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Abstract: The orthoglide is a 3-DOF parallel mechanism de-
signed at IRCCyN for machining applications. It features three
fixed parallel linear joints which are mounted orthogonallyand a
mobile platform which moves in the Cartesianx-y-z space with
fixed orientation. The orthoglide has been designed as function
of a prescribed Cartesian workspace with prescribed kinetostatic
performances. The interesting features of the orthoglide are a
regular Cartesian workspace shape, uniform performances in all
directions and good compactness. A small-scale prototype of the
orthoglide under development is presented at the end of thispa-
per.

1 Introduction

Parallel kinematic machines (PKM) are interesting alternative
designs for high-speed machining applications and have been
attracting the interest of more and more researchers and com-
panies. Since the first prototype presented in 1994 during the
IMTS in Chicago by Gidding&Lewis (the Variax), many other
prototypes have appeared.

However, the existing PKM suffer from two major draw-
backs, namely, a complex Cartesian workspace and highly non
linear input/output relations. For most PKM, the Jacobian ma-
trix which relates the joint rates to the output velocities is not
constant and not isotropic. Consequently, the performances (e.g.
maximum speeds, forces accuracy and rigidity) vary consider-
ably for different points in the Cartesian workspace and fordif-
ferent directions at one given point. This is a serious drawback
for machining applications (Kim (1997); Treibet al. (1998);
Wengeret al. (1999)). To be of interest for machining applica-
tions, a PKM should preserve good workspace properties, that is,
regular shape and acceptable kinetostatic performances through-
out. In milling applications, the machining conditions must re-
main constant along the whole tool path (Rehsteiner (1999);
Rehsteineret al. (1999)). In many research papers, this crite-

rion is not taking into account in the algorithmic methods used
for the optimization of the workspace volume (Luhet al. (1996);
Merlet (1999)).

The orthoglide optimization is conducted to define a3-axis
PKM with the advantages a classical serial PPP machine tool
but not its drawbacks. Most industrial 3-axis machine-toolhave
a serial PPP kinematic architecture with orthogonal linearjoint
axes along the x, y and z directions. Thus, the motion of the
tool in any of these directions is linearly related to the motion
of one of the three actuated axes. Also, the performances are
constant in the most part of the Cartesian workspace, which is
a parallelepiped. The main drawback is inherent to the serial
arrangement of the links, namely, poor dynamic performances.

The orthoglide is a PKM with three fixed linear joints
mounted orthogonally. The mobile platform is connected to the
linear joints by three articulated parallelograms and moves in the
Cartesian x-y-z space with fixed orientation. Its workspaceshape
is close to a cube whose sides are parallel to the planesxy, yz
andxz respectively. The optimization is conducted on the basis
of the size of a prescribed cubic workspace with bounded veloc-
ity and force transmission factors. Two criteria are used for the
architecture optimization of the orthoglide, (i) the conditioning
of the Jacobian matrix of the PKM (Golubet al. (1989); Salis-
bury et al. (1982); Angeles (1997)) and (ii) the manipulability
ellipsoid (Yoshikawa (1985)).

The first criterion leads to an isotropic architecture and to
homogeneous performances in the workspace. The second cri-
terion permits to optimize the actuated joint limits and thelink
lengths of the orthoglide with respect to the aforementioned two
criteria.

Next section presents the orthoglide. The kinematic equa-
tions and the singularity analysis is detailed in Section 3.Sec-
tion 4 is devoted to the optimization process of the orthoglide
and to the presentation of the prototype.
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2 Description of the Orthoglide

Most existing PKM can be classified into two main families.
The PKM of the first family have fixed foot points and vari-
able length struts and are generally called “hexapods”. They
have a Stewart-Gought parallel kinematic architecture. Many
prototypes and commercial hexapod PKM already exist like
the Variax-Hexacenter (Gidding&Lewis), the CMW300 (Com-
pagnie Mécanique des Vosges), the TORNADO 2000 (Hexel),
the MIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA
(Okuma), the hexapod G500 (GEODETIC). In this first family,
we find also hybrid architectures with a 2-axis wrist mounted
in series to a 3-DOF tripod positioning structure (the TRICEPT
from Neos Robotics).

The second family of PKM has been more recently investi-
gated. In this category we find the HEXAGLIDE (ETH Zürich)
which features six parallel (also in the geometrical sense)and
coplanar linear joints. The HexaM (Toyoda) is another exam-
ple with non coplanar linear joints. A 3-axis translationalver-
sion of the hexaglide is the TRIGLIDE (Mikron), which has
three coplanar and parallel linear joints. Another 3-axis trans-
lational PKM is proposed by the ISW Uni Stuttgart with the
LINAPOD. This PKM has three vertical (non coplanar) linear
joints. The URANE SX (Renault Automation) and the QUICK-
STEP (Krause & Mauser) are 3-axis PKM with three non copla-
nar horizontal linear joints. The SPRINT Z3 (DS Technology)
is a 3-axis PKM with one degree of translation and two degrees
of rotations. A hybrid parallel/serial PKM with three parallel in-
clined linear joints and a two-axis wrist is the GEORGE V (IFW
Uni Hanover).

PKMs of the second family are more interesting because the
actuators are fixed and thus the moving masses are lower than in
the hexapods and tripods.

The orthoglide presented in this article is a3-axis transla-
tional parallel kinematic machine with variable foot points and
fixed length struts. Figure 1 shows the general kinematic archi-
tecture of the orthoglide.

The orthoglide has three parallelPRPaR identical chains
(whereP ,R andPa stands for Prismatic, Revolute and Parallel-
ogram joint, respectively). The actuated joints are the three or-
thogonal linear joints. These joints can be actuated by means of
linear motors or by conventional rotary motors with ball screws.
The output body is connected to the linear joints through a set
of three parallelograms of equal lengthsL = BiCi, so that
it can move only in translation. The first linear joint axis is
parallel to thex-axis, the second one is parallel to they-axis
and the third one is parallel to thez-axis. In figure 1, the base
pointsA1, A2 andA3 are fixed on theith linear axis such that
A1A2 = A1A3 = A2A3, Bi is at the intersection of the first
revolute axisii and the second revolute axisji of the ith paral-
lelogram, andCi is at the intersection of the last two revolute
joints of theith parallelogram. When eachBiCi is aligned with
the linear joint axisAiBi , the orthoglide is in an isotropic con-
figuration (see 4.4) and the tool center pointP is located at the

intersection of the three linear joint axes. In this configuration,
the base pointsA1, A2 andA3 are equally distant fromP . The
symmetric design and the simplicity of the kinematic chains(all
joints have only one degree of freedom, Fig. 2) should contribute
to lower the manufacturing cost of the orthoglide.

The orthoglide is free of singularities and self-collisions.
The workspace has a regular, quasi-cubic shape. The in-
put/output equations are simple and the velocity transmission
factors are equal to one along thex, y and z direction at the
isotropic configuration, like in a serialPPP machine (Wenger
et al.(2000)).
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Figure 1: Orthoglide kinematic architecture
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Figure 2: Leg kinematics

3 Kinematic Equations and Singularity Analysis

3.1 Static Equations

Let θi andβi denote the joint angles of the parallelogram about
the axesii andji, respectively (fig. 2). Letρ1, ρ2, ρ3 denote the
linear joint variables,ρi = AiBi. In a reference frame (O,x, y,
z) centered at the intersection of the three linear joint axes(note
that the reference frame has been translated in Fig. 1 for more
legibility) , the position vectorp of the tool center pointP can
be defined in three different ways:

p =





a+ ρ1 + cos(θ1) cos(β1)L+ e
sin(θ1) cos(β1)L

− sin(β1)L



 (1a)
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p =





− sin(β2)L
a+ ρ2 + cos(θ2) cos(β2)L+ e

sin(θ2) cos(β2)L



 (1b)

p =





sin(θ3) cos(β3)L
− sin(β3)L

a+ ρ3 + cos(θ3) cos(β3)L+ e



 (1c)

wherea = OAi, e = CiP and we recall thatL = BiCi, ρi =
AiBi.

3.2 Kinematic Equations

Let ρ̇ be referred to as the vector of actuated joint rates andṗ as
the velocity vector of pointP :

ρ̇ = [ρ̇1 ρ̇2 ρ̇3]
T , ṗ = [ẋ ẏ ż]T

ṗ can be written in three different ways by traversing the three
chainsAiBiCiP :

ṗ = n1ρ̇1 + (θ̇1i1 + β̇1j1) × (c1 − b1) (2a)

ṗ = n2ρ̇1 + (θ̇2i2 + β̇2j2) × (c2 − b2) (2b)

ṗ = n3ρ̇3 + (θ̇3i3 + β̇3j3) × (c3 − b3) (2c)

wherebi andci are the position vectors of the pointsBi andCi,
respectively, andni is the direction vector of the linear joints, for
i = 1, 2,3.

3.3 Singular configurations

We want to eliminate the two idle joint rateṡθi and β̇i from
Eqs. (2a–c), which we do upon dot-multiplying Eqs. (2a–c) by
ci − bi:

(c1 − b1)
T ṗ = (c1 − b1)

T n1ρ̇1 (3a)

(c2 − b2)
T ṗ = (c2 − b2)

T n2ρ̇2 (3b)

(c3 − b3)
T ṗ = (c3 − b3)

T n3ρ̇3 (3c)

Equations (3a–c) can now be cast in vector form, namely

Aṗ = Bρ̇

whereA andB are the parallel and serial Jacobian matrices, re-
spectively:

A =





(c1 − b1)
T

(c2 − b2)
T

(c3 − b3)
T



 (4a)

B =





η1 0 0
0 η2 0
0 0 η3



 (4b)

with ηi = (ci − bi)
T ni for i = 1, 2, 3.

The parallel singularities (Chablatet al.(1998)) occur when
the determinant of the matrixA vanishes,i.e. whendet(A) = 0.
In such configurations, it is possible to move locally the mobile

platform whereas the actuated joints are locked. These singu-
larities are particularly undesirable because the structure cannot
resist any force. Eq. (4a) shows that the parallel singularities oc-
cur when:

(c1 − b1) = α(c2 − b2) + λ(c3 − b3)

that is when the pointsB1, C1, B2, C2, B3 andC3 are copla-
nar (Fig. 3). A particular case occurs when the linksBiCi are
parallel (Fig. 4):

(c1 − b1) // (c2 − b2) and

(c2 − b2) // (c3 − b3) and

(c3 − b3) // (c1 − b1)

x

z
y

Figure 3: Parallel singular configuration whenBiCi are coplanar

x

z

y

Figure 4: Parallel singular configuration whenBiCi are parallel

Serial singularities arise when the serial Jacobian matrixB is
no longer invertiblei.e. whendet(B) = 0. At a serial singularity
a direction exists along which any cartesian velocity cannot be
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produced. Eq. (4b) shows thatdet(B) = 0 when for one legi,
(bi − ai) ⊥ (ci − bi).

The optimization of the orthoglide will put the serial and
parallel singularities far away from the workspace (see 4.4).

4 Design and Performance Analysis of the Orthoglide

For usual machine tools, the Cartesian workspace is generally
given as a function of the size of a right-angled parallelepiped.
Due to the symmetrical architecture of the orthoglide, the Carte-
sian workspace has a fairly regular shape in which it is possible
to include a cube whose sides are parallel to the planesxy, yz
andxz respectively (Fig. 5).

The aim of this section is to define the dimensions of the or-
thoglide as a function of the sizeLWorkspace of a prescribed cu-
bic workspace with bounded transmission factors. We first show
that the orthogonal arrangement of the linear joints is justified by
the condition on the isotropy and manipulability: we want the
orthoglide to have an isotropic configuration with velocityand
force transmission factors equal to one. Then, we impose that the
transmission factors remain under prescribed bounds throughout
the prescribed workspace and we deduce the link dimensions and
the joint limits.

4.1 Condition Number and Isotropic Configuration

The Jacobian matrix is said to be isotropic when its condition
number attains its minimum value of one (Angeles (1997)). The
condition number of the Jacobian matrix is an interesting perfor-
mance index which characterises the distortion of a unit ball un-
der the transformation represented by the Jacobian matrix.The
Jacobian matrix of a manipulator is used to relate (i) the joint
rates and the Cartesian velocities, and (ii) the static loadon the
output link and the joint torques or forces. Thus, the condition
number of the Jacobian matrix can be used to measure the uni-
formity of the distribution of the tool velocities and forces in the
Cartesian workspace.

4.2 Isotropic Configuration of the Orthoglide

For parallel manipulators, it is more convenient to study the con-
ditioning of the Jacobian matrix that is related to the inverse
transformation,J−1. When B is not singular,J−1 is defined
by:

ρ̇ = J−1ṗ with J−1 = B−1A

Thus:

J−1 =





(1/η1)(c1 − b1)
T

(1/η2)(c2 − b2)
T

(1/η3)(c3 − b3)
T



 (5)

with ηi = (ci − bi)
T ni for i = 1, 2, 3.

The matrix J−1 is isotropic whenJ−1J−T = σ213×3,
where13×3 is the3 × 3 identity matrix. Thus, we must have,

1

η1
||c1 − b1|| =

1

η2
||c2 − b2|| =

1

η3
||c3 − b3|| (6a)

(c1 − b1)
T (c2 − b2) = 0 (6b)

(c2 − b2)
T (c3 − b3) = 0 (6c)

(c3 − b3)
T (c1 − b1) = 0 (6d)

Equation (6a) states that the orientation between the axis of the
linear joint and the linkBiCi must be the same for each legi.
Equations (6b–d) mean that the linksBiCi must be orthogonal
to each other. Figure 6 shows the isotropic configuration of the
orthoglide. Note that the orthogonal arrangement of the linear
joints is not a consequence of the isotropy condition, but itstems
from the condition on the transmission factors at the isotropic
configuration (see next section).

4.3 Manipulability Analysis

For a serialPPP machine tool, Fig. 7, a motion of an actuated
joint yields the same motion of the tool (the transmission factors
are equal to one). In the purpose on our study, this factor is
calculated from linear joint to the end-effector.

For a parallel machine, these motions are generally not
equivalent. When the mechanism is close to a parallel singu-
larity, a small joint rate can generate a large velocity of the tool.
This means that the positioning accuracy of the tool is lowerin
some directions for some configurations close to parallel singu-
larities because the encoder resolution is amplified. In addition,
a velocity amplification in one direction is equivalent to a loss of
rigidity in this direction.

The manipulability ellipsoids of the Jacobian matrix of
robotic manipulators was defined several years ago (Salisbury
et al. (1982)). This concept has then been applied as a perfor-
mance index to parallel manipulators (Kim (1997)). Note that,
although the concept of manipulability is close to the concept of
condition number, these two concepts do not provide the samein-
formation. The condition number quantifies the proximity toan
isotropic configuration,i.e. where the manipulability ellipsoid is
a sphere, or, in other words, where the transmission factorsare
the same in all the directions, but it does not inform about the
value of the transmission factor.

The manipulability ellipsoid ofJ−1 is used here for (i) justi-
fying the orthogonal orientation of the linear joints and (ii) defin-
ing the joint limits of the orthoglide such that the transmission
factors are bounded in the prescribed workspace.

We want the transmission factors to be equal to one at the
isotropic configuration like for aPPP machine tool. This con-
dition implies that the three terms of Eq. (6) must be equal to
one:

1

η1
||c1 − b1|| =

1

η2
||c2 − b2|| =

1

η3
||c3 − b3|| = 1 (7)

which implies that(bi − ai) and(ci − bi) must be collinear for
each i.
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x

z

y LWorkspace

Figure 5: Cartesian workspace

x

z

y

Figure 6: Isotropic configuration of the Orthoglide mecanism

Since, at this isotropic configuration, linksBiCi are orthog-
onal, Eq. (7) implies that the linksAiBi are orthogonal,i.e. the
linear joints are orthogonal. For joint rates belonging to aunit
ball, namely,||ρ̇|| ≤ 1, the Cartesian velocities belong to an el-
lipsoid such that:

ṗ
T (JJT )ṗ ≤ 1

The eigenvectors of matrix(JJT )−1 define the direction of its
principal axes of this ellipsoid and the square rootsξ1, ξ2 and
ξ3 of the eigenvalues of(JJT )−1 are the lengths of the afore-
mentioned principal axes. The velocity transmission factors in

X

Z

Y

Figure 7: Typical industrial3-axisPPP machine-tool

the directions of the principal axes are defined byψ1 = 1/ξ1,
ψ2 = 1/ξ2 andψ3 = 1/ξ3. To limit the variations of this factor
in the Cartesian workspace, we impose

ψmin ≤ ψi ≤ ψmax (8)

throughout the workspace. This condition determines the link
lengths and the linear joint limits. To simplify the problem, we
setψmin = 1/ψmax.

4.4 Design of the Orthoglide for a Prescribed Workspace

The aim of this section is to define the position of the fixed
point Ai, the link lengthsL and the linear actuator range∆ρ
with respect to the limits on the transmission factors defined in
Eq. (8) and as a function of the size of the prescribed workspace
LWorkspace.

Our process of optimization is divided into three steps.

1. First, we determine two pointsQ1 andQ2 in the prescribed
cubic workspace such that if the transmission factor bounds
are satisfied at these points, they are satisfied in all the pre-
scribed workspace.

2. The pointsQ1 andQ2 are used to define the leg lengthL as
function of the size of the prescribed cubic workspace.

3. Finally, the positions of the base pointsAi and the linear ac-
tuator range∆ρ are calculated such that the prescribed cu-
bic workspace is fully included in the Cartesian workspace
of the orthoglide.

Step 1: The transmission factors are equal to one at the
isotropic configuration. These factors increase or decrease when
the tool center point moves away from the isotropic configura-
tion and they tend towards zero or infinity in the vicinity of the
singularity surfaces. It turns out that the pointsQ1 andQ2 de-
fined at the intersection of the workspace boundary with the axis
x = y = z (figure 8) are the closest ones to the singularity sur-
faces, as illustrated in figure 9 which shows on the same top view
the orthoglide in the two parallel singular configurations of fig-
ures 3 and 4. Thus, we may postulate the intuitive result thatif
the prescribed bounds on the transmission factors are satisfied at
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Q1 andQ2, then these bounds are satisfied throughout the pre-
scribed cubic workspace. Although we could not derive a simple
formal proof, we have verified numerically that this result holds.

x

z

y

Q2

Q1

Figure 8: PointsQ1 andQ2

x

y

B1

B2

A1

A2

C1

C2

C’1

C’2

B’1

B’2

P

P’

Parallel singularities

Parallel
singularities

Workspace

Q1

Q2

Serial  singularities

Figure 9: PointsQ1 andQ2 and the singular configurations (top
view)

Step 2: At the isotropic configuration, the anglesθi andβi

are equal to zero by definition. When the tool center pointP
is atQ1, ρ1 = ρ2 = ρ3 = ρmin (Fig. 10). WhenP is atQ2,
ρ1 = ρ2 = ρ3 = ρmax (Fig. 11).

We poseρmin = 0 for more simplicity.
On the axis(Q1Q2), β1 = β2 = β3 andθ1 = θ2 = θ3. We

note,

β1 = β2 = β3 = β and θ1 = θ2 = θ3 = θ (9)

Upon substitution of Eq. (9) into Eqs. (1a–c), the angleβ can be

C1

C2

x

y Q2

B1

B2

A1

A2

Q1

Figure 10:Q1 configuration

x

y Q2

B1

C1

B2

A2

C2

Q1

A1

Dr

Dr

Figure 11:Q2 configuration

written as a function ofθ,

β = − arctan(sin(θ)) (10)

Finally, by substituting Eq. (10) into Eq. (5), the inverse Jacobian
matrixJ−1 can be simplified as follows

J−1 =





1 − tan(θ) − tan(θ)
− tan(θ) 1 − tan(θ)
− tan(θ) − tan(θ) 1





Thus, the square roots of the eigenvalues of(JJT )−1 are,

ξ1 = |2 tan(θ) − 1| and ξ2 = ξ3 = | tan(θ) + 1|
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And the three velocity transmission factors are,

ψ1 =
1

|2 tan(θ) − 1| and ψ2 = ψ3 =
1

| tan(θ) + 1| (11)

Figure 12 depictsψ1, ψ2 andψ3 as function ofθ along the axis
(Q1Q2).

0

1

2

3

4

5

-180°

y1 y2

q

0° 180°

Q2 Q1

Isotropic configuration

Figure 12: The three velocity transmission factors as function of
θ along the axis(Q1Q2)

The joint limits onθ are located on both sides of the isotropic
configuration. To calculate the joint limits, we solve the follow-
ing inequations,

1

ψmax

≤ 1

|2 tan(θ) − 1| ≤ ψmax (12a)

1

ψmax

≤ 1

| tan(θ) + 1| ≤ ψmax (12b)

where the value ofψmax depends on the performance require-
ments. Two sets of joint limits ([θQ1

βQ1
] and [θQ2

βQ2
]) are

found. The detail of this calculation is given in the Appendix.
The position vectorsq1 andq2 of the pointsQ1 andQ2,

respectively, can be easily defined as a function ofL (Figs. 10
and 11),

q1 = [q1 q1 q1]
T and q2 = [q2 q2 q2]

T (13a)

with

q1 = − sin(βQ1
)L and q2 = − sin(βQ2

)L (13b)

The size of the Cartesian workspace is,

LWorkspace = |q2 − q1|
Thus,L can be defined as a function ofLWorkspace.

L =
LWorkspace

| sin(βQ2
) − sin(βQ1

)|
Step 3: We want to determine the positions of the base

points, namely,a. When the tool center point P is atQ′

1
defined

as the projection onto they-axis ofQ1, ρ = 0 and, (Fig. 13)

OA2 = OQ′

1
+Q′

1
C2 + C2A2

with OA2 = a, OQ′

1
= q1, Q′

1
C2 = PC2 = −e and since

ρ = 0, C2A2 = C2B2 − L. Thus,

a = q1 − e− L

C1

x

y
Q2

B1

B2

A1

A2

Q’1

a

C2

Q1

e

L

Figure 13: The pointQ′

1 used for the determination ofa

Sinceq1 is known from Eqs. (13a) and (19b),a can be cal-
culated as function ofe, L andψmax.

Now, we have to calculate the linear joint range∆ρ = ρmax

(we have posedρmin=0).
When the tool center pointP is atQ2, ρ = ρmax. The

equation of the direct kinematics (Eq. (1b)) written atQ2 yields,

ρmax = q2 − a− cos(θQ2
) cos(βQ2

)L− e

4.5 Prototype

Using the aforementioned two kinetostatic criteria, a small-scale
prototype is under development in our laboratory. The mechani-
cal structure is now finished, (Fig. 14). The actuated jointsused
for this prototype are rotative motors with ball screws. Thepre-
scribed performances of the orthoglide prototype are a Carte-
sian velocity of1.2m/s and an acceleration of14m/s2 at the
isotropic point. The desired payload is4kg. The size of its pre-
scribed cubic workspace is200 × 200 × 200 mm. We limit the
variations of the velocity transmission factors as,

1/2 ≤ ψi ≤ 2 (14)

The resulting length of the three parallelograms isL = 310mm
and the resulting range of the linear joints is∆ ρ = 257 mm.
Thus, the ratio of the range of the actuated joints to the sizeof the
prescribed Cartesian workspace isr = 200/257 = 0.78. This
ratio is high compared to other mechanisms. The three velocity
transmission factors are depicted in Fig. 15. These factorsare
given in az-cross section of the Cartesian workspace passing
throughQ1.
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Figure 14: The orthoglide prototype
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Figure 15: The three velocity transmission factors in az-cross
section of the Cartesian workspace passing throughQ1

5 Conclusions

Presented in this paper is a new kinematic structure of a PKM
dedicated to machining applications: the Orthoglide. The main
feature of this PKM design is its trade-off between the popular
serial PPP architecture with homogeneous performances andthe
parallel kinematic architecture with good dynamic performances.

The workspace is simple, regular and free of singularities
and self-collisions. The Jacobian matrix is isotropic at a point
close to the center point of the workspace. Unlike most existing
PKMs, the workspace is fairly regular and the performances are
homogeneous in it. Thus, the entire workspace is really available
for tool paths. In addition, the orthoglide is rather compact com-
pared to most existing PKMs. A small-scale prototype of this
mechanism is under construction at IRCCyN. First experiments
with plastic parts will be conducted. The dynamic analysis has
not been reported in this article. A rigid dynamic model has been
proposed in (Gueganet al.(2002) and an elastic dynamic model
is now being developed with the software package Meccano.
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6 Appendix

To calculate the joint limits onθ andβ, we solve the followings
inequations, from the Eqs. 12,

|2 tan(θ) − 1| ≤ ψmax (15a)

1

|2 tan(θ) − 1| ≤ ψmax (15b)

Thus, we note,

f1 = |2 tan(θ) − 1| f2 = 1/|2 tan(θ) − 1| (16a)

Figure (16) showsf1 andf2 as function ofθ along(Q1Q2). The
four roots off1 = f2 in [−π π] are,

s1 = − arctan
(

(1 +
√

17)/4
)

(17a)

s2 = − arctan (1/2) (17b)

s3 = 0 (17c)

s4 = arctan
(

(−1 +
√

17)/4
)

(17d)

with

f1(s1) = (−3 +
√

17)/4 f1(s2) = 2 (17e)

f1(s3) = 1 f1(s4) = (3 +
√

17)/4 (17f)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

q

f1

f2
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s1 s2 s3 s4

Figure 16:f1 andf2 as function ofθ along(Q1Q2)

and

f1(θ) = 0 when θ = arctan(1/2)− π (18a)

f2(θ) = 0 when θ = arctan(1/2)) (18b)

The isotropic configuration is located at the configuration where
θ = β = 0. The limits onθ andβ are in the vicinity of this
configuration. Along the axis(Q1Q2), the angleθ is lower than
0 when it is close toQ2, and greater than0 when it is close to
Q1.

To findθQ1
, we study the functionsf1 andf2 which are both

decreasing on[0 arctan(1/2)]. Thus, we have,

θQ1
= arctan

(

ψmax − 1

2ψmax

)

(19a)

βQ1
= − arctan

(

ψmax − 1
√

5ψ2
max − 2ψmax + 1

)

(19b)

In the same way, to findθQ2
, we study the functionsf1 andf2

on [s1 0]. The three rootss1, s2 ands3 define two intervals. If
ψmax ∈ [f1(s1) f1(s2)], we have,

θQ2
= − arctan

(

ψmax − 1

ψmax

)

(20a)

βQ2
= arctan

(

ψmax − 1
√

2ψ2
max − 2ψmax + 1

)

(20b)

otherwise, ifψmax ∈ [f1(s2) f1(s3)],

θQ2
= − arctan

(

ψmax − 1

2

)

(20c)

βQ2
= arctan

(

ψmax − 1
√

ψmax
2 − 2ψmax + 5

)

(20d)
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