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EXTREMAL FIRST DIRICHLET EIGENVALUE OF DOUBLY

CONNECTED PLANE DOMAINS AND DIHEDRAL SYMMETRY

AHMAD EL SOUFI AND ROLA KIWAN

Abstract. We deal with the following eigenvalue optimization problem: Given
a bounded domain D ⊂ R

2, how to place an obstacle B of fixed shape within
D so as to maximize or minimize the fundamental eigenvalue λ1 of the Dirich-
let Laplacian on D \ B. This means that we want to extremize the func-
tion ρ 7→ λ1(D \ ρ(B)), where ρ runs over the set of rigid motions such that
ρ(B) ⊂ D. We answer this problem in the case where both D and B are in-
variant under the action of a dihedral group Dn, n ≥ 2, and where the distance
from the origin to the boundary is monotonous as a function of the argument
between two axes of symmetry. The extremal configurations correspond to the
cases where the axes of symmetry of B coincide with those of D.

1. Introduction and Statement of the main Result

The relations between the shape of a domain and the eigenvalues of its Dirichlet
or Neumann Laplacian, have been intensively investigated since the 1920’s when
Faber [5] and Krahn [12] have proved independently the famous eigenvalue isoperi-
metric inequality first conjectured by Rayleigh (1877): the first Dirichlet eigenvalue
λ1(Ω) of any bounded domain Ω ⊂ Rn satisfies

λ1(Ω) ≥ λ1(Ω
∗),

where Ω∗ is a ball having the same volume as Ω. We refer to the review papers
of Ashbaugh [1, 2] and Henrot [9] for a survey of recent results on optimization
problems involving eigenvalues.

The present work deals with the following eigenvalue optimization problem:
Given a bounded domain D, we want to place an obstacle (or a hole) B, of fixed
shape, inside D so as to maximize or minimize the fundamental eigenvalue λ1 of
the Laplacian or Schrödinger operator on D \ B with Zero Dirichlet conditions on
the boundary.

In other words, the problem is to optimize the principal eigenvalue function
ρ 7→ λ1(D \ ρ(B)), where ρ runs over the set of rigid motions such that ρ(B) ⊂ D.

The first result obtained in this direction concerned the case where both D

and B are disks of given radii. Indeed, it follows from Hersch’s work [10] that the
maximum of λ1 is achieved when the disks are concentric (see also [14]). This result
has been extended to any dimension by several authors (Harrell, Kröger and Kurata
[8], Kesavan [11], ...). Actually, Harrell, Kröger and Kurata [8] gave a more general
result showing that, if the domain D satisfies an interior symmetry property with
respect to a hyperplane P passing through the center of the spherical obstacle B
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(which means that the image by the reflection with respect to P of one component
of D \ P is contained in D), then the Dirichlet fundamental eigenvalue λ1(D \ B)
decreases when the center of B moves perpendicularly to P in the direction of the
boundary of D. In the particular case where both the domain D and the obstacle
B are balls, this implies that the minimum of λ1(D \ B) corresponds to the limit
case where B touches the boundary of D.

Notice that when the obstacle B is a disk, only translations of B may affect the
λ1 of D \B and the optimal placement problem reduces to the choice of the center
of B inside D.

In the present work we investigate a kind of dual problem in the sense that we
consider a nonspherical obstacle B whose center of mass is fixed inside D, and seek
the optimal positions while turning B around its center.

It is of course hopeless to expect a universal solution to this problem. In fact, we
will restrict our investigation to a class of domains satisfying a dihedral symmetry
and a monotonicity conditions.

Thus, let D be a simply-connected plane domain and assume that the following
conditions are satisfied:

(i) (Dn-symmetry) for an integer n ≥ 2, D is invariant under the action of the
dihedral group Dn of order 2n generated by the rotation ρ 2π

n

of angle 2π
n

and a

reflection S. Such a domain admits n axes of symmetry passing through the origin
and such that the angle between 2 consecutive axes is π

n
.

(ii) (monotonicity of the boundary) the distance d(O, x) from the origin to a
point x of the boundary of D is monotonous as a function of the argument of x, in
a sector delimited by two consecutive symmetry axes.

Notice that assumption (i) guarantees that the center of mass of D is at the
origin. Regular n-gones centered at the origin are the simplest examples of domains
satisfying these assumptions. More generally, if g is any positive even 2π

n
-periodic

continuous function that is monotonous on the interval (0, π
n
), then the domain

D = {reiθ; θ ∈ [0, 2π), 0 ≤ r < g(θ)},

satisfies assumptions (i) and (ii). Actually, up to a rigid motion, any domain
satisfying assumptions (i) and (ii) can be parametrized in such a manner.

It is worth noticing that, due to the monotonicity condition, the “distance to
the origin” function on the boundary of D achieves its maximum and its minimum
alternatively at the intersection points of ∂D with the 2n half-axes of symmetry.
The n points of ∂D at maximal (resp. minimal) distance from the origin will be
called ”outer vertices” (resp. ”inner vertices”) of D.

Our main result is the following

Theorem 1. Let D and B be two plane domains satisfying the assumptions of
Dn-symmetry and monotonicity (i) and (ii) above for an integer n ≥ 2. Assume
furthermore that B has C2 boundary and that ρ(B) ⊂ D for all ρ ∈ SO(2). Then,
the fundamental Dirichlet eigenvalue λ1(D \B) of D \B is optimized exactly when
the axes of symmetry of B coincide with those of D.

The maximizing configuration corresponds to the case where the outer vertices of
B and D lie on the same half-axes of symmetry (we will then say that B occupies
the “ON” position in D).
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The minimizing configuration corresponds to the case where the outer vertices of
B lie on the half-axes of symmetry passing through the inner vertices of D (this is
what will be called the “OFF” position).

Actually, we will prove that, except for the trivial case where D or B is a disk,
the fundamental Dirichlet eigenvalue of D \B decreases gradually when B switches
from “ON” to “OFF”.

The main ingredients of the proof of Theorem 1 are Hadamard’s variation formula
for λ1 and the technique of domain reflection initiated by Serrin [17] in PDE’s
setting.

Examples of maximal (left) and minimal (right) configurations

with n = 2, 3 and 4 respectively

Extensions of Theorem 1 to the following situations can be obtained up to slight
changes in the proof (indeed, only the Hadamard formula should be replaced by
the variation formula corresponding to the new functional):

(1) Soft obstacles: instead considering the Dirichlet Laplacian on D \ B, we
consider the Schrödinger type operator

H(α, B) := ∆ − αχB
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acting on H1
0 (D), where α > 0 and χB is the indicator function of B.

Optimization problems related to the fundamental eigenvalue of operators
of this kind have been investigated in particular in [8] and [3]. Under the
assumptions of Theorem 1 on D and B, ∀α > 0, the fundamental eigenvalue
of H(α, B) achieves its maximum at the “ON” position and its minimum
at the “OFF” position.

(2) Wells: this case corresponds to the operator H(α, B) with α < 0. Under
the circumstances of Theorem 1, ∀α < 0, the first eigenvalue of H(α, B)
achieves its maximum at the “OFF” position and its minimum at the “ON”
position.

(3) Stationary problem : the problem now is to optimize the Dirichlet energy
J(D \ B) :=

∫

D\B
|∇u|2dx of the unique solution u of the problem

{

∆u = −1 in D \ B

u = 0 on ∂(D \ B),

This problem was treated in [11, Section 2] in the case where both D and
B are balls. Under the assumptions of Theorem 1 on D and B, one can
prove that J(D \B) achieves its maximum when B is at the “ON” position
and its minimum when B is at the “OFF” position.

2. Proof of the main result

Without loss of generality, we may assume that the domain D and the obstacle
B are centered at the origin and are both symmetric with respect to the x1-axis so
that they can be parametrized in polar coordinates by

D = {reiθ; θ ∈ [0, 2π), 0 ≤ r < g(θ)},

B = {reiθ; θ ∈ [0, 2π), 0 ≤ r < f(θ)},
where f and g are two positive even 2π

n
-periodic functions which are nondecreasing

on (0, π
n
). To avoid technicalities, we suppose throughout that g is continuous and

f is C2. Extensions of our result to a wider class of domains would certainly be
possible up to some additional technical difficulties.

The condition that the obstacle B can freely rotate around his center inside D,
that is ρ(B̄) ⊂ D for all ρ ∈ SO(2), amounts to the following:

f(
π

n
) = max

0≤θ≤2π
f(θ) < min

0≤θ≤2π
g(θ) = g(0).

Let us denote, for all t ∈ R, by ρt the rotation of angle t, that is, ∀ζ ∈ R2 ∼= C,
ρt(ζ) = eitζ, and set

Bt := ρt(B) and Ω(t) := D \ Bt.

Let λ(t) be the fundamental eigenvalue of the Dirichlet Laplacian on Ω(t). It is
well known that, since it is simple, the first Dirichlet eigenvalue λ(t) is a differen-
tiable function of t (see [6, 15] ). We denote by u(t) the one parameter family of
nonnegative first eigenfunctions satisfying, ∀t ∈ R,







∆u(t) = −λ(t)u(t) in Ω(t)
u(t) = 0 on ∂Ω(t)

∫

Ω(t) u2(t) = 1.
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The derivative of λ(t) is then given by the following so-called Hadamard formula
(see [4, 6, 7, 16]):

(1) λ′(t) =

∫

∂Bt

∣

∣

∣

∣

∂u(t)

∂ηt

∣

∣

∣

∣

2

ηt · v dσ,

where ηt is the inward unit normal vector field of ∂Ω(t) (hence, along ∂Bt the vector
ηt is outward with respect to Bt) and v denotes the restriction to ∂Ω(t) = ∂D∪∂Bt

of the deformation vector field. In our case, the vector v vanishes on ∂D and is
given by v(ζ) = iζ for all ζ ∈ ∂Bt.

Since both Ω and B are invariant by the dihedral group Dn, it follows that,
∀t ∈ R, Ω(t + 2π

n
) = Ωt. Moreover, if we denote by S0 the reflection with respect

to the x1-axis, then we clearly have ρ−t = S0 ◦ ρt ◦ S0 which gives B−t = S0(Bt)
and Ω−t = S0(Ωt). Hence, as a function of t, the first Dirichlet eigenvalue of Ωt is
even and periodic of period 2π

n
, that is, ∀t ∈ R,

λ(t + 2π
n

) = λ(t) and λ(−t) = λ(t).

Therefore, it suffices to investigate the variations of λ(t) on the interval
[

0, π
n

]

and
Theorem 1 is a consequence of the following:

Theorem 2. Assume that neither D nor B is a disk.

(i) ∀t ∈
(

0, π
n

)

, λ′(t) < 0. Hence, λ(t) is strictly decreasing on
(

0, π
n

)

.
(ii) ∀k ∈ Z, λ′(k π

n
) = 0 and k π

n
, k ∈ Z, are the only critical points of λ on R.

Hence, λ(t) achieves its maximum for t = 0 mod 2π
n

which corresponds to the

“ON” position, and its minimum for t = π
n

mod 2π
n

which corresponds to the
“OFF” position. Of course, if D or B is a disk, then the function λ(t) is constant.

In what follows we will denote, for any α ∈ R, by zα the θ = α axis, that is
zα := {reiα; r ∈ R}, and by z+

α the half-axis {reiα; r ≥ 0}.
We start the proof with the following elementary lemma.

Lemma 1. Let K be a plane domain defined in polar coordinates by K = {reiθ; θ ∈
[0, 2π), 0 ≤ r < h(θ)}, where h is a positive 2π-periodic function of classe C1, and
let v be a vector field whose restriction to ∂K is given by

v(θ) := v(h(θ)eiθ) = ih(θ)eiθ = h(θ)ei(θ+ π

2
).

We denote by η the unit outward normal vector field of ∂K. One has, at any point
h(θ)eiθ of ∂K where η is defined,

(i) η(θ) := η(h(θ)eiθ) = h(θ)eiθ−ih′(θ)eiθ√
h2(θ)+h′2(θ)

(ii) η · v(θ) = −h(θ)h′(θ)√
h2(θ)+h′2(θ)

. Hence, η.v(θ) has constant sign on an interval I

if and only if h is monotonous in I.
(iii) if for some α > 0, the domain K is symmetric with respect to the axis zα,

then the function η · v is antisymmetric w.r.t this axis, that is

η · v(α + θ) = −η · v(α − θ).

Proof. Assertions (i) and (ii) are direct consequences from the definition of K. The
fact that K is symmetric with respect to the axis zα implies that the function h

satisfies h(α + θ) = h(α − θ). Therefore, (iii) follows immediately from (ii). �
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We will denote by Sα the symmetry with respect to the axis zα. We will also
denote, for α < β, by σ (α, β) the sector delimited by z+

α and z+
β , that is

σ (α, β) = {reiθ; r > 0 and α < θ < β}.
Lemma 2. Let D be as above. For all t ∈

(

0, π
n

)

, we have:

Sπ

n
+t

(

D ∩ σ

(

π

n
+ t,

2π

n
+ t

))

⊆ D ∩ σ
(

t,
π

n
+ t
)

.

Moreover, if D is not a disk, then

Sπ

n
+t

(

∂D ∩ σ

(

π

n
+ t,

2π

n
+ t

))

∩ D 6= ∅.

Proof. The action of the symmetry Sπ

n
+t is given in polar coordinates by Sπ

n
+t(re

iθ) =

rei(2( π

n
+t)−θ). Hence,

Sπ

n
+t

(

D ∩ σ

(

π

n
+ t,

2π

n
+ t

))

= Sπ

n
+t(D) ∩ σ

(

t,
π

n
+ t
)

.

Moreover, the domain D being parametrized by a positive even 2π
n

-periodic function

g(θ), that is D = {reiθ; θ ∈ [0, 2π), 0 ≤ r < g(θ)}, its image Sπ

n
+t (D) can be

parametrized in the same manner by the function g∗(θ) = g(θ − 2t). Thus

Sπ

n
+t(D) ∩ σ

(

t,
π

n
+ t
)

= {reiθ; θ ∈
(

t,
π

n
+ t
)

, 0 ≤ r < g(θ − 2t)}.

Therefore, we need to prove that F (θ) = g(θ) − g∗(θ) is nonnegative for every θ in
the interval (t, π

n
+ t). This will be possible thanks to the assumptions of symmetry

(that is g is even and 2π
n

-periodic) and monotonicity (that is g is nondecreasing on

[0, π
n
]). Indeed, these properties imply that on the interval

(

t, π
n

+ t
)

,

• g achieves its maximum at θ = π
n
,

• g∗ achieves its minimum at θ = 2t.

θ = 0

t

θ =

θ = 

2t

θ = π\n

θ =
 π\

n +
t

θ 
= 

2π
\n

 

θ 
= 

2π
\n

 +
t

θ = 0

t
θ = 

θ = π\n

θ 
= 

π\
n 

+t

θ =
 2t

\n
 \n

 +
t

θ 
= 

2π

θ 
= 

2π

case 2t <
π

n
case 2t >

π

n

Four cases must be considered separately:

- If t < θ ≤ min{2t, π
n
}, we may write, since g is even, F (θ) = g(θ)−g(2t−θ),

with 0 ≤ 2t−θ < θ ≤ π
n
. Since g is nondecreasing on [0, π

n
], we get F (θ) ≥ 0.

- If max{2t, π
n
} ≤ θ < π

n
+ t, we may write, since g is even and 2π

n
-periodic,

F (θ) = g(2π
n
−θ)−g(θ−2t) with 0 ≤ θ−2t < 2π

n
−θ ≤ π

n
. Hence, F (θ) ≥ 0.
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- If 2t < π
n

and 2t ≤ θ ≤ π
n
, then 0 ≤ θ − 2t < θ ≤ π

n
and, then, F (θ) =

g(θ) − g(θ − 2t) ≥ 0.
- If 2t > π

n
and π

n
≤ θ ≤ 2t, then 0 ≤ 2t − θ < 2π

n
− θ ≤ π

n
and, then,

F (θ) = g(2π
n
− θ) − g(2t− θ) ≥ 0.

Hence, F (θ) is nonnegative for all θ in (t, π
n

+ t).
Now, if D is not a disk, then g is nonconstant on [0, π

n
]. Following the arguments

above, we deduce that the function F (θ) is positive somewhere on (t, π
n

+ t) which

means that Sπ

n
+t

(

∂D ∩ σ
(

π
n

+ t, 2π
n

+ t
))

meets the interior of D. �

Proof of Theorem 2. Notice first that, since λ is an even and 2π
n

-periodic function
of t, one immediately gets, ∀k ∈ Z, λ(k π

n
− t) = λ(k π

n
+ t) and, then,

λ′
(

k
π

n

)

= 0.

Alternatively, one can deduce that λ′
(

k π
n

)

= 0 from Hadamard’s variation formula
(1) after noticing that the domain Ω(k π

n
) is symmetric with respect to the x1-axis

and that the first Dirichlet eigenfunction u(k π
n
) satisfies u ◦S0 = u, where S0 is the

symmetry with respect to the x1-axis.
Let us fix a t in

(

0, π
n

)

and denote by u the nonnegative first Dirichlet eigen-

function of Ω(t) satisfying
∫

Ω(t) u2 = 1. The domain Ω(t) is clearly invariant by

the rotation ρ 2π

n

of angle 2π
n

, hence u ◦ ρ 2π

n

= u. On the other hand, the do-

main B being parametrized by a positive even 2π
n

-periodic function f(θ), that is

B = {reiθ; θ ∈ [0, 2π), 0 ≤ r < f(θ)}, one has

Bt = {reiθ; θ ∈ [0, 2π), 0 ≤ r < h(θ)},
with h(θ) = f(θ − t). Hence, the function ηt · v is invariant by ρ 2π

n

(Lemma 1) and

we have (Hadamard formula (1))

λ′(t) =

∫

∂Bt

∣

∣

∣

∣

∂u

∂ηt

∣

∣

∣

∣

2

ηt · v dσ = n

∫

∂Bt∩σ(t, 2π

n
+t)

∣

∣

∣

∣

∂u

∂ηt

∣

∣

∣

∣

2

ηt · v dσ.

Since Bt is symmetric with respect to the axis z π

n
+t, we have (Lemma 1), ηt ·v(π

n
+

t + θ) = −ηt · v(π
n

+ t− θ) or, equivalently, ηt · v(x) = −ηt · v(x∗), where x∗ denotes
the symmetric of x with respect to z π

n
+t. This yields

λ′(t) = n

∫

∂Bt∩σ( π

n
+t, 2π

n
+t)

(

∣

∣

∣

∣

∂u

∂ηt

(x)

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∂u

∂ηt

(x∗)

∣

∣

∣

∣

2
)

ηt · v(x) dσ

Notice that the function h(θ) is decreasing between π
n

+ t and 2π
n

+ t and, then,

ηt · v is nonnegative on ∂Bt ∩ σ(π
n

+ t, 2π
n

+ t) (Lemma 1).

Let H(t) := Ω(t)∩σ(π
n

+t, 2π
n

+t). Applying Lemma 2, and since Bt is symmetric
with respect to the axis z π

n
+t, one gets

Sπ

n
+t(H(t)) ⊂ Ω(t) ∩ σ(t,

π

n
+ t).

Hence, the function w(x) = u(x) − u(x∗) is well defined on H(t) and satisfies

w(x) = 0 for all x in ∂H(t)∩
(

∂Bt ∪ z π

n
+t ∪ z 2π

n
+t

)

. Moreover, since u vanishes on

∂D and is positive inside Ω(t), w(x) ≤ 0 for all x in ∂H(t) ∩ ∂D and w(x) < 0 for
certain x in ∂H(t) ∩ ∂D (recall that D is not a disk and apply the second part of
Lemma 2).
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Therefore, the nonconstant function w satisfies the following:
{

∆w = −λ(t)w in H(t)
w ≤ 0 on ∂H(t).

Hence, w must be nonpositive on the whole of H(t). Otherwise, a nodal domain
V ⊂ H(t) of w would have the same first Dirichlet eigenvalue as Ω(t). But, due to
the invariance of Ω(t) by ρ 2π

n

, the domain Ω(t) would contain n copies of V leading

to a strong contradiction with the domain monotonicity theorem for eigenvalues.
Therefore, ∆w ≥ 0 in H(t) and w achieves its maximal value (i.e. zero) on ∂Bt ∩
σ(π

n
+ t, 2π

n
+ t) ⊂ ∂H(t). The Hopf maximum principle (see [13, Theorem 7, ch.2])

then implies that, at any regular point x of ∂Bt ∩ σ(π
n

+ t, 2π
n

+ t), one has

∂w

∂ηt

(x) =
∂u

∂ηt

(x) − ∂u

∂ηt

(x∗) < 0.

It follows that λ′(t) ≤ 0 and that the equality holds if and only if ηt · v ≡ 0. By
Lemma 1, this last equality occurs if and only if f is constant which means that B

is a disk.
�
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François Rabelais de Tours, Parc de Grandmont, F-37200 Tours France

E-mail address: elsoufi@univ-tours.fr ; kiwan@lmpt.univ-tours.fr


