bs) // (c1—by)

Figure 3: Parallel singular configuration whBpC; are coplanar

Figure 4: Parallel singular configuration wh&nC; are parallel

Serial singularities arise when the serial Jacobian mBtisx
no longer invertiblé.e. whendet(B) = 0. At a serial singularity
a direction exists along which any cartesian velocity carfro



produced. Eq[{4b) shows thatt(B) = 0 when for one leg,
(bz — al-) 1 (Ci — bl)

The optimization of the orthoglide will put the serial and
parallel singularities far away from the workspace (.4.4

4 Design and Performance Analysis of the Orthoglide

For usual machine tools, the Cartesian workspace is géyneral
given as a function of the size of a right-angled parallglegi
Due to the symmetrical architecture of the orthoglide, thet€&
sian workspace has a fairly regular shape in which it is jbesi
to include a cube whose sides are parallel to the plapegz
andzz respectively (Fig[]5).

The aim of this section is to define the dimensions of the or-
thoglide as a function of the siz&y o, kspace Of a prescribed cu-
bic workspace with bounded transmission factors. We firstvwsh
that the orthogonal arrangement of the linear joints idfjestby
the condition on the isotropy and manipulability: we warg th
orthoglide to have an isotropic configuration with velodcityd
force transmission factors equal to one. Then, we impogéttha
transmission factors remain under prescribed bounds dfimut
the prescribed workspace and we deduce the link dimensiwhs a
the joint limits.

4.1 Condition Number and Isotropic Configuration

The Jacobian matrix is said to be isotropic when its condlitio
number attains its minimum value of orffe (Ang¢Igs (1997)p Th
condition number of the Jacobian matrix is an interestimfpe
mance index which characterises the distortion of a unitural
der the transformation represented by the Jacobian mathe.
Jacobian matrix of a manipulator is used to relate (i) thatjoi
rates and the Cartesian velocities, and (ii) the static twathe
output link and the joint torques or forces. Thus, the caodit

Lller = byl = —[les — ball = —les — bl (6a)
m 72 13
(c1 — bl)T(CQ —bs)=0 (6b)
(ca —b2)"(c3 —b3) =0 (6c)
(cs — bg)T(Cl —b1)=0 (6d)

Equation Kba) states that the orientation between the dxtiseo
linear joint and the linkB;C; must be the same for each leg
Equations |ﬂ6b—d) mean that the linksC; must be orthogonal
to each other. Figur 6 shows the isotropic configuratiomef t
orthoglide. Note that the orthogonal arrangement of thealin
joints is not a consequence of the isotropy condition, bsteins
from the condition on the transmission factors at the igotro
configuration (see next section).

4.3 Manipulability Analysis

For a serialP P P machine tool, Fig[]7, a motion of an actuated
joint yields the same motion of the tool (the transmissiarides
are equal to one). In the purpose on our study, this factor i
calculated from linear joint to the end-effector.

For a parallel machine, these motions are generally no
equivalent. When the mechanism is close to a parallel singu
larity, a small joint rate can generate a large velocity eftiol.
This means that the positioning accuracy of the tool is lower
some directions for some configurations close to paralfgisi
larities because the encoder resolution is amplified. Iritiadl
a velocity amplification in one direction is equivalent taag of
rigidity in this direction.

The manipulability ellipsoids of the Jacobian matrix of
robotic manipulators was defined several years ago (Sajisbu
et al. ()). This concept has then been applied as a perfol
mance index to parallel manipulatofs (Kinf_(1p97)). Notet tha

number of the Jacobian matrix can be used to measure the uni-gthough the concept of manipulability is close to the cqed

formity of the distribution of the tool velocities and foc the
Cartesian workspace.

4.2 Isotropic Configuration of the Orthoglide

For parallel manipulators, it is more convenient to stuaydbn-
ditioning of the Jacobian matrix that is related to the igeer
transformationJ~!. WhenB is not singularJ~! is defined

by:
p=J"'p with J7' =B 'A
Thus:
(1/m1)(c1 —by)T
J7 =1 (1/m2)(ca —by)” (5)
(1/n3)(c3 — b3)T
with N = (Ci — bi)Tl’li fori = 1,2,3.

The matrixJ~! is isotropic whenJ—'J—T = 521343,
wherelsys is the3 x 3 identity matrix. Thus, we must have,

condition number, these two concepts do not provide the game
formation. The condition number quantifies the proximityato
isotropic configuration,e. where the manipulability ellipsoid is
a sphere, or, in other words, where the transmission faei@'s
the same in all the directions, but it does not inform aboet th
value of the transmission factor.

The manipulability ellipsoid of —! is used here for (i) justi-
fying the orthogonal orientation of the linear joints anjidefin-
ing the joint limits of the orthoglide such that the transsios
factors are bounded in the prescribed workspace.

We want the transmission factors to be equal to one at th
isotropic configuration like for & PP machine tool. This con-
dition implies that the three terms of Ecﬂ (6) must be equal tc
one:

1 1 1
—ller = bi[| = —[lca = ba|| = —|lezs = b3|]| =1  (7)
m 72 3

which implies tha{b; — a;) and(c; — b;) must be collinear for
each .



Workspace

Figure 6: Isotropic configuration of the Orthoglide mecamis

Since, at this isotropic configuration, link C; are orthog-
onal, Eq. [I7) implies that the linkd, B; are orthogonali,e. the
linear joints are orthogonal. For joint rates belonging tongt
ball, namely,||p|| < 1, the Cartesian velocities belong to an el-
lipsoid such that:

P I3 <1

The eigenvectors of matrikIJ7)~! define the direction of its
principal axes of this ellipsoid and the square roitsé, and
&3 of the eigenvalues ofJJ7)~! are the lengths of the afore-
mentioned principal axes. The velocity transmission fecto

Figure 7: Typical industrial-axis P P P machine-tool

the directions of the principal axes are definedihy= 1/¢,
Py = 1/& andys = 1/&3. To limit the variations of this factor
in the Cartesian workspace, we impose

(8)

throughout the workspace. This condition determines thie li
lengths and the linear joint limits. To simplify the problewe

Setl/]min = 1/1/1771@;3-

"/)min S 1/11 S 1/}max

4.4 Design of the Orthoglide for a Prescribed Workspace

The aim of this section is to define the position of the fixed
point A;, the link lengths. and the linear actuator rangkp
with respect to the limits on the transmission factors deffime
Eq. @3) and as a function of the size of the prescribed wortespa

LWorkspace-
Our process of optimization is divided into three steps.

1. First, we determine two pointg; and(@)- in the prescribed
cubic workspace such that if the transmission factor bound
are satisfied at these points, they are satisfied in all the pre
scribed workspace.

2. The pointg); and(@- are used to define the leg lengthas
function of the size of the prescribed cubic workspace.

3. Finally, the positions of the base poiatsand the linear ac-
tuator rangeA\ p are calculated such that the prescribed cu-
bic workspace is fully included in the Cartesian workspace
of the orthoglide.

Step 1: The transmission factors are equal to one at the
isotropic configuration. These factors increase or deeredien
the tool center point moves away from the isotropic configura
tion and they tend towards zero or infinity in the vicinity bkt
singularity surfaces. It turns out that the poifls and Q- de-
fined at the intersection of the workspace boundary with e a
r=y=z (figureﬂ%) are the closest ones to the singularity sur-
faces, as illustrated in figuﬂa 9 which shows on the same ®p vi
the orthoglide in the two parallel singular configuratiofidig-
ures [B and[]4. Thus, we may postulate the intuitive resultithat
the prescribed bounds on the transmission factors ardiedti



@1 and(@-, then these bounds are satisfied throughout the pre-

scribed cubic workspace. Although we could not derive a Bmp
formal proof, we have verified numerically that this reswtds.

S a

\Parallel singularities

X

Ay By '

i Workspace

........................................

Figure 9: Points); and@- and the singular configurations (top
view)

Step 2: At the isotropic configuration, the angl@sandg;
are equal to zero by definition. When the tool center péint
is atQ1, p1 = p2 = p3 = pmin (Fig. [1§). WhenP is atQ,
p1=p2 = p3 = pmax (Fig.[L]).

We posen,,.;, = 0 for more simplicity.

On the aXiS(Qng), ﬁl = ﬁg = ﬁg andf; = 6y = 03. We
note,

Bi=pr=p3=03 and 01 =0=103=10 ()

Upon substitution of Eq[]9) into Eqq] (1a—c), the anglean be

Figure 11:Q), configuration

written as a function of,
B = — arctan(sin(9)) (10)

Finally, by substituting Eq[(10) into E]](5), the inversedbian
matrix J~! can be simplified as follows

1 —tan(f) —tan(d)
J71=| —tan(9) 1 — tan(6)
—tan(f) —tan(0) 1

Thus, the square roots of the eigenvaluegldf’ ) ! are,

& =2tan(f) — 1| and & =& =|tan(f) + 1



And the three velocity transmission factors are,

1 1
e d g — —
Ztan(@) —1] 04 V2=V = ey

Figure depictg)y, 15 andz as function ofd along the axis
(Q1Q2).

1 (11)

Slﬁl V2 I§qtropic cpnﬁguration .
4 Il |
3 Wil |

(I
JANE VA

-180° 0°

Figure 12: The three velocity transmission factors as fonatf
6 along the axig(1Q2)

The joint limits ond are located on both sides of the isotropic
configuration. To calculate the joint limits, we solve thédw/-
ing inequations,

1 1
< < 12
T = Ptan(0) =] = Ve (122)
! < (12b)

<
Ymaz | tan(d) + 1|

where the value of),,,,, depends on the performance require-
ments. Two sets of joint limits[€g, Go,] and[fg, Gg,]) are
found. The detail of this calculation is given in the Appeadi
The position vectorg); and g2 of the points@; and Q-,
respectively, can be easily defined as a functionLc(Figs.

and[1]),
a =g g ql” and q=[g g )" (13a)
with
@ = —sin(Bg,)L and g2 = —sin(8g,)L (13b)
The size of the Cartesian workspace is,
Lworkspace = |q2 — q1
Thus, L can be defined as a function by orkspace-

I = LWorkspace
| Sin(ﬂ@z) - Sin(ﬂ@l )|

Step 3: We want to determine the positions of the base
points, namelyaz. When the tool center point P is @ defined
as the projection onto thgaxis of @1, p = 0 and, (Fig[1B)

OAs = 0Q) + Q1Co + CyAs

with OAs = a, OQ] = 1, Q|C2 = PCy = —e and since
pP= 0, CQAQ =(C9By — L. Thus,

a=q —e—L

A;
Bio‘ﬁflf‘o A

Figure 13: The poin® used for the determination of

Sinceq; is known from Egs.[(13a) and_(19k) can be cal-
culated as function of, L and,,4.

Now, we have to calculate the linear joint ran8ig = p.qx
(we have posed,;»=0).

When the tool center poinP is at Q2, p = pmas. The
equation of the direct kinematics (Eﬂ. (1b)) writtertat yields,

Pmaz = (42 — @ — COS(GQz) COS(ﬁQz)L —e€

4.5 Prototype

Using the aforementioned two kinetostatic criteria, a $sedle
prototype is under development in our laboratory. The meieha
cal structure is now finished, (FiEl14). The actuated joirsisd
for this prototype are rotative motors with ball screws. Pine-
scribed performances of the orthoglide prototype are aecCart
sian velocity of1.2m/s and an acceleration df4m/s? at the
isotropic point. The desired payloaddsg. The size of its pre-
scribed cubic workspace 20 x 200 x 200 mm. We limit the
variations of the velocity transmission factors as,

1/2 < <2 (14)

The resulting length of the three parallelograms is: 310 mm
and the resulting range of the linear jointsAisp = 257 mm.
Thus, the ratio of the range of the actuated joints to thedfitee
prescribed Cartesian workspaceris= 200/257 = 0.78. This
ratio is high compared to other mechanisms. The three \tgloci
transmission factors are depicted in Hig] 15. These factors
given in az-cross section of the Cartesian workspace passin
throughQ@) .



-1,0 00 1,0 20 «x

Figure 15: The three velocity transmission factors ig-eross
section of the Cartesian workspace passing thrapgh

5 Conclusions

Presented in this paper is a new kinematic structure of a PKN
dedicated to machining applications: the Orthoglide. Tteénm
feature of this PKM design is its trade-off between the papul
serial PPP architecture with homogeneous performancethand
parallel kinematic architecture with good dynamic perfares.
The workspace is simple, regular and free of singularities
and self-collisions. The Jacobian matrix is isotropic atamp
close to the center point of the workspace. Unlike most ixjst
PKMs, the workspace is fairly regular and the performances a
homogeneousinit. Thus, the entire workspace is reallyavai
for tool paths. In addition, the orthoglide is rather contpamm-
pared to most existing PKMs. A small-scale prototype of this
mechanism is under construction at IRCCyN. First experimen
with plastic parts will be conducted. The dynamic analysis h
not been reported in this article. A rigid dynamic model hesrb
proposed in|(Guegaet al. (2002) and an elastic dynamic model
is now being developed with the software package Meccano.
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6 Appendix

To calculate the joint limits oA and 3, we solve the followings
inequations, from the EqulZ,

[2tan(f) — 1| < Ymax (15a)
1
m < Ymaz (15b)
Thus, we note,
fi=12tan(f) — 1| fo =1/|2tan(f) — 1| (16a)

Figure ) showg; andf, as function of) along(Q1Q2). The
four roots offy, = fo in [—7 7] are,

s1 = —arctan ((1 + \/ﬁ)/él) (17a)
sp = —arctan(1/2) (17b)
s3 = 0 (17C)
s4 = arctan ((—1 + \/ﬁ)/él) (17d)
with
fils1) = (=34 VIT)/4 fi(s2) =2 (17€)
filss) =1 fa(sa) = 3+ V1T)/4 (179)

isotropic configuration

53 _
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0

Figure 16:f; and f> as function of) along(Q1Q2)

and

f1(0) =0 when 6= arctan(1/2)— 7 (18a)
f2(0) =0 when 6 = arctan(1/2)) (18b)

The isotropic configuration is located at the configuratidrere
0 = B = 0. The limits ond andg are in the vicinity of this
configuration. Along the axi§Q@Q-), the anglé is lower than
0 when it is close taQ,, and greater thaft when it is close to
Q1.

Tofindfg,, we study the functiong;, and f> which are both
decreasing of0 arctan(1/2)]. Thus, we have,

0g, = arctan <%) (19a)
wmaw -1

— —arct 19b

Bau arctan <\/5¢72mz R 1) ( )

In the same way, to fin€g,, we study the functiong; and f,
on [s; 0]. The three roots;, so andssz define two intervals. If
Ymae € [f1(s1) fi1(s2)], we have,

fg, = —arctan (%) (20a)
wma;ﬂ -1

— t 20b

B arctan (\/ngnax R 1) ( )

otherwise, if)max € [f1(s2) f1(s3)],

2
Bq, = arctan( Yrmaz — 1 ) (20d)

—1
fg, = —arctan (M) (20c)

\/wmaEQ - meaw + )



