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We deal with the following eigenvalue optimization problem: Given a bounded domain D ⊂ R 2 , how to place an obstacle B of fixed shape within D so as to maximize or minimize the fundamental eigenvalue λ 1 of the Dirichlet Laplacian on D \ B. This means that we want to extremize the function ρ → λ 1 (D \ ρ(B)), where ρ runs over the set of rigid motions such that ρ(B) ⊂ D. We answer this problem in the case where both D and B are invariant under the action of a dihedral group Dn, n ≥ 2, and where the distance from the origin to the boundary is monotonous as a function of the argument between two axes of symmetry. The extremal configurations correspond to the cases where the axes of symmetry of B coincide with those of D.

Introduction and Statement of the main Result

The relations between the shape of a domain and the eigenvalues of its Dirichlet or Neumann Laplacian, have been intensively investigated since the 1920's when Faber [START_REF] Faber | dass unter allen homogenen membranen von gleicher fläche und gleicher spannung die kreisförmige den tiefsten grundton gibt[END_REF] and Krahn [START_REF] Krahn | Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises[END_REF] have proved independently the famous eigenvalue isoperimetric inequality first conjectured by Rayleigh (1877): the first Dirichlet eigenvalue λ 1 (Ω) of any bounded domain Ω ⊂ R n satisfies

λ 1 (Ω) ≥ λ 1 (Ω * ),
where Ω * is a ball having the same volume as Ω. We refer to the review papers of Ashbaugh [START_REF] Ashbaugh | Open problems on eigenvalues of the Laplacian[END_REF][START_REF] Ashbaugh | Isoperimetric and universal inequalities for eigenvalues[END_REF] and Henrot [START_REF] Henrot | Minimization problems for eigenvalues of the Laplacian[END_REF] for a survey of recent results on optimization problems involving eigenvalues.

The present work deals with the following eigenvalue optimization problem: Given a bounded domain D, we want to place an obstacle (or a hole) B, of fixed shape, inside D so as to maximize or minimize the fundamental eigenvalue λ 1 of the Laplacian or Schrödinger operator on D \ B with Zero Dirichlet conditions on the boundary.

In other words, the problem is to optimize the principal eigenvalue function ρ → λ 1 (D \ ρ(B)), where ρ runs over the set of rigid motions such that ρ(B) ⊂ D.

The first result obtained in this direction concerned the case where both D and B are disks of given radii. Indeed, it follows from Hersch's work [START_REF] Hersch | The method of interior parallels applied to polygonal or multiply connected membranes[END_REF] that the maximum of λ 1 is achieved when the disks are concentric (see also [START_REF] Ramm | Inequalities for the minimal eigenvalue of the Laplacian in an annulus[END_REF]). This result has been extended to any dimension by several authors (Harrell, Kröger and Kurata [START_REF] Harrell | On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue[END_REF], Kesavan [START_REF] Kesavan | On two functionals connected to the Laplacian in a class of doubly connected domains[END_REF], ...). Actually, Harrell, Kröger and Kurata [START_REF] Harrell | On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue[END_REF] gave a more general result showing that, if the domain D satisfies an interior symmetry property with respect to a hyperplane P passing through the center of the spherical obstacle B (which means that the image by the reflection with respect to P of one component of D \ P is contained in D), then the Dirichlet fundamental eigenvalue λ 1 (D \ B) decreases when the center of B moves perpendicularly to P in the direction of the boundary of D. In the particular case where both the domain D and the obstacle B are balls, this implies that the minimum of λ 1 (D \ B) corresponds to the limit case where B touches the boundary of D.

Notice that when the obstacle B is a disk, only translations of B may affect the λ 1 of D \ B and the optimal placement problem reduces to the choice of the center of B inside D.

In the present work we investigate a kind of dual problem in the sense that we consider a nonspherical obstacle B whose center of mass is fixed inside D, and seek the optimal positions while turning B around its center.

It is of course hopeless to expect a universal solution to this problem. In fact, we will restrict our investigation to a class of domains satisfying a dihedral symmetry and a monotonicity conditions.

Thus, let D be a simply-connected plane domain and assume that the following conditions are satisfied:

(i) (D n -symmetry) for an integer n ≥ 2, D is invariant under the action of the dihedral group D n of order 2n generated by the rotation ρ 2π n of angle 2π n and a reflection S. Such a domain admits n axes of symmetry passing through the origin and such that the angle between 2 consecutive axes is π n . (ii) (monotonicity of the boundary) the distance d(O, x) from the origin to a point x of the boundary of D is monotonous as a function of the argument of x, in a sector delimited by two consecutive symmetry axes.

Notice that assumption (i) guarantees that the center of mass of D is at the origin. Regular n-gones centered at the origin are the simplest examples of domains satisfying these assumptions. More generally, if g is any positive even 2π n -periodic continuous function that is monotonous on the interval (0, π n ), then the domain

D = {re iθ ; θ ∈ [0, 2π), 0 ≤ r < g(θ)},
satisfies assumptions (i) and (ii). Actually, up to a rigid motion, any domain satisfying assumptions (i) and (ii) can be parametrized in such a manner. It is worth noticing that, due to the monotonicity condition, the "distance to the origin" function on the boundary of D achieves its maximum and its minimum alternatively at the intersection points of ∂D with the 2n half-axes of symmetry. The n points of ∂D at maximal (resp. minimal) distance from the origin will be called "outer vertices" (resp. "inner vertices") of D.

Our main result is the following Theorem 1. Let D and B be two plane domains satisfying the assumptions of D n -symmetry and monotonicity (i) and (ii) above for an integer n ≥ 2. Assume furthermore that B has C 2 boundary and that ρ(B) ⊂ D for all ρ ∈ SO(2). Then, the fundamental Dirichlet eigenvalue λ 1 (D \ B) of D \ B is optimized exactly when the axes of symmetry of B coincide with those of D.

The maximizing configuration corresponds to the case where the outer vertices of B and D lie on the same half-axes of symmetry (we will then say that B occupies the "ON" position in D).

The minimizing configuration corresponds to the case where the outer vertices of B lie on the half-axes of symmetry passing through the inner vertices of D (this is what will be called the "OFF" position).

Actually, we will prove that, except for the trivial case where D or B is a disk, the fundamental Dirichlet eigenvalue of D \ B decreases gradually when B switches from "ON" to "OFF".

The main ingredients of the proof of Theorem 1 are Hadamard's variation formula for λ 1 and the technique of domain reflection initiated by Serrin [START_REF] Serrin | A symmetry problem in potential theory[END_REF] in PDE's setting.

Examples of maximal (left) and minimal (right) configurations

with n = 2, 3 and 4 respectively

Extensions of Theorem 1 to the following situations can be obtained up to slight changes in the proof (indeed, only the Hadamard formula should be replaced by the variation formula corresponding to the new functional):

(1) Soft obstacles: instead considering the Dirichlet Laplacian on D \ B, we consider the Schrödinger type operator

H(α, B) := ∆ -αχ B
acting on H 1 0 (D), where α > 0 and χ B is the indicator function of B. Optimization problems related to the fundamental eigenvalue of operators of this kind have been investigated in particular in [START_REF] Harrell | On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue[END_REF] and [START_REF] Chanillo | Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes[END_REF]. Under the assumptions of Theorem 1 on D and B, ∀α > 0, the fundamental eigenvalue of H(α, B) achieves its maximum at the "ON" position and its minimum at the "OFF" position.

(2) Wells: this case corresponds to the operator H(α, B) with α < 0. Under the circumstances of Theorem 1, ∀α < 0, the first eigenvalue of H(α, B) achieves its maximum at the "OFF" position and its minimum at the "ON" position.

(3) Stationary problem : the problem now is to optimize the Dirichlet energy

J(D \ B) := D\B |∇u| 2 dx of the unique solution u of the problem ∆u = -1 in D \ B u = 0 on ∂(D \ B),
This problem was treated in [START_REF] Kesavan | On two functionals connected to the Laplacian in a class of doubly connected domains[END_REF]Section 2] in the case where both D and B are balls. Under the assumptions of Theorem 1 on D and B, one can prove that J(D \ B) achieves its maximum when B is at the "ON" position and its minimum when B is at the "OFF" position.

Proof of the main result

Without loss of generality, we may assume that the domain D and the obstacle B are centered at the origin and are both symmetric with respect to the x 1 -axis so that they can be parametrized in polar coordinates by

D = {re iθ ; θ ∈ [0, 2π), 0 ≤ r < g(θ)}, B = {re iθ ; θ ∈ [0, 2π), 0 ≤ r < f (θ)},
where f and g are two positive even 2π n -periodic functions which are nondecreasing on (0, π n ). To avoid technicalities, we suppose throughout that g is continuous and f is C 2 . Extensions of our result to a wider class of domains would certainly be possible up to some additional technical difficulties.

The condition that the obstacle B can freely rotate around his center inside D, that is ρ( B) ⊂ D for all ρ ∈ SO(2), amounts to the following:

f ( π n ) = max 0≤θ≤2π f (θ) < min 0≤θ≤2π g(θ) = g(0).
Let us denote, for all t ∈ R, by ρ t the rotation of angle t, that is,

∀ζ ∈ R 2 ∼ = C, ρ t (ζ) = e it ζ,
and set

B t := ρ t (B) and Ω(t) := D \ B t .
Let λ(t) be the fundamental eigenvalue of the Dirichlet Laplacian on Ω(t). It is well known that, since it is simple, the first Dirichlet eigenvalue λ(t) is a differentiable function of t (see [START_REF] Garabedian | Convexity of domain functionals[END_REF][START_REF] Rellich | New results in the perturbation theory of eigenvalue problems, in Simultaneous linear equations and the determination of eigenvalues[END_REF] ). We denote by u(t) the one parameter family of nonnegative first eigenfunctions satisfying, ∀t ∈ R,

   ∆u(t) = -λ(t)u(t) in Ω(t) u(t) = 0 on ∂Ω(t) Ω(t) u 2 (t) = 1.
The derivative of λ(t) is then given by the following so-called Hadamard formula (see [START_REF] El Soufi | Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold[END_REF][START_REF] Garabedian | Convexity of domain functionals[END_REF][START_REF] Hadamard | Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées[END_REF][START_REF] Schiffer | Hadamard's formula and variation of domain-functions[END_REF]):

(1)

λ ′ (t) = ∂Bt ∂u(t) ∂η t 2 η t • v dσ,
where η t is the inward unit normal vector field of ∂Ω(t) (hence, along ∂B t the vector η t is outward with respect to B t ) and v denotes the restriction to ∂Ω(t) = ∂D ∪ ∂B t of the deformation vector field. In our case, the vector v vanishes on ∂D and is given by v(ζ) = iζ for all ζ ∈ ∂B t . Since both Ω and B are invariant by the dihedral group D n , it follows that, ∀t ∈ R, Ω(t + 2π n ) = Ω t . Moreover, if we denote by S 0 the reflection with respect to the x 1 -axis, then we clearly have ρ -t = S 0 • ρ t • S 0 which gives B -t = S 0 (B t ) and Ω -t = S 0 (Ω t ). Hence, as a function of t, the first Dirichlet eigenvalue of Ω t is even and periodic of period 2π n , that is, ∀t ∈ R, λ(t + 2π n ) = λ(t) and λ(-t) = λ(t). Therefore, it suffices to investigate the variations of λ(t) on the interval 0, π n and Theorem 1 is a consequence of the following:

Theorem 2. Assume that neither D nor B is a disk. (i) ∀t ∈ 0, π n , λ ′ (t) < 0. Hence, λ(t) is strictly decreasing on 0, π n . (ii) ∀k ∈ Z, λ ′ (k π n ) = 0 and k π n , k ∈ Z,
are the only critical points of λ on R. Hence, λ(t) achieves its maximum for t = 0 mod 2π n which corresponds to the "ON" position, and its minimum for t = π n mod 2π n which corresponds to the "OFF" position. Of course, if D or B is a disk, then the function λ(t) is constant.

In what follows we will denote, for any α ∈ R, by z α the θ = α axis, that is z α := {re iα ; r ∈ R}, and by z + α the half-axis {re iα ; r ≥ 0}. We start the proof with the following elementary lemma. Lemma 1. Let K be a plane domain defined in polar coordinates by K = {re iθ ; θ ∈ [0, 2π), 0 ≤ r < h(θ)}, where h is a positive 2π-periodic function of classe C 1 , and let v be a vector field whose restriction to ∂K is given by v(θ) := v(h(θ)e iθ ) = ih(θ)e iθ = h(θ)e i(θ+ π 2 ) .

We denote by η the unit outward normal vector field of ∂K. One has, at any point h(θ)e iθ of ∂K where η is defined,

(i) η(θ) := η(h(θ)e iθ ) = h(θ)e iθ -ih ′ (θ)e iθ √ h 2 (θ)+h ′2 (θ) (ii) η • v(θ) = -h(θ)h ′ (θ) √ h 2 (θ)+h ′2 (θ)
. Hence, η.v(θ) has constant sign on an interval I if and only if h is monotonous in I. (iii) if for some α > 0, the domain K is symmetric with respect to the axis z α , then the function η • v is antisymmetric w.r.t this axis, that is

η • v(α + θ) = -η • v(α -θ).
Proof. Assertions (i) and (ii) are direct consequences from the definition of K. The fact that K is symmetric with respect to the axis z α implies that the function h satisfies h(α + θ) = h(αθ). Therefore, (iii) follows immediately from (ii).

We will denote by S α the symmetry with respect to the axis z α . We will also denote, for α < β, by σ (α, β) the sector delimited by z + α and z + β , that is σ (α, β) = {re iθ ; r > 0 and α < θ < β}. Lemma 2. Let D be as above. For all t ∈ 0, π n , we have:

S π n +t D ∩ σ π n + t, 2π n + t ⊆ D ∩ σ t, π n + t .
Moreover, if D is not a disk, then

S π n +t ∂D ∩ σ π n + t, 2π n + t ∩ D = ∅.
Proof. The action of the symmetry S π n +t is given in polar coordinates by S π n +t (re iθ ) = re i(2( π n +t)-θ) . Hence,

S π n +t D ∩ σ π n + t, 2π n + t = S π n +t (D) ∩ σ t, π n + t .
Moreover, the domain D being parametrized by a positive even 2π n -periodic function g(θ), that is D = {re iθ ; θ ∈ [0, 2π), 0 ≤ r < g(θ)}, its image S π n +t (D) can be parametrized in the same manner by the function g * (θ) = g(θ -2t). Thus

S π n +t (D) ∩ σ t, π n + t = {re iθ ; θ ∈ t, π n + t , 0 ≤ r < g(θ -2t)}.
Therefore, we need to prove that F (θ) = g(θ)g * (θ) is nonnegative for every θ in the interval (t, π n + t). This will be possible thanks to the assumptions of symmetry (that is g is even and 2π n -periodic) and monotonicity (that is g is nondecreasing on [0, π n ]). Indeed, these properties imply that on the interval t, π n + t , • g achieves its maximum at θ = π n , • g * achieves its minimum at θ = 2t. Four cases must be considered separately: -If t < θ ≤ min{2t, π n }, we may write, since g is even, F (θ) = g(θ)-g(2t-θ), with 0 ≤ 2t-θ < θ ≤ π n . Since g is nondecreasing on [0, π n ], we get F (θ) ≥ 0. -If max{2t, π n } ≤ θ < π n + t, we may write, since g is even and 2π n -periodic,

θ = 0 t θ = θ = 2 t θ = π \ n θ = π \ n + t θ = 2 π \n θ = 2π \n +t θ = 0 t θ = θ = π \ n θ = π \ n + t θ = 2 
F (θ) = g(2 π n -θ)-g(θ-2t) with 0 ≤ θ-2t < 2 π n -θ ≤ π n . Hence, F (θ) ≥ 0.
-If 2t < π n and 2t ≤ θ ≤ π n , then 0 ≤ θ -2t < θ ≤ π n and, then,

F (θ) = g(θ) -g(θ -2t) ≥ 0. -If 2t > π n and π n ≤ θ ≤ 2t, then 0 ≤ 2t -θ < 2 π n -θ ≤ π n and, then, F (θ) = g(2 π
nθ)g(2tθ) ≥ 0. Hence, F (θ) is nonnegative for all θ in (t, π n + t). Now, if D is not a disk, then g is nonconstant on [0, π n ]. Following the arguments above, we deduce that the function F (θ) is positive somewhere on (t, π n + t) which means that S π n +t ∂D ∩ σ π n + t, 2π n + t meets the interior of D. Proof of Theorem 2. Notice first that, since λ is an even and 2π n -periodic function of t, one immediately gets, ∀k ∈ Z, λ(k π nt) = λ(k π n + t) and, then,

λ ′ k π n = 0.
Alternatively, one can deduce that λ ′ k π n = 0 from Hadamard's variation formula (1) after noticing that the domain Ω(k π n ) is symmetric with respect to the x 1 -axis and that the first Dirichlet eigenfunction u(k π n ) satisfies u • S 0 = u, where S 0 is the symmetry with respect to the x 1 -axis.

Let us fix a t in 0, π n and denote by u the nonnegative first Dirichlet eigenfunction of Ω(t) satisfying Ω(t) u 2 = 1. The domain Ω(t) is clearly invariant by the rotation ρ 2π n of angle 2π n , hence u • ρ 2π n = u. On the other hand, the domain B being parametrized by a positive even 2π n -periodic function f (θ), that is

B = {re iθ ; θ ∈ [0, 2π), 0 ≤ r < f (θ)}, one has B t = {re iθ ; θ ∈ [0, 2π), 0 ≤ r < h(θ)}, with h(θ) = f (θ -t). Hence, the function η t • v is invariant by ρ 2π
n (Lemma 1) and we have (Hadamard formula (1))

λ ′ (t) = ∂Bt ∂u ∂η t 2 η t • v dσ = n ∂Bt∩σ(t, 2π n +t) ∂u ∂η t 2 η t • v dσ.
Since B t is symmetric with respect to the axis z π n +t , we have (Lemma 1), Hence, the function w(x) = u(x)u(x * ) is well defined on H(t) and satisfies w(x) = 0 for all x in ∂H(t) ∩ ∂B t ∪ z π n +t ∪ z 2π n +t . Moreover, since u vanishes on ∂D and is positive inside Ω(t), w(x) ≤ 0 for all x in ∂H(t) ∩ ∂D and w(x) < 0 for certain x in ∂H(t) ∩ ∂D (recall that D is not a disk and apply the second part of Lemma 2). Therefore, the nonconstant function w satisfies the following: ∆w = -λ(t)w in H(t) w ≤ 0 on ∂H(t).

η t • v( π n + t + θ) = -η t • v( π n + t -θ) or, equivalently, η t • v(x) = -η t • v(x * ),
Hence, w must be nonpositive on the whole of H(t). Otherwise, a nodal domain V ⊂ H(t) of w would have the same first Dirichlet eigenvalue as Ω(t). But, due to the invariance of Ω(t) by ρ 2π n , the domain Ω(t) would contain n copies of V leading to a strong contradiction with the domain monotonicity theorem for eigenvalues. Therefore, ∆w ≥ 0 in H(t) and w achieves its maximal value (i.e. zero) on ∂B t ∩ σ( 

  where x * denotes the symmetric of x with respect to z π n +t . This yields

	λ ′ (t) = n	∂Bt∩σ( π n +t, 2π n +t)	∂u ∂η t	(x)	2	-	∂u ∂η t	(x * )	2	η t • v(x) dσ
	Notice that the function h(θ) is decreasing between π n + t and 2π n + t and, then, η t • v is nonnegative on ∂B t ∩ σ( π n + t, 2π n + t) (Lemma 1). Let H(t) := Ω(t)∩σ( π n +t, 2π n +t). Applying Lemma 2, and since B t is symmetric with respect to the axis z π n +t , one gets
		S π n +t (H(t)) ⊂ Ω(t) ∩ σ(t,	π n	+ t).	

  π n + t, 2π n + t) ⊂ ∂H(t). The Hopf maximum principle (see [13, Theorem 7, ch.2]) then implies that, at any regular point x of ∂B t ∩ σ( π n + t, 2π n + t), one has It follows that λ ′ (t) ≤ 0 and that the equality holds if and only if η t • v ≡ 0. By Lemma 1, this last equality occurs if and only if f is constant which means that B is a disk.
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