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Abstract : 

The Orthoglide project aims at designing a new 3-axis machine tool for High Speed Machining. Basis 

kinematics is a 3 degree-of-freedom translational parallel mechanism. This basis was submitted to isotropic and 

manipulability constraints that allowed the optmization of its kinematic architecture and legs architecture. Thus, 

several leg morphologies are convenient for the chosen mechanism. We explain the process that led us to the 

choice we made for the Orthoglide. A static study is presented to show how singular configurations of the legs 

can cause stiffness problems.  

Key Words : Parallel Machine tool Design, Isotropic Design, Singularity 

1 Introduction  

1.1 Serial machine tools problems 

Most industrial machine tools have a serial kinematic architecture, which means that each 

axis has to carry the following one, including its actuators and joints (Fig. 1). High Speed 

Machining (HSM) highlights some drawbacks of such architectures: heavy moving parts 
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require from the machine structure high stiffness to limit bending problems that lower the 

machine accuracy, and limit the dynamic performances of the feed axes. 
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Fig. 1 : A serial 3-axis Machine Tool 

1.2 Parallel Kinematic Machines (PKMs) are alternative machine tool designs for High 

Speed Machining 

In a PKM, the tool is connected to the base through several kinematic chains or legs that 

are mounted in parallel. Figure 2 shows a 3-degree-of-freedom (3-DOF) planar mechanism ( 2 

translations, 1 rotation) mounted on 3 RPR legs (Revolute, Prismatic and Revolute joints). 
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Fig. 2 : A 3-RPR parallel mechanism 

 

PKMs attract more and more researchers and companies, because they are claimed to offer 

several advantages over their serial counterparts, like high structural rigidity and high 

dynamic capacities. Indeed, the parallel kinematic arrangement of the links provides higher 

stiffness and lower moving masses that reduce inertia effects. Thus, PKMs have better 

dynamic performances, which is interesting for HSM. Most existing PKMs can be classified 

into two main families: (i) PKMs with fixed foot points and variable strut lengths and (ii) 

PKM with fixed length struts and moveable foot points.  

The first family is mostly composed of the so-called hexapod machines which, in fact, 

feature a Gough-Stewart platform architecture. Many prototypes and commercial hexapod 

PKMs already exist like the VARIAX-Hexacenter (Gidding&Lewis), the CMW300 

(Compagnie Mécanique des Vosges), the TORNADO 2000 (Hexel), the MIKROMAT 6X 

(Mikromat/IWU), the hexapod OKUMA (Okuma), the hexapod G500 (GEODETIC). In this 

first family, we find also hybrid architectures : the TRICEPT 845 from Neos Robotics which 

is a 2-axis wrist serially mounted with a 3-DOF parallel structure, and a 3-DOF hybrid high 

speed machine tool designed by LARAMA and PCI [1].  

The second family (ii) of PKM has been more recently investigated. In this category we 

find the HEXAGLIDE (ETH Zürich) which features six parallel (also in the geometrical 

sense) and coplanar linear joints. The HexaM (Toyota) is another example with non coplanar 
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linear joints. A 3-axis translational version of the hexaglide is the TRIGLIDE (Mikron), 

which has three coplanar and parallel linear joints. Another 3-axis translational PKM is 

proposed by the ISW Uni Stuttgart with the LINAPOD. This PKM has with three vertical 

(non coplanar) linear joints. The URANE SX (Renault Automation Comau) and the 

QUICKSTEP (Krause & Mauser) are 3-axis PKM with three non coplanar horizontal linear 

joints. A hybrid parallel/serial PKM with three parallel inclined linear joints and a two-axis 

wrist is the GEORGE V (IFW Uni Hanover). H4, a family of 4-DOF parallel robots was 

presented in [2]. 

Most PKMs suffer from the presence of singular configurations in their workspace that 

limit the machine performances. 

1.3 Singular configurations 

The singular configurations (also called singularities) of a PKM may appear inside the 

workspace or at its boundaries. There are two main types of singularities [3]. A configuration 

where a finite tool velocity requires infinite joint rates is called a serial singularity or a type 1 

singularity. A configuration where the tool cannot resist any effort and in turn, becomes 

uncontrollable, is called a parallel singularity or type 2 singularity. Parallel singularities are 

particularly undesirable because they cause the following problems: 

- a high increase of forces in joints and links, that may damage the structure,  

- a decrease of the mechanism stiffness that can lead to uncontrolled motions of the tool 

though actuated joints are locked. 

Figures 3a and 3b show the singularities for a “biglide” mechanism, which is a 2-PRR 

mechanism with prismatic actuated joints. Its legs are made of fixed length struts with gliding 

node points. In Fig. 3a, we have a serial singularity. The velocity amplification factor along 

the vertical direction is null and the force amplification factor is infinite. 

Figure 3b shows a parallel singularity. The velocity amplification factor is infinite along 

the vertical direction and the force amplification factor is close to zero. Note that a high 

velocity amplification factor is not necessarily desirable because the actuator encoder 

resolution is amplified and thus the accuracy is lower. 
P

 

 

P

 

Fig. 3a : A serial singularity Fig. 3b : A parallel singularity 

1.4 The Orthoglide project 

The Orthoglide project aims at building a prototype of a parallel kinematic machine tool 

for HSM with a kinematic behaviour similar to the one of a classical serial 3-axis machine. 

First, we present some research works on the structural synthesis of 3-DOF translational 

parallel mechanisms that helped our choice of the Orthoglide architecture. Then we show how 

isotropic and manipulability constraints led to modifications of the basis architecture as well 

as of the legs architecture. The study of forces inside the legs concludes this study. 
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2 Choice of a suitable kinematic architecture 

2.1 Design of a 3-DOF translational parallel mechanism 

Many studies have been conducted on the design of parallel mechanisms. Hervé proposed 

in [4] a tool for the synthesis of parallel robots based on the mathematical group theory. In 

[5], this tool was applied to the design of a 3-DOF translational parallel manipulator called Y-

STAR (Fig. 4). The author in [6] explored tools for the design and optimization of parallel 

mechanisms with constrained DOFs. Recently, Kong proposed in [7] the generation of 

translational parallel manipulators based on screw theory [8]. 

 
Fig. 4 : The Y-Star manipulator 

2.2 A convenient joints architecture 

A convenient PKM architecture for HSM has to respect some technological constraints : 

- Only 1-DOF in kinematic links, for a simple design and a low cost. 

- Actuators fixed on the frame, to reduce to the maximum inertia effects. 

- Actuated prismatic joints to enable the use of linear motors. 

- Similar legs, for a low cost. 

The Y-Star robot, with helical actuated joints replaced by prismatic actuated joints 

followed by passive revolute joints is a convenient choice regarded to these constraints. We 

chose it as the basis mechanism of the Orthoglide project.  

The structural synthesis is now achieved : an ordered set of joints is available for each leg. 

We now have to adjust it regarded to isotropic and manipulability constraints. 

3. Optimization of the leg architecture 

3.1 Conditioning index and manipulability 

For a serial mechanism, the velocity and force transmission ratios are constant in the 

workspace. For a parallel mechanism, in contrast, these ratios may vary significantly in the 

workspace because the displacement of the tool is not linearly related to the displacement of 

the actuators. In some parts of the workspace, the maximal velocities and forces measured at 

the tool may differ significantly from the maximal velocities and forces that the actuators can 

produce. This is particularly true in the vicinity of singularities. At a singularity, the velocity, 

accuracy and force ratios reach extreme values.  
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Let ρ  be referred to as the vector of actuated joint rates and p  as the velocity vector of  

point P. ρ  and p  are related through the Jacobian matrix J as follows : 

ρp   J  
J also relates the static tool efforts to the actuator efforts. For parallel manipulators, it is more 

convenient to study the conditioning of the Jacobian matrix that is related to the inverse 

transformation, J
-1

. To evaluate the ability of a parallel mechanism to transmit forces or 

velocities from the actuators to the tool, two complementary kinetostatic performance criteria 

can be used : the conditioning of the inverse Jacobian matrix J
-1

, called conditioning index, 

and the manipulability ellipsoid associated with J
-1

 [9].  

The conditioning index is defined as the ratio of the highest to the smallest eigenvalue of 

J
-1

. The conditioning index varies from 1 to infinity. At a singularity, the index is infinity. It is 

1 at another special configuration called isotropic configuration. At this configuration, the tool 

velocity and stiffness are equal in all directions. The conditioning index measures the 

uniformity of the distribution of the velocities and efforts around one given configuration but 

it does not inform about the magnitude of the velocity amplification or effort factors. 

The manipulability ellipsoid is defined by its principal axes as the eigenvectors of (J JT)-1 and 

by the lengths of the principal axes as the square roots of the eigenvalues of (J JT)-1. The 

eigenvalues are associated with the velocity (or force) amplification factors along the 

principal axes of the manipulability ellipsoid [9].  

3.2 Design constraints imposed to cope with this problem 

To design a translational PKM with kinematic behaviour close to the one of a serial 3-axis 

machine tool, we impose the following conditions : (i) there is one point in the workspace for 

which the velocity transmission ratio is the same in every direction, (ii) and its value is one at 

this configuration. In [10]  and [11]  the geometric conditions implied by these constraints are 

described in a more rigorous way.  

Condition (i) means that there is an isotropic configuration in the workspace.  

Condition (ii) means that for this configuration, the velocity amplification factors along 

the principal axes of the manipulability ellipsoid are equal to 1. 

3.3 Geometrical arrangement of the legs 

These two kinetostatic conditions lead to new geometric conditions on the Y-Star legs : 

- (i) implies that for each leg (Figure 5), orientation between the axis of the linear joint Ti 

and the axis of parallelogram Wi must be the same for each leg i, and that all vectors Wi 

must be orthogonal to each other [10].  

P

Ti

Wi

 
Fig. 5 : Y-Star leg 



IDMME 2002  Clermont-Ferrand, France , May 14-16  2002 

 

 

6 

 

 

 

 

 

- (ii) implies that for each leg, Ti and Wi must be collinear [10]. Since, at the isotropic 

configuration, Wi vectors are orthogonal, this implies that Ti vectors are orthogonal, i.e. 

the linear joints are orthogonal (Figure 6). 

x y

z

 
Fig. 6 : New arrangement of Y-Star robot 

3.4 Rearrangement of legs architecture 

The new geometrical arrangement of the machine legs leads to a singularity of the 

parallelogram (Figure 7) which becomes an antiparallelogram [12] : a passive rotation appears 

around an axis orthogonal to the parallelogram plane. A solution to this problem is to change 

the leg  architecture  by rearranging the joints, while keeping the same degree of freedom. 

Ti
Wi

P

 
Fig. 7 : Parallelogram singularity at isotropic configuration 

 

A second version of the leg architecture is then proposed (Figure 8a).  
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Fig. 8a : Second version of the leg architecture 

 

The parallelogram singularity at the isotropic configuration is avoided but another 

problem arises : a special  singularity of the leg at the isotropic configuration. There is a 

passive rotation around the Ti axis. It appears that this particular singularity is not detected by 

the method described in [3]. [13] proposes a way to find it, and from [14] this type of 

singularity is a (RPM, IO, II) singularity. RPM means that a Redundant Passive Motion is 

possible. This motion is the rotation of the parallelogram around the Ti axis (Figure 8b). IO 

and II mean that in this configuration we have an Impossible Output ( p = 0 ) and an 

Impossible Input ( ρ = 0 ), respectively. 

At the isotropic configuration, each leg can passively transmit a force whose axis is 

orthogonal to the parallelogram plane which means that no translation of point P along this 

axis is possible (IO and II, see figure 8b).  

Furthermore, to have a pure translational 3-DOF mechanism (the tool cannot rotate), the 

parallelograms must be orthogonal to one another at the isotropic configuration. Thus, the 

mechanism gets locked at this configuration because no translation nor rotation of the tool is 

possible. 

P

Ti

Wi
Impossible
translations

 
Fig. 8b : Leg singularity at isotropic configuration 

 

The last version of Orthoglide legs (Figure 9) avoids all previous problems mentioned at 

the isotropic configuration : no parallelogram singularity, and no leg singularity. 

P

Ti

Ui
Wi

 
Fig. 9 : Current version of Orthoglide legs 



IDMME 2002  Clermont-Ferrand, France , May 14-16  2002 

 

 

8 

 

 

 

 

 

3.5 Leg orientation for a pure translational mechanism 

Now that a correct leg architecture has been defined, we have to choose the parallelograms 

orientation in the machine frame. The screw theory [8] allows a geometric explanation of the 

conditions on legs orientation that lead to a pure translational motion of the tool : the wrench 

system (forces or torques that can be passively transmitted by a kinematic chain) of each leg 

is composed of two torques (Figure 9) : the first torque axis is Ti, and the second torque axis 

is perpendicular to the plane (Ti, Ui). The tool can rotate when its wrench system (which is the 

union of all legs wrench systems) does not contain any torque. Consequently, the three legs 

wrench systems must include all torques, i.e., the three parallelograms planes must be 

orthogonal to one another. The result is shown on Figure 10. Note that the constant 

orientation of parallelograms in the whole workspace makes the Orthoglide free from 

constraint singularities
1
.  

 
Fig. 10 : Orthoglide legs orientation 

4. Static analysis of legs parallelograms 

At a parallelogram singularity (see figure 11 and 12), a passive rotation of bar 3 around 

axis (Bi, Si) appears, though input and output motions are “locked”. At this singularity, the 

tension / compression forces in bars 1 and 2 tend to infinite. Physically, bar 3 can not be 

statically balanced, therefore a motion is possible.  

 

                                                 
1
 Constraint singularities were discovered recently [15] [16]. They may arise for parallel mechanisms with less 

than 6 DOFs. At a constraint singularity, the moving platform gains a new DOF. 
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Tool
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P
Si

BiAi

Ti

U Wi  = i

 

Fig. 11 : Static model of the parallelogram Fig. 12 : Parallelogram singularity 

 

The parallelogram on figure 11 is in the plane (Ti, Ui) because the orientation around Ui has 

no influence on the tension / compression forces in bars 1 and 2. Furthermore, we assume that 

only one torque C is exerted on the tool at point P : C = C.Si 

 

The parallelogram is statically balanced when   90° and only tension / compression forces 

are generated in bars 1 and 2. The force exerted by bar 1 on bar 3 is : Fb = Fb.Wi 

 

The force exerted by bar 2 on bar 3 is the opposite. These forces are fully transmitted to the 

tool by the revolute joint around Ui. 

The static equation of the torque exerted on the tool at point P can be written as follows : 

 

    2  [(Fb cos)(d/2)] = C 

     Fb = (C /d)1/cos  

 

When the parallelogram approaches its singularity, we have :   90° and Fb  . The 

tension / compression forces in bars 1 and 2 at joints limits have to be checked. In [11] the 

maximum value of  was calculated as : max = 14°. 

 

Our design gave us : d = 100 mm. An approximated value of the torque C exerted on the tool 

regarded to machining conditions expected from our prototype is : C  10 Nm. Thus, the 

tension / compression force in bars 1 and 2 is : Fb = 103 N. The section of bars 1 and 2 is : S = 

144 mm². The maximum tensile stress in bars 1 and 2 is then : max = 0,7 Mpa. This result is 

far less than the legs material maximum tensile strength (aluminium). 

5. Conclusions 

This paper describes the design of a new 3-axis machine tool based on a translational 

parallel mechanism : the Orthoglide. We chose a convenient architecture regarded to 

technological constraints. To have a kinematic behaviour close to the one of a serial 3-axis 

machine tool, we optimized the kinematic architecture to fit with isotropic and manipulability 

constraints. Several leg architectures were convenient. We chose the correct architecture by 



IDMME 2002  Clermont-Ferrand, France , May 14-16  2002 

 

 

10 

 

 

 

 

 

eliminating all legs singularities, particularly those that could not be detected by the classical 

velocities equations. Tensile strength in the parallelograms bars was evaluated for the most 

penalizing configurations.  
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