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The purpose of this paper is to study the problem of estimating a compactly supported function from noisy observations of its moments in an ill-posed inverse problem framework. We provide a statistical approach to the famous Hausdorff classical moment problem. We prove a lower bound on the rate of convergence of the mean integrated squared error and provide an estimator which attains minimax rate over the corresponding smoothness classes.

The Hausdorff moment problem which dates back to 1921 (see [START_REF] Hausdorff | Summationsmethoden und Momentfolgen, I[END_REF]) occupies a central place in the field of inverse problems and has been an object of great interest in literature since then. For instance, the particular case when only a finite number of moments are known which is called the Truncated Hausdorff moment problem, has recently aroused much attention (see [START_REF] Talenti | Recovering a function from a finite number of moments[END_REF], [START_REF] Fasino | Recovering a probability density from a finite number of moments and local a priori information[END_REF], [START_REF] Inglese | Christoffel functions and finite moments problems[END_REF], [START_REF] Tagliani | Entropy estimate of probability densities having assigned moments: Hausdorff case[END_REF]). Another interest and aspect of the Hausdorff moment problem lies in its very close link to the inversion of the Laplace transform when this latter is given at equidistant points ( see for instance [START_REF] Brianzi | On the regulized inversion of the Laplace transform[END_REF], [START_REF] Dung | A Hausdorff-like moment problem and the inversion of the Laplace transform[END_REF], [START_REF] Tagliani | Numerical inversion of Laplace transform on the real line of probability density functions[END_REF], [START_REF] Tagliani | Numerical inversion of the Laplace transform via fractional moments[END_REF]). In fact, by a simple change of variable, the problem of Laplace transform inversion is equivalent to the Hausdorff moment problem. More recently, [START_REF] Ang | Moment Theory and Some inverse Problems in Potential Theory and Heat Conduction[END_REF] have presented the Hausdorff moment problem under the angle of ill posed problems, in a sense that solutions do not depend continuously on the given data.

Nonetheless, until now, as far as we know, the statistical approach which consists in assuming that the noise is stochastic has been very little put forward and rarely raised.

We consider in this paper a statistical point of view of the Hausdorff moment problem. We aim at reconstructing an unknown function from noisy measurements of its moments on a symmetric bounded interval in a statistical inverse problem framework. In reality, it is barely impossible to measure moments with having any corruption. Without loss of generality we may and will suppose that [-a, a] = [-1, 1]. In practise, observations of moments appear especially in quantum physics (see for instance [START_REF] Ash | Moments problem and the causal set approach to quantum gravity[END_REF] and Mead and Papanicolaou (1983)), image analysis (see [START_REF] Teague | Image analysis via the general theory of moments[END_REF]), engineering mechanics (see [START_REF] Athanassoulis | The truncated Hausdorff moment problem solved by using kernel density functions[END_REF]) and all the references therein). We shall give now some concrete examples of the application of the problem of moments, in which either one can have access directly to moments to reconstruct the unknown function at stake or the moment problem appears in the line of reasoning.

Examples. 1. In quantum physics, a big issue aims at reconstructing a positive density of states in harmonic solids from its moments on a finite interval. It is explained how to measure these moments (p 2410 and 2411 in Mead and Papan-icolaou (1983)) and (p 3078 and 3079 in Gaspard and Cyrot-Lackmann (1973)).

2. In the field of quantum gravity, the transition probabilities for a Markov chain related to the causal set approach to modeling discrete theories of quantum gravity satisfy a moment problem (see Ash and McDonald (2003)). One has to measure those probabilities.

3. In the context of non classical moment problem, we may cite the following example (see [START_REF] Ang | A nonlinear integral equation of gravimetry: Uniqueness and approximation by linear moments[END_REF]). It deals with the determination of the shape of an object in the interior of the Earth by gravimetric methods.

The density of that object differs from the density of the surrounding medium.

Assuming a flat earth model, the problem consists in finding a curve x → σ(x) in the half plane 0 ≤ σ(x) < H, 0 ≤ x ≤ 1, σ(x) satisfying a non linear integral equation of the first kind of the form

1 2π 1 0 H -σ(ξ) (x -ξ) 2 + (H -σ(ξ)) 2 dξ = f (x),
where f (x) is a given function. The nonlinear integral equation can be approximated by the following linear integral equation in ϕ:

1 0 ϕ(ξ) (M + x + ξ) 2 dξ = 2πf (-M -x),
with ϕ(x) = H-σ(x), M is large enough and x ≥ 0. By taking x = 1, 2, . . . , n, . . . , we get the following equivalent moment problem:

1 0 ϕ(ξ) (M + n + ξ) 2 dξ = µ n , where µ n = 2πf (-M -n), n = 1, 2, . . .
In the first examples cited above, the authors aim at estimating an unknown density from measurements of its moments. The following paper presents the case of the reconstruction of an unknown function which could be in particular a density of probability, when one has its moments corrupted with some white noise. This approach constitutes one among other ill-posed inverse problems point of view.

Estimation in statistics using moments has already been put forward (see Mnatsakanov and Ryumgaart (2005)), but the approach there was based on empirical moments and empirical processes, the results were expressed in terms of weak convergence whereas our paper is built upon an ill-posed inverse approach with minimax results.

The estimation procedure we use is based on the expansion of the unknown function through the basis of Legendre polynomials and an orthogonal series method.

We establish an upper bound and a lower bound on the estimation accuracy of the procedure showing that it is optimal in a minimax sense. We show that the achieved rate is only of logarithmic order. This fact has already been underlined by [START_REF] Goldenshluger | On the shape-from-moments problem and recovering edges from noisy Radon data[END_REF]. In their paper, [START_REF] Goldenshluger | On the shape-from-moments problem and recovering edges from noisy Radon data[END_REF] tackled the problem of reconstructing a planar convex set from noisy geometric moments observations. They pointed out that in view of reconstructing a planar region from noisy measurements of moments, the upper bound was only in the order of logarithmic rate. The lower bound has not been proved.

In a second part, they consider reconstruction from Legendre moments to get faster rates of convergence. Legendre moments can be observed in the context of shapes reconstruction. In our present work, instead of considering a planar region, we deal with functions belonging to a Sobolev scale and we stay focused on the classic moments with respect to the monomials x k . Moreover, recently in the context of long-memory processes obtained by aggregation of independant parameter AR(1) processes and in view of estimating the density of the underlying random parameter, [START_REF] Leipus | Orthogonal series density estimation in a disaggregation scheme[END_REF] had to deal with a problem of moments. They obtained very slow logarithmic rate but without showing that this could be the best possible. In a certain way, our minimax results provide a piece of answer.

One might question this chronic slow rate which seems inherent to moment problems. In fact, the underlying problem lies in the non orthogonal nature of the monomials x k . They actually hamper the convergence rate to be improved for bringing a small amount of information. This remark is highlighted in our proof of the upper bound. This paper is organized as follows: in section 2 we introduce the model and the estimator of the unknown function and we finally state the two theorems.

Section 3 contains the proofs. The last section is an appendix in which we prove some useful inequalities about binomial coefficients.

Statement of the problem

2.1 The model. First of all, let us recall an usual statistical framework of ill-posed inverse problems (see [START_REF] Mathe | Optimal discretization of inverse problems in Hilbert scales. Regularization and self-regularization of projections methods[END_REF]):

Let A : H -→ H be a known linear operator on a Hilbert space H. The problem is to estimate an unknown function f ∈ H from indirect observations

Y = Af + εξ, (1.1)
where ε is the amplitude of the noise. It is supposed to be a small positive parameter which tends to 0, ξ is assumed to be a zero-mean Gaussian random process indexed by H on a probability space (Ω, A, P).

In the Hausdorff moment problem, the operator A k which determines the way the observations are indirect is defined by:

A k (f ) = 1 -1 x k f (x)dx, k ∈ N. (1.2)
Let us now state the Hausdorff moment problem model. From the equation (1.1) and (1.2), we derive the following sequence of moments observations pertubated by a stochastic noise:

y k = µ k + εξ k k = 0, 1, . . . . (1.3)
where ε is the noise level, it is supposed to tend to 0, ξ k are assumed to be i.i.d standard Gaussian random variables and µ k are the moments of the unknown function f given by:

µ k = 1 -1 x k f (x)dx k = 0, 1, . . . .
The assumption that the noise is modelled as i.i.d standard Gaussian random variables is a natural modeling and has already been used (see [START_REF] Rodriguez | Approximation methods for finite moment problem[END_REF], [START_REF] Brianzi | On the regulized inversion of the Laplace transform[END_REF], [START_REF] Goldenshluger | On the shape-from-moments problem and recovering edges from noisy Radon data[END_REF]).

It is a standard assumption in statistical inverse problems. Moreover, we may consider (1.3) as a first approach of the problem at hand.

The objective is to estimate the unknown function f supported on the bounded interval [-1, 1] from noisy observations of its moments in the model (1.3) which can be assimilated to a gaussian white noise model but using a non orthonormal basis and which constitutes an inverse problem setting. The solution of this problem is unique in the case k = ∞ (see [START_REF] Bertero | Linear inverse problems with discrete data. I: General formulation and singular system analysis[END_REF]), so that the statistical problem of recovering f from (1.3) is relevant. In the particular case of estimating a density of probability, the probability measure having density f is unique (see Feller (1968, Chap.7)).

The use of the Legendre polynomials in the Hausdorff classical moment problem in order to approximate the unknown measure is a completely standard and quite natural procedure (see [START_REF] Ang | Moment Theory and Some inverse Problems in Potential Theory and Heat Conduction[END_REF], [START_REF] Bertero | Linear inverse problems with discrete data. I: General formulation and singular system analysis[END_REF], [START_REF] Papoulis | A new method of inversion of the Laplace transform[END_REF], [START_REF] Teague | Image analysis via the general theory of moments[END_REF], [START_REF] Goldenshluger | On the shape-from-moments problem and recovering edges from noisy Radon data[END_REF]) as those polynomials directly result from the Gram-Schmidt orthonormalization of the family {x k }, k = 0, 1, . . . Consequently, expanding the function f to be estimated in the basis of Legendre polynomials falls naturally and fits the problem's nature.

Denote β n,j the coefficients of the normalized Legendre polynomial of degree n:

P n (x) = n j=0 β n,j x j
By considering the Legendre polynomials, if we multiply both sides of the model (1.3) by the coefficients β k,j we get the following model (for the proof see Lemma 3. in Appendix): Before going any further, we can make a remark at this stage concerning the model (1.4) which is an heteroscedastic gaussian sequence space model. Depending on the asymptotic behavior of the intensity noise σ 2 n one may characterize the nature of the problem's ill-posedness (see Cavalier, Golubev, Lepski and Tsy-bakov (2004)). Here, in our case, σ 2 n ≥ 1 4 4 n (see Lemma 5. from Appendix) and hence tends to infinity exponentially. We may say that we are dealing with a severely ill-posed problem with log-rates .

ỹk = θ k + εσ k ξ k (1.4) where σ 2 k = k j=0 β 2 k,j , ỹk = k j=0 β k,j y j , θ k = k j=0 β k,j µ j = 1 -1 f (x)P k (x)
We assume that f belongs to the Sobolev space W r 2 defined by:

W r 2 = {f ∈ L 2 [-1, 1] : k k 2r |θ k | 2 < ∞} where θ k = 1 -1 f (x)P k (x)
dx is the Legendre Fourier coefficient and P k denotes the normalized Legendre polynomial of degree k. Note that we consider more general functions than densities of probability which are included in this smoothness class.

Sobolev spaces associated with various kinds of underlying orthonormal basis constitute quite standard smoothness assumption classes in classical ill-posed problems (see for instance [START_REF] Mair | Statistical estimation in Hilbert scales[END_REF], [START_REF] Mathe | Stable summation of orthogonal series with noisy coefficients[END_REF], [START_REF] Goldenshluger | Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations[END_REF]). In the Hausdorff moment problem, the underlying basis is the Legendre polynomials.

Let us now give some highlights of the Sobolev space W r 2 regarding Legendre polynomials. [START_REF] Rafal'son | The approximation of functions by Fourier-Jacobi sums[END_REF] and [START_REF] Tomin | An application of the interpolation of linear operators to questions of the convergence of series of Fourier coefficients with respect to classical orthogonal polynomials[END_REF] have shown in the more general case of Jacobi polynomials (and thus in the particular case of Legendre polynomials we are considering here) that Sobolev space W r 2 consists of all functions f which have their derivatives f ′ , f ′′ , . . . , f (r-1) being absolutely continuous on each interval [a, b] ⊂ (-1, 1) (see also [START_REF] Mathe | Stable summation of orthogonal series with noisy coefficients[END_REF]).

2.2

The estimation procedure. Let us define now the estimator of f . This latter is induced by an orthogonal series method through the Legendre polynomials.

Any function in L 2 [-1, 1] has an expansion:

f (x) = ∞ k=0 θ k P k (x) with θ k = 1 -1 f (x)P k (x)dx.
The problem of estimating f reduces to estimation of the sequence {θ k } +∞ k=1 for Legendre polynomials form a complete orthogonal function system in L 2 [-1, 1].

We have

θ k = 1 -1 f (x)P k (x)dx = k j=0 β k,j 1 -1 f (x)x j dx = k j=0 β k,j µ j .
This leads us to consider the following estimator of θ:

θk = k j=0
β k,j y j and hence the estimator fN of f :

fN (x) = N k=0 θk P k (x) = N k=0 k j=0 β k,j y j P k (x)
where y j is given by (1.3) and N is an integer to be properly selected later.

The mean integrated square error of the estimator fN is:

E f fN -f 2 ,
where E f denotes the expectation w.r.t the distribution of the data in the model

(1.3) and for a function g ∈ L 2 [-1, 1], g = 1 -1 g 2 (x)dx 1/2 .
In this paper we shall consider the problem of estimating f using the mean integrated square risk in the model (1.3).

We state now the two results of the paper. The first theorem establishes an upper bound.

Theorem 1. For α > 0, define the integer N = ⌊α log (1/ε)⌋. Then we have

sup f ∈W r 2 E f fN -f 2 ≤ C[log(1/ε)] -2r ,
where C is an absolute positive constant and ⌊•⌋ denotes the floor function.

We recall that the floor function is defined by: ⌊x⌋ = max{n ∈ Z| n ≤ x}.

The second theorem provides a lower bound.

Theorem 2. We have

inf f sup f ∈W r 2 E f f -f 2 ≥ c[log(1/ε)] -2r ,
where c is a positive constant which depends only on r and the infimum is taken over all estimators f .

Proofs

3.1 Proof of Theorem 1. For the following proof, we consider the genuine model (1.3). By the usual MISE decomposition which involves a variance term and a bias term, we get

E f fN -f 2 = E f N k=0 ( θk -θ k ) 2 + k≥N +1 θ 2 k but E f N k=0 ( θk -θ k ) 2 = E f N k=0 ( k j=0 β k,j (y j -µ j )) 2 = ε 2 E f N k=0 ( k j=0 β k,j ξ j ) 2
and since ξ j iid ∼ N (0, 1), it follows that

E f fN -f 2 = ε 2 N k=0 k j=0 β 2 k,j + k≥N +1 θ 2 k = V N + B 2 N
We first deal with the variance term V N . To this end, we have to upper bound the sum of the squared coefficients of the normalized Legendre polynomial of degree k. Set σ 2 k = k j=0 β 2 k,j . An explicit form of P k (x) is given by (see [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical tables[END_REF]):

P k (x) = 2k + 1 2 1/2 1 2 k [k/2] j=0 (-1) k k j 2k -2j k x k-2j ,
where [•] denotes the integer part and k j denotes the binomial coefficient,

k j = k! (k-j)!j! . This involves σ 2 k = 2k + 1 2 1 4 k [k/2] j=0 k j 2k -2j k 2 ≤ 2k + 1 2 1 4 k 2k k 2 [k/2] j=0 k j 2 (3.1) ≤ 2k + 1 2 1 4 k 2k k 2 (2 k ) 2 , (3.2)
the inequality (3.1) is due to the fact that for 0

≤ j ≤ [k/2], we have 2k-2j k ≤ 2k k .
As for (3.2), we have

[k/2] j=0 k j 2 ≤ k j=0 k j 2 and it is well known that k j=0 k j 2 = (2 k ) 2 .
By using now that

{ 2k k } 2 ≤ 4 2k √ k
(see Lemma 4. from Appendix) we have

σ 2 k ≤ 2k + 1 2 4 2k √ k which yields V N ≤ Cε 2 N 3/2 4 2N ,
where C > 0 denotes an absolute positive constant. Now, it remains to upper bound the bias term B 2 N .

B 2 N = k≥N +1 θ 2 k = k≥N +1 k 2r k 2r θ 2 k ≤ N -2r ∞ k=1 k 2r θ 2 k Since the function f belongs to the space W r 2 , k k 2r |θ k | 2 < ∞, we get B 2 N = O(N -2r )
Finally we have the upper bound for the MISE:

E f fN -f 2 ≤ Cε 2 N 3/2 4 2N + C ′ N -2r (3.3)
At last, it remains to choose the optimal N which will minimize the expression (3.3). This N is obtained by equalizing the upper bounds of the bias and the variance term, namely:

Cε 2 N 3/2 4 2N = C ′ N -2r , as 4 2N ≫ N 2r+3/2 , consequently N ≍ log( 1 ε 2 ). Once one plugs N ≍ log( 1 ε 2 ) in (3.
3), the desired result of the Theorem 1. follows.

3.2 Proof of Theorem 2. From now on, to prove the lower bound and for practical reasons, we shall consider the model (1.4) which constitutes a heteroscedastic gaussian sequence space model. We recall that the equivalence between the models (1.3) and (1.4) is proved in Lemma 3. in Appendix.

A successful approach and standard tool to obtain lower bounds for minimax risk consists in specifying a subproblem namely constructing a subset of functions based on the observations (1.4). Then we lean on the application of the following particular version of Fano's lemma (see [START_REF] Birgé | Gaussian model selection[END_REF]) which will allow us to evaluate the difficulty of the specified subproblem and will give us a lower bound for the MISE associated to this subproblem.

One crucial point in the Fano's lemma is the use of the Kullback-Leibler divergence K(P 1 , P 0 ) between two probability distributions P 1 and P 0 defined by:

K(P 1 , P 0 ) = R log( p 1 (x) p 0 (x) )p 1 (x)dx if P 1 ≪ P 0 +∞ otherwise
Here's the version of Fano's lemma, we are going to exploit:

Lemma 1. Let η be a strictly positive real number, C be a finite set of elements {f 0 , . . . , f M } on R with |C| ≥ 6 and {P j } j∈C a set of probability measures indexed by C such that :

(i) f i -f j ≥ η > 0, ∀ 0 ≤ i < j ≤ M .
(ii) P j ≪ P 0 , ∀ j = 1, . . . , M, and

K(P j , P 0 ) ≤ H < log M
then for any estimator f and any nondecreasing function ℓ

sup f ∈C E f ℓ( f -f ) ≥ ℓ( η 2 ) 1 - 2 3 ∨ H log M .
First of all, we have to construct an appropriate set of functions E. We are going

to define E as a set of functions of the following type

E = f δ ∈ W r 2 : f δ = 1 [-1,1] ( c 0 m (4r+3)/2 2m-1 k=m δ k k (2r+2)/2 P k ), δ = (δ m , . . . , δ 2m-1 ) ∈ ∆ = {0, 1} m
We verify that f δ belongs to W r 2 . In this aim, we have to calculate the Legendre-Fourier coefficients associated with the function f δ :

θ δ l = 1 -1 f δ (x)P l (x)dx = c 0 m (4r+3)/2 • l (2r+2)/2 • δ l if l ∈ [m, 2m -1] 0 else (3.4) hence +∞ k=0 k 2r θ 2 δ k = c 2 0 m 4r+3 2m-1 k=m k 2r k 2r+2 δ 2 k ≤ c 2 0 m 4r+3 2m-1 k=m k 4r+2 δ 2 k ≤ c 2 0 (2m) 4r+2 m 4r+3 2m-1 k=m δ 2 k ≤ c 2 0 2 4r+2 < ∞, since δ k ∈ {0, 1}.
We set δ (0) = (0, . . . , 0) and f δ (0) ≡ f 0 . The Legendre-Fourier coefficients of f 0 are null:

θ 0 l = 0 ∀ l ∈ N.
(3.5)

We are now going to exhibit the suitable subset of functions C of the Lemma 1.

To this purpose, we only take into consideration a subset of M + 1 functions of

E: C = {f δ (0) , . . . , f δ (M ) }
where {δ (1) , . . . , δ (M ) } is a subset of {0, 1} m .

We precise that P δ is the law of the vector of observations Ỹ = (ỹ 1 , . . . , ỹ∞ ) in the model (1.4) for f = f δ , δ ∈ C.

We are now going to apply Lemma 1. We first check the condition (i), accordingly, we have to assess the distance f δ (i) -f δ (j) 2 . By the orthogonality of the system {P k } k and thanks to Parseval equality we get, for 0 ≤ i < j ≤ M ,

f δ (i) -f δ (j) 2 = c 2 0 m 4r+3 2m-1 k=m k 2r+2 (δ (i) k -δ (j) k ) 2 ≥ c 2 0 m 4r+3 • m 2r+2 2m-1 k=m (δ (i) k -δ (j) k ) 2 ≥ c 2 0 m 2r+1 2m-1 k=m (δ (i) k -δ (j) k ) 2 = c 2 0 m 2r+1 ρ(δ (i) , δ (j)
), where ρ(•, •) is the Hamming distance. We are going to resort to the Varshamov-Gilbert bound which is stated in the following lemma to find a lower bound of the quantity ρ(δ (i) , δ (j) ):

Lemma 2. (Varshamov-Gilbert bound, 1962). Fix m ≥ 8. Then there exists a subset {δ (0) , . . . , δ (M ) } of ∆ such that M ≥ 2 m/8 and ρ(δ (j) 

, δ (k) ) ≥ m 8 , ∀ 0 ≤ j < k ≤ M.
Moreover we can always take δ (0) = (0, . . . , 0).

For a proof of this lemma see for instance [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF], p 89.

Hence

f δ (i) -f δ (j) 2 ≥ (c 2 0 )/(8m 2r ) ≡ η 2
We are now going to check the condition (ii) in Lemma 1. and evaluate the Kullback-Leibler divergence. It is well known (see for instance [START_REF] Birgé | Gaussian model selection[END_REF] p 62) that for the Kullback-Leibler divergence in the case of a gaussian sequence space model we have

K(P δ , P 0 ) = 1 ε 2 ∞ l=1 |θ δ l -θ 0 l | 2 σ 2 l . (3.6)
Hence, by virtue of (3.4), (3.5) and (3.6), the Kullback-Leibler divergence between the two probability measures P 0 and P δ of the observations in the model (1.4) associated respectively with functions f = f 0 anf f = f δ for all δ ∈ C satisfies

K(P δ , P 0 ) = 1 ε 2 c 2 0 m 4r+3 2m-1 l=m l 2r+2 δ 2 l σ 2 l ≤ c 2 0 2 2r+2 ε 2 m 2r+2 m 4r+3 2m-1 l=m δ 2 l σ 2 l but thanks to Lemma 5. (see Appendix) we have 1 σ 2 l ≤ 1 4 l-1 which implies K(P δ , P 0 ) ≤ c 2 0 2 2r+4 ε 2 1 m 2r+1 4 m 2m-1 l=m δ 2 l ≤ c 2 0 2 2r+4 ε 2 1 m 2r+1 4 m • m ≤ c 2 0 2 2r+4 m ε 2 4 m One chooses m = 1 log 4 log( 1 ε 2 ) so that 1/4 m = ε 2 , hence: K(P δ , P 0 ) ≤ c 2 0 2 2r+4 m
and since m ≤ 8 log M/ log 2 (see Lemma 2)

K(P δ , P 0 ) ≤ c 2 0 2 2r+7 log 2 log M
Eventually one can choose c 0 small enough to have c ≡ c 2 0 2 2r+7 log 2 < 1. Since now all the conditions of the Lemma 1. are fulfilled, we are in position to apply its result with the loss function ℓ(x) = x 2 and η = (c 0 )/(2 √ 2m r ).

Therefore, we derive that whatever the estimator f ,

sup f ∈C E f [ f -f 2 ] ≥ c 2 0 32m 2r 1 - 2 3 ∨ c log M ≥ c 2 0 96m 2r .
but from above we had m = 1 log 4 log( 1 ε 2 ) which gives the desired lower bound.

Conclusion

The two theorems of this paper show that in the problem of estimating a function on a compact interval from noisy moments observations, the best rate of convergence one can achieve, supposing Sobolev scale smoothness and considering the mean integrated squared error, is only of logarithmic order. In a future work, one could try to generalise this result for L p loss and may obtain faster rate of convergence if one assumes a more restricted smoothness class involving super smooth functions. Besides, one may consider an heteroscedastic gaussian noise instead of a white noise model.

Appendix

Lemma 3. The models (1.3) and (1.4) are equivalent.

Proof. We recall the model (1.3):

y j = µ j + εξ j = 1 -1 f (x)x j dx + εξ j .
We are going now to multiply both sides of (1.3) by the coefficient β jk of the Legendre polynomial:

(1.3) ⇔ β kj y j = β kj We again use a recursion on n.

The inequality (5.3) is clear for n = 1. We suppose the property true for a certain n ≥ 1 and we shall prove it at the rank (n + 1). 

2(n

  dx and ξ k are i.i.d standard Gaussian random variables. So the model (1.3) is equivalent to the model (1.4). The model (1.4) will be used for the proof of the lower bound.

  Let us set ξk = k j=0 β kj ξ j . Since ξ j are i.i.d standard Gaussian random variables, the random variable ξk follows a normal law with zero mean and variance equal to k j=0 β 2 kj . Hence (1.3) is equivalent to:ỹk = θ k + εσ k ξ kAnd so, in order to prove (5.3) it remains to prove

  ) is true because it is equivalent to 4n 2 + 4n + 1 > 4n 2 + 4n what we always have.

	+ 1) n + 1	=	2n n	2(2n + 1) n + 1
		≥	4 n 2 √ n	2(2n + 1) n + 1
		>	4 n+1 √ 2 n + 1	(5.4)
	the inequality (5.4			
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where σ 2 k = k j=0 β 2 k,j , ỹk = k j=0 β k,j y j , θ k = k j=0 β k,j µ j = 1 -1 f (x)P k (x)dx and ξ k are i.i.d standard Gaussian random variables.

Lemma 4. For all n ≥ 1 we have:

(5.1)

Proof. Let us prove (5.1) by recursion on n. The inequality is clearly true for n = 1.

Suppose (5.1) true for a certain n ≥ 1.

by recursion hypothesis. It remains to prove that

which is true because we have (n+ 1 2 ) 1/4 ≤ (n+ 1 2 ) 3 (n+1) and (n+ 1 2 ) 3 ≤ n(n+1) 2 since 1 8 ≤ n 2 /2 + n/4. This completes the proof.

Lemma 5. For all n ≥ 1, we have:

where σ n is defined in (1.4).

Proof. Firstly, let us recall the value of the noise intensity σ 2 n :