Eric Laporte
email: laporte@univ-mlv.fr

Rational Transductions for Phonetic Conversion and Phonology

Phonetic conversion, and other conversion problems related to phonetics, can be performed by nite-state tools. We present a nite-state conversion system, BiPho, based on transducers and bimachines, two mathematical notions borrowed from the theory of rational transductions. The linguistic data used by this system are described in a readable format and actual computation is e cient. With adequate data, BiPho constitutes the rst comprehensive spelling-to-phonetics conversion system for French to take the form of transducers or bimachines. 1

Introduction

Spelling-to-phonetics conversion is one of the most classical problems in natural language processing. Several other conversion problems related to phonetics are interesting in themselves or for their applications. For example, phonetics-to-spelling decoding is a real challenge and has applications in speech processing. Appropriate computational solutions for these conversion problems are provided by nite-state tools: transducers (i.e. automata with input and output) and bimachines, two notions borrowed from the theory of rational transductions. We present a conversion system, BiPho, based on transducers and bimachines. This conceptual and computational framework has two major advantages: the description of linguistic data is carried out in a readable format, and the speed of the conversion algorithm is independent of the size of the set of conversion rules and dominated by the length of input strings. With spelling-to-phonetics conversion data for French, BiPho constitutes the rst comprehensive spelling-to-phonetics conversion system for French to take the form of transducers or bimachines.

An introductory example

English has one of the most di cult spelling systems. Figure 1 shows the phonetic transcription of ou before gh. It is a directed acyclic graph which reads from left to right. This graph is a representation of a nite transducer. A transducer is an automaton where each transition is labelled by an input label and an output label. In this gure, input labels are displayed inside the boxes and output labels under the boxes. Input labels are spellings of word parts, output labels are phonetic transcrip- tions. Since the gure concentrates on the pronunciation of ou before gh, a phonetic transcription is displayed only under those boxes which contain ou. The other boxes contain the left or right contexts. The special symbol] stands for word limit or morpheme boundary. This graph is rather readable for people but it can also be used in order to compute phonetic transcriptions of words. This type of representation has several advantages.

1.

Readability. An error in a graph like that of Figure 1 is easy to detect even for a non-specialist if a word which is an exception to the rules comes across his mind. Metalanguage and conventions are reduced to a minimum and take a graphical form.

2. Formalization. The formal meaning of this type of representation is de ned mathematically.

3. Compactness. Various contexts are taken into account in Figure 1, but when similar contexts for di erent pronunciations are considered, several paths in the graph can often share their common part. For example, nal gh, i.e. gh], appears once for though, enough, bough and thorough; th appears once for though and thought. When long lists of words or word elements are to be listed, avoiding the repetition of common parts is a substantial economy, whereas making such lists without automata is discouraging and error-prone.

The mathematical properties of automata that underlie this practical advantage are minimality properties.

4. Cumulativity. Figure 1 deals with a very speci c issue. It should be associated with many other graphs in order to make up the complete data of a phonetic conversion system. The formal mean-ing of the combination of nite-state transducers can be designed and de ned so that the contents of a given graph will not interfere with the contents of another when they are combined. This feature is an improvement upon hierarchies of rules and exceptions which are traditionally used for spelling-to-phonetics conversion: a modi cation on a particular rule or exception in a hierarchy may have non-local e ects.

5. Generality. This introductory example only deals with spellingto-phonetics conversion of English text. However, the same type of formalism applies to more exotic conversion tasks, involving other languages, phonemics-to-phonetics conversion, phonetics-tospelling decoding, etc.

6. E ciency. Finite-state transducers, including ones with dozens of thousands of states, are also an e cient computational tool if they are wisely implemented. This feature is of the utmost importance since the size of the data at stake, in the nal analysis, depends on the number of words in the language.

As a matter of fact, this paper describes theoretical and practical work done in this framework on several conversion problems related to phonetics. The phonetic conversion system BiPho exploits complete data for phonetic conversion in French [START_REF] Laporte | Phon etique et transducteurs[END_REF]. French spelling is as irregular as English spelling. The output of the conversion constitutes the 600,000-in ected-word phonetic dictionary of LADL 1 . Section 3 states which conversion problems are concerned. Section 4 deals with the problem of designing a transducer to specify a given trans-duction and points out the consequences of decisions made at that stage. Section 5 introduces mathematical properties that relevant transductions usually have and mathematical tools that underly our implementation. Section 6 speci es a readable mode of representing transductions related to phonetics, de nes its formal meaning, and describes an ecient implementation of it.

Transductions related to phonetics

In this section, we have a linguistic standpoint about a number of problems for which we will claim that nite-state devices are appropriate formal and computational tools. The prototypical example of these problems is that of spelling-to-phonetics conversion. A given speech utterance can be transcribed orthographically or phonetically; spelling and phonetics can thus be considered as two levels of representation of language. Spelling-to-phonetic conversion refers to two types of problems. First, one is faced with a descriptive problem: which spelling transcriptions are in relation with which phonetic transcriptions? Then, two computational problems can be contemplated: given a spelling transcription, what phonetic transcriptions can be in relation with it? and the reverse problem. In order to pose this kind of problems in an accurate way, we discuss a few issues about some of the levels of representations of speech. The reader who is only interested in formal or computational aspects can go to section 4, page 11.

Spelling needs not be de ned, at least for English and other European languages with well-documented, standardized writing systems. Spelling can be considered as a practical level of linguistic representation. It appears as a formal system: transcriptions are coded as sequences of symbols. The set of symbols, the alphabet, is nite. We will consider only lowercase letters and a special symbol] standing for word boundary.

The size of the alphabet is thus less than 30 in English. It must be extended for other languages, due to accents and other diacritics. In French, spelling is highly ambiguous with respect to pronunciation, so we use as an intermediate level a disambiguating alphabet where e.g. intervocalic s is marked as s 15 when it is pronounced s], like in paras 15 ol (in most words, intervocalic s is pronounced z]). This disambiguating alphabet has 315 symbols. This method could give interesting results in English also.

The de nition of a phonetic level of representation is not so simple. It is connected with three theoretical issues: the principle of using a nite set of symbols and of building linear sequences of symbols, is a far from neutral choice linguistically; it is usually considered that the elementary units at a phonetic level are not the symbols in the phonetic alphabet but binary featurevalue pairs which serve to de ne these symbols; we will make a distinction between narrow transcriptions, which are an observational account of pronunciation, and abstract transcriptions, which are a means of taking into account phonetic variations in the phonology of languages.

Linear sequences are simple structures

Using an alphabet, i.e. a nite set of symbols, and building linear sequences of symbols, is a familiar principle, but it is not a neutral linguis-tic choice when it is used to represent speech. If we consider speech as a combination of acoustic and articulatory events, this combination is much more complex than phonetic transcriptions of speech: in the duration of one or two phonetic segments, dozens of acoustic events happen, their chronological order may vary, most of them are continuous variations of continuous parameters, and those which are instantaneous are hardly ever simultaneous. In other words, the most accurate phonetic transcription is only an approximate, partial and imperfect description of speech. However, phonetic transcriptions are an excellent descriptive tool. It is standardized to quite a reasonable degree among linguists, and it is successfully used for speech synthesis (e.g. synthesis by diphones) when associated with prosodic information. This is why we stick to linear sequences of phonetic symbols as one of the convenient and useful representations of pronunciation.

With the development of non-linear phonology, many linguists shifted from one-dimensional to multi-dimensional abstract representations of speech. For example, in spite of the fact that time is essentially onedimensional, it is unquestionable that some phonetic variations or phenomena involve embedded structures in speech: syllables, coda, etc. However, the level of recursion of such structures has very restrictive bounds, so that they can be coded in linear strings which are a simpler structure than trees.

Phonetic symbols are readable

The symbols in the phonetic alphabet are usually de ned by binary feature-value pairs. In this view, the elementary units at a phonetic level are not the phonetic symbols but the binary features. Phonetic and phonological descriptions make an intensive use of binary features. A set of phonetic symbols, e.g. fpbfvg, may be expressed as +labial son],

which is less redundant. One can also replace a few rules by one. Generative phonology is traditionally much concerned about redundancy, since the best possible grammar should be the least redundant. Using binary features brings about some decrease in redundancy, but also a dramatic decrease in readability: for a human reader, series like fpbfvg are more readable than binary-feature speci cations. For such a practical purpose as actual linguistic description, readability and compactness are as important as redundancy. The work described in this paper does not take any advantage of binary features, but the same formal framework could undoubtedly be adapted with only minor modi cations in order to express rules by means of features.

Since we use linear strings on a nite alphabet, and we study the relations between these strings, the appropriate formal framework for this study is that of transductions, i.e. relations over two sets of strings. Basic de nitions about transductions in the context of phonetics and phonology are given in [START_REF] Kaplan | Regular models of phonological rule systems[END_REF].

Phonetics or phonemics

It seems di cult to actually carry out any extensive description of phonetic forms in a language without taking into account the traditional distinction between narrow and abstract transcriptions. Narrow transcriptions are an observational account of pronunciation, whereas abstract transcriptions aim at taking into account phonetic variations in the phonology of languages. For example, the nal s is pronounced differently in seats and seizes, and narrow transcriptions re ect this di er-ence: si:ts], si:ziz]. If we consider that this s] and this iz] are variants of the z] heard in sees si:z], we can transcribe them by means of the same symbol /z/ in abstract transcriptions: /si:tz/, /si:zz/, /si:z/. We will use the terms phonetic level to refer to the level of narrow transcriptions, phonemic level to refer to that of abstract ones, and phonemes to refer to the elements of the alphabet of the phonemic level.

Phonemic transcriptions are also useful to describe free phonetic variations. For example, in French, lier `link' admits a monosyllabic phonetic form lje] and a disyllabic one lije]: we transcribe both as /li+e/ (Laporte, 1989). Several phonetic variants are produced from a phonemic form by a multiple-output transduction. Multiple-output transductions are often de ned with optional rules, but the notion of several-output transduction is more general than that of optional rule. For example, if we transcribe lier with the phonemic form /lje/ and if we produce the variant lije] with an optional rule that inserts i], this rule might produce a wrong variant ? pije] for pied pje] `foot'. On the other hand, if we transcribe lier with the phonemic form /lije/ and if we produce the variant lje] with an optional rule that deletes i], this rule might produce a wrong variant ? pje] for piller pije] `plunder'. Finally, the phonemic form /li+e/ contains an unpronounceable variation mark /+/, so the rule that produces lje] and lije] from /li+e/ has to be obligatory.

From a level to another

Spelling, phonetics and phonemics are three levels of linguistic representation: there are six ways of going from one of them to another, thus six conversion problems for each language. Our experiments on spelling-tophonemics and phonemics-to-phonetics in French showed that these two problems have much in common: the same computational framework gave good results for both. Another type of conversion problem is also probably very close: the simulation of phonetic changes from a historical state of a language to another or to its present state.

In the following, the transductions whose de nition was outlined in this section will be referred to as `transductions related to phonetics'.

Construction of the transductions

A transduction is an abstract object. A transducer or another formal device that `realizes' a transduction is an abstract machine that species it in a more concrete way, though it does not specify a particular algorithm to perform the conversion. Automata theory provides various mathematically equivalent ways of recognizing the same set or realizing the same transduction. In such a practical enterprise as ours, we have to choose a particular device to realize a transduction. This choice is not neutral: the success of the operation depends on the theoretical expressive power of the device; this choice may facilitate or hinder the descriptive aspect of the work, namely the elaboration of the conversion rules; it may lead to more or less e cient implementations of the computation.

Let us examine the consequences of those requirements on the problem of designing and implementing transducers.

Alignments

What we will call an alignment of a transduction is a correspondence between input symbols and output symbols in strings. A transduction in itself does not specify any alignment between input symbols and output symbols. However, transducers and other devices do specify an alignment of the transduction they realize. Several transducers that realize the same transduction may specify di erent alignments, as in Figure 2.

The symbol <E> is the empty sequence which is made of no symbols at all. Rational expressions and other mathematical constructs used to dene rational transductions also specify an alignment. In the case of the transductions related to phonetics mentioned in section 3, page 6, the time correspondence between input and output is a meaningful alignment for all of them, but specifying it in the smallest detail sometimes involves arbitrary decisions. For example, Figure 2 speci es two align-ments between spelling and phonetic transcription. They di er only in details and both of them are quite sensible. In order to take full advantage of the partial regularity of spelling-to-phonetics transduction, the transducer that performs the conversion must at least approximately follow the natural alignment.

-t t -ou -gh f -# # - -n n -wr r -ou =: -gh <E> -t t - -t t -o <E> -u -g f -h <E> -# # - -n n -w <E> -r r -o =: -u <E> -g <E> -h <E> -t t -
In a transducer, input and output labels are strings over the input or output alphabet. They can comprise zero, one or several symbols. A reasonable simpli cation of the problem is to consider alignments where each separate input symbol in the input string has its own counterpart in the output; the output for a given input symbol may still be composed of zero, one or several symbols. Formally, we will say that a device that realizes a transduction is strictly alphabetic if and only if it associates with each symbol in input strings a factor of the corresponding output string. The second transducer of Figure 2 is strictly alphabetic, i.e. each input label is an isolated input symbol. In the case of transductions related to phonetics, a strictly alphabetic alignment is always possible and is usually close to the most natural alignment.

Divide and conquer

Describing a complex transduction is an intricate task, we need to split it into smaller tasks. The nite-state formal framework provides ways to do that. Individual transductions can be devised for independent subtasks, and combined into a larger transduction that solves the original problem. Two simple principles will help us implement this strategy.

Simultaneous combination

The rules for translating a symbol are often very di erent from those for translating another. When it is the case, the transduction that will apply to the rst symbol can be described independently of the other.

Assume a transduction t 1 translates a given input pattern, leaving all the rest unchanged, and a transduction t 2 translates another input pattern that does not overlap the other and also leaves the rest unchanged.

Then t 1 and t 2 apply to di erent places in input strings and can apply (conceptually) simultaneously. In other words, t 1 and t 2 can be implemented (conceptually) in parallel. In section 6, page 23, we will give a formal de nition of the `simultaneous combination' t 1 + t 2 of transductions t 1 and t 2 provided that they apply either to di erent input strings or in di erent contexts. The result of the simultaneous combination of transductions is independent of the order in which the transductions are given.

Sequential combination or composition

Transductions related to phonetics frequently have a natural expression as a composition of simpler transductions: one describes a nite sequence of transductions in a de nite order, and the output of each of them will serve as input for the next. This amounts to de ning intermediate levels of representation and going from each level to the next. Expressing a transduction as a composition of simpler ones is a basic method in generative phonology. This concept is called `rule ordering'.

If the output of t 1 serves as input for t 2 , the composition of t 1 and t 2 will be noted t 1 t 2 .

Deterministic computation

When a transducer is strictly alphabetic, one can make an automaton out of it by deleting all output labels. This automaton is called the projection of the transducer. The projection of a strictly alphabetic transducer may be deterministic or not. If it is, the output strings for a given input string can be produced by a deterministic computation using the transducer. A deterministic computation is more direct, and therefore usually simpler and more e cient than a non-deterministic computation. We say that a transducer is deterministic if it is strictly alphabetic and has a deterministic projection2 . The transducer of output labels d] and n], we leave two transitions with the same label /d/ and di erent targets. In fact, if we wish to have this transduction realized by a deterministic nite transducer, we will not nd any with the same alignment. However, in phonemics-to-phonetics conversion, when this problem occurs, the transduction can usually be expressed as a combination of transductions realized by deterministic transducers. The combination may involve simultaneous or sequential combinations or both (cf. above). The fact that this simpli cation of the problem is usually possible is an empirical observation which is not predicted by phonological theories. In the following, we assume it is always the case.

For example, the transducer of Figure 3 can be expressed as t 1 (t 2 +t 3). In this expression, t 1 , t 2 and t 3 are the deterministic transducers of Fig-

ure 4, the symbol refers to sequential combination and + refers to simultaneous combination. An advantage of this representation is that t 1 , t 2 and t 3 represent separately three unrelated phenomena. Note that t 1 produces two variants, but is deterministic: when we build the projection by deleting the output labels K] and <E>, the two original transitions merge into one transition since they have the same input label K] and the same target. The phonetic conversion data used with BiPho for French involve 13 levels of representation: the rst is spelling, the sixth is phonemics and the last is phonetics. The overall transduction is thus implemented as the composition of 12 transductions. Each of them is in turn the simultaneous combination of 6 to 231 simple transductions realized by deterministic transducers. We need a few more mathematical notions before describing how these elementary transductions are represented, how they are combined, and how the actual conversion is performed.

t 1 : -~ ~ -d d -K K -K <E> -# # -d d -y y - t 2 : -~ ~ -d d -K K -# -# -d d -y y - t 3 : -~ ~ -d n -# <E> -d d -y y -

Mathematical properties

The transductions mentioned in section 3 page 6 are usually rational transductions. A transduction3 over alphabets A and B is rational if it can be speci ed by a rational expression over A ? B ? . Equivalently, a transduction is rational if it can be realized by a nite transducer. The fact that phonological transductions are usually rational is far from new. It was rst noticed by [START_REF] Johnson | Formal Aspects of Phonological Description[END_REF]. It is stated in more standard terms by [START_REF] Kaplan | Regular models of phonological rule systems[END_REF]. In what follows we examine other mathematical properties of transductions related to phonetics. The interested reader will nd more details about de nitions and algorithms in handbooks of automata theory, e.g. [START_REF] Berstel | Transductions and Context-Free Languages[END_REF] or [START_REF] Perrin | Finite automata[END_REF].

Transductions realized by deterministic transducers

In a transduction, an input string can be in relation with several output strings. In the case of transductions related to phonetics, this allows us to describe phonetic variants. For example, in Figure 5, the phonemic

-k k -j j -u: u: -b b -i i -z z -m m -m m -# # - Figure 5
: a transduction which is not a function.

string /kju:bizm/ is in relation with two phonetic strings, kju:bizm] and kju:biz m].

When every input string is in relation with at most one output string, the transduction is said to be a function. A transduction realized by a deterministic nite transducer is not necessarily a function (examples: Figures 4 and5), but it is easy to prove that it is the composition of a rational function and a nite substitution. A nite substitution over alphabets A and B is a transduction such that: for each a 2 A, (a) is a nite subset of B ? , (<E>) =<E> and for each u; v 2 A ? , (uv) = (u) (v).

Finite substitutions are rational transductions. Figure 6 shows the decomposition of the transduction of Figure 5 into a rational function and a nite substitution which is represented as a one-state transducer in the gure. Recall that transductions related to phonetics can usually be expressed as a combination of transductions realized by deterministic nite transducers. When they can, it follows that they can also be expressed as a combination of rational functions and nite substitutions, which are simple cases of rational transductions. The computational interest of this decomposition stems from the fact that rational functions rational function:

-k k

-j j -u: u: -b b -i i -z z -m <m; m> -# # - k k b b 6 Q Q Q $ 6 ' z z j j 6 6
nite substitution:

--? 6 u: u: i i ? ?

<m; m> m <m; m> m ? ?

Q Q Q Figure 6
: decomposition into a rational function and a nite substitution.

and nite substitutions can be realized by well-known, simple devices for which e cient implementations are known. Finite substitutions are realized by one-state transducers. Rational string functions are realized by bimachines.

Bimachines

The notion of bimachine was introduced by Sch utzenberger (1961). It is a strictly alphabetic, deterministic variant of the notion of nite transducer. The set of transductions realized by bimachines is the set of rational string functions [START_REF] Eilenberg | Automata, Languages and Machines[END_REF]. Any bimachine can be compiled into an equivalent transducer with the same alignment.

A bimachine over alphabets A and B is composed of two nite ! q ; <E>) = ! q , (q ; <E>) = q , ! (! q ; ua) = ! (! (! q ; u); a), (q ; ua) = ((q ; u); a). For an input string a 1 a 2 . . . a n , the output for a i is de ned as (! (! q ; a 1 a 2 . . . a i 1); a i ; (q ; a n a n 1 . . . a i+1))

sets ! Q, Q, two initial states ! q 2 ! Q, q 2 Q, two
The output string for a 1 a 2 . . . a n is the concatenation of the output strings for a 1 ; a 2 ; . . . a n . Thus, a bimachine realizes a string function.

Bimachines are a convenient tool both for linguistic description and computation.

The linguistic description of a transduction related to phonetics generally takes the form of a set of conversion rules. Usual rules comprise a `context part', which recognizes whether the rule applies, and an `action part', which translates symbols. Rules are often stated in the form a ! u=L R, where the context part is L R and the action part is a ! u. In the usual sense, the context refers to the input string, which is known before the rules apply, and not to the output string. This is the most straightforward convention and makes rules readable and easy to design.

The structure of a bimachine is quite similar. The two deterministic automata correspond to the left and right context parts of the rule, and the output function constitutes the action part; the context part refers to the input string only. In section 6, page 23, we describe a readable, graphic mode of representation of bimachines, and algorithms for loading a bimachine from this format and running it.

The structure of a nite transducer is not so directly similar to that of a usual rule. Contexts and actions are mixed up in transition labels. Since transition labels combine input and output symbols, contexts may refer both to input and output labels (see [START_REF] Koskenniemi | Two-level morphology: a general computational model for word-form recognition and production[END_REF], [START_REF] Kaplan | Regular models of phonological rule systems[END_REF] for examples).

The computation of a bimachine is deterministic, hence simpler than that of a non-deterministic device. On the other hand, the inversion of a transduction (swapping input and output) is probably easier to implement on a transducer than on a bimachine.

Locality

The translation of a symbol usually depends on its context, but this dependency is usually very local. This is probably the reason why phonologists are so fond of counter-examples with unbounded dependencies. Intuitively, a conversion rule is local if the length of the context needed to apply the rule is bounded for all input strings. Typical values of this bound are small, about ten or even ve symbols. Contexts of unbounded length are frequently used by phonologists, but in most cases they are easy to replace with bounded contexts. For example, <Cons> ? in a context apparently matches any number of consonants, but since sequences of consonants with no intervening vowel hardly go beyond ve symbols in French, the pattern of Figure 7 has the same e ect as a rule that converts /e/ into] before <Cons><Cons> ? #.

Formally, the notion of locality is de ned with respect to automata. (s; d)-local if for each pair of paths of length s, (q 0 ; a 1 ; q 1 ; . . . a s ; q s) and (q 0 0 ; a 1 ; q 0 1 ; . . . a s ; q 0 s), labelled by the same sequence a 1 a 2 . . . a s , we have q d = q 0

d . An automaton is local if there exist s and d such that it is (s; d)-local. If so, the smallest possible value for s is called the scope of the automaton.

This notion of locality applies to the left-to-right and right-to-left deterministic automata of a bimachine. Let l; r be positive integers. We say that a bimachine is (l; r)-local if its left-to-right automaton is (l; l)local and its right-to-left automaton is (r; r)-local. The maximal length of relevant left contexts is l and the maximal length of relevant right contexts is r. If a bimachine is (l; r)-local, the function that it realizes is also realized by a nite transducer whose projection is an (l + r; l)-local automaton.

Recall that with BiPho, the transduction is expressed as a combination of rational functions and nite substitutions (cf. page 18). In the phonetic conversion data for French, this decomposition of the problem could be done in such a way that all rational functions are realized by local bimachines, i.e. all contexts have bounded length.

Implementation

The rational functions used by BiPho are realized by local bimachines. They are created in a graphic form like that of Figure 8, which comprises a context part which recognizes whether the rule applies and an action part which translates symbols. Each batch of graphs that must apply simultaneously is read and combined into a bimachine. The resulting bimachines apply sequentially to input strings. The nite substitutions that should apply to the output of the bimachines are not implemented yet. The input label is one input symbol, but the output label may be a string of zero, one or several output symbols. In case of variants, the output label stands for the list of variants. The semantics of the rule is straightforward: whenever the input label of the action part occurs between the left and right contexts, substitute the output label for it, otherwise leave it unchanged. This rule converts /i/ into /ij/ in certain contexts, e.g. for plier plije] `fold', it converts /plie/ into /plije/.

The context part of the graph contains only the part of the context which is relevant to the transduction; if the action part of the rule must take place no matter what the left context is, then the left context part of the graph is empty. The left and right context parts of the automaton are converted into nite automata which are then determinized and minimized with the aid of standard algorithms. Let L (resp. R) be the set of sequences recognized by the left (resp. right) context part of the graph: the left-to-right deterministic automaton of the bimachine must recognize A ? L, and the right-to-left automaton must recognize A ? R, where the elements of R are the elements of R read in reverse order.

The only algorithm needed for the construction of these automata is the construction of a nite automaton recognizing A ? L from an automaton recognizing L, and the same for R. Since relevant contexts are bounded in length, L and R are nite. We apply to them a variant of the algorithm of [START_REF] Aho | E cient string matching: an aid to bibliographic search[END_REF]. The original version of this algorithm makes use of the set of pre xes of a nite set L. This set can be replaced with the set of states of the minimal deterministicnite automaton recognizing L. The algorithm has to be adapted [START_REF] Mohri | Syntactic Analysis by Local Grammars Automata: an E cient Algorithm[END_REF], but it produces an automaton with less states than in the original version. However, the resulting automaton is not necessarily minimal, so we minimize it. There is no notion of nal states in a bimachine. In our implementation, the automata for A ? L and A ? R do have nal state sets: they are used in the de nition of the output function.

The output function of the bimachine is de ned as follows: if a 2 A is the input label of the action part, and if u 2 B ? is the output label, then (! q ; b; q) := if b = a and ! q is final and q is final then u else b

The two deterministic automata are implemented with two-dimensional tables whose rows are indexed by states and whose columns are indexed by input symbols. The content of the table at line ! q and at column a is the state ! (! q ; a).

Simultaneous combination of bimachines

Several transductions realized by bimachines can apply simultaneously to the same input provided that they do not con ict. A con ict is de ned as follows. Let a i ! u i =L i R i , for 1 i n, be n bimachines over A and B de ned as above: L i A ? and R i A ? are the left and right context parts, a i 2 A is the input label of the action part and u i 2 B ?

is the output label of the action part. A con ict arises if and only if two bimachines apply to the same input symbol of an input string, i.e. if there are two indices i and j, with 1 i < j n, such that A ? L i \ A ? L j 6 = , a i = a j and R i A ? \ R j A ? 6 = . This condition is checked for each pair of rules by computing the intersections of contexts.

If there are no con icts, the simultaneous combination is possible. Let ! Q i , Q i be the state sets of the n bimachines, ! q i; 2

! Q i , q i; 2 Q i the initial states, ! i : ! Q i A ! ! Q i and i : Q i A ! Q i the transition
functions, and i :

! Q i A Q i ! B ? the output function.
Then the combined bimachine is de ned as follows:

! Q= ! Q 1 ! Q 2 . . . ! Q n ; Q= Q 1 Q 2 . . . Q n ;
! q = (! q 1; ; ! q 2; ; . . . ! q n;); q = (q 1; ; q 2; ; . . . q n;);

! ((! q 1 ; . . . ! q n); a) = (! 1 (! q 1 ; a); . . . ! n (! q n ; a));

((q 1 ; . . . q n); a) = (1 (q 1 ; a); . . . n (q n ; a)):

With this de nition, ! Q and Q may contain states which cannot be reached from the initial states, but it is not necessary to actually create such states. Before de ning the output function, note that for each u; v 2 A ? such that ! (! q ; u) = ! (! q ; v); 8i 2 1; n] (u 2 A ? L i () v 2 A ? L i):

For each state ! q = ! (! q ; u) we can therefore de ne left(! q) := fi 2 1; n] j u 2 A ? L i g.

Similarly, for each q = (q ; u) right(q) := fi 2 1; n] j u 2 R i A ? g.

Now let

! q 2 ! Q; a 2 A and q 2 Q. There is at most one i 2 1; n] such that i 2 left(! q), a = a i and i 2 right(q). (If there were two, take ! q = ! (! q ; u) and q = (q ; v): there would be two i's such that u 2 A ? L i , a = a i and v 2 R i A ? , in contradiction with the fact that there are no con icts.) If there exists such an i, de ne (! q ; a; q) = u i , otherwise (! q ; a; q) = a. This completes the de nition of the combined bimachine which will simulate the behaviour of the n bimachines whenever one of them applies to an input symbol.

For example, let us combine the rules of Figures 8 and 9 of Figure 9 converts /i/ into /j/ in certain contexts, e.g. for allier alje] `ally', it converts /alie/ into /alje/. The minimal deterministic automaton for A ? L 1 is in Figure 10 and the one for A ? L 2 is in Figure 11.

These rules do not con ict. If you build their simultaneous combination, you will obtain the left-to-right automaton of Figure 12, and a twostate right-to-left automaton. The states ! q which are marked as nal in Figure 12 are those for which left(! q) is nonempty. With the French phonetic conversion data for BiPho, the deterministic automata of the 12 bimachines have 3 to 144 states. The output function is implemented with two tables, BimSet and Output. BimSet is a two-dimensional ta-ble whose rows are indexed by left-to-right states and whose lines are indexed by right-to-left states. The content of the table at line ! q and at column q is a key that gives access to the set left(! q) \ right(q).

Output is a two-dimensional table whose rows are indexed by the keys of the sets left(! q) \ right(q), and whose lines are indexed by input symbols. The content of the table at line k and at column a is the output sequence (! q ; a; q) de ned in section 6.2.

Running the bimachine

When running the bimachine on an input string, the string is rst processed in reverse order: we compute the values of the states of the rightto-left automaton for each symbol in the input string and store them in a one-dimensional array. Then, for each symbol from left to right, the state of the left-to-right automaton is computed. This value is used with the value of the right-to-left state, the input symbol and the tables BimSet and Output in order to retrieve the output sequence. The complexity of this algorithm is independent of the number of states and transitions of the bimachine: the time of the conversion is dominated by the length of the input sequence.

Conclusion

The nite-state formal devices described in this chapter and tested in the context of phonetics and phonology proved to be both convenient for linguistic description and adapted for e cient implementation. The conversion system BiPho was tested with complete phonetic conversion data for French. Since phonetic conversion of most languages is simpler

 Figure 1: ou before gh.

Figure 2 :

 2 Figure 2: two alignments of the same transduction.

 Figure 3: a non-deterministic transducer.

Figure 4 :

 4 Figure 4: three deterministic transducers.

 left-to-right deterministic automaton without nal states, and Q, q and constitute a right-to-left deterministic automaton without nal states. The transition functions are extended to ! Q A ? and Q A ? by setting ! (

 Figure 7: bounded context for sequences of consonants.

 Figure 8: a conversion rule.

 stands for all symbols except p t k b d g f s M v z `l r j u y.

Figure 9 :

 9 Figure 9: a conversion rule.

Laboratoire d'automatique documentaire et linguistique, University of Paris 7, France.

This terminology is not traditional. There is no standard de nition of deterministic transducers.

In automata theory, the terminology rational is preferred to regular because it emphasizes the analogy with the theory of rational functions in classical analysis and of rational power series in commuting variables.

than for French, and since BiPho makes only minimal assumptions about the mathematical properties of the conversion, we believe that it can be used for virtually any conversion task related to phonetics.