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Abstract : The purpose of this paper is to study the problem of estimating a com-

pactly supported density of probability from noisy observations of its moments.

In fact, we provide a statistical approach to the famous Hausdorff classical mo-

ment problem. We prove an upper bound and a lower bound on the rate of

convergence of the mean squared error showing that the considered estimator

attains minimax rate over the corresponding smoothness classes.
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1. Introduction

The classical moment problem can be stated as follows: it consists in get-

ting some information about a distribution µ from the knowledge of its moments
∫

xkdµ(x). It has been largely investigated in many mathematical topics, among

others, in operator theory, mathematical physics, inverse spectral theory, prob-

ability theory, inverse problems, numerical analysis . . . We may cite the classical

and pioneer books in the field (see Akhiezer (1965), Shohat and Tamarkin (1943))

which put emphasis on the existence aspect of the solution and its unicity. Ac-

cording to the support of the distribution of interest, one may refer to one of

the three types of classical moment problems: the Hamburger moment problem

whose support of µ is the whole real line, the Stieljes problem on [0,+∞) and

finally the Hausdorff problem on a bounded interval. In this paper, we shall focus

on the last issue.

The Hausdorff moment problem which dates back to 1921 (see Hausdorff

(1921)) has been an object of great interest in the literature since then. For

instance, the particular case when only a finite number of moments are known,
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has aroused much attention in inverse problems (see Talenti (1987), Fasino and

Inglese (1996), Inglese (1995), Tagliani (2002)). Moreover, more recently, Ang,

Gorenflo, Le and Trong (2002) have presented the Hausdorff moment problem

under the angle of ill posed problems, in a sense that solutions do not depend

continuously on the given data. Nonetheless, until now, as far as we know, the

statistical approach which consists in introducing some randomness in the noise

has been very little put forward and rarely raised. However, in a slight different

context, we can cite the work of Goldenshluger and Spokoiny (2004). In their

paper, the authors tackled the problem of reconstructing a planar convex from

noisy geometric moments observations.

We consider in this paper a statistical point of view of the Hausdorff mo-

ment problem. We aim at estimating an unknown probability density from noisy

measurements of its moments on a symmetric bounded interval. Without loss of

generality we may and will suppose that [−a, a] = [−1, 1]. The estimation proce-

dure we use is based on the expansion of the unknown density through the basis

of Legendre polynomials and an orthogonal series method. We establish an upper

bound and a lower bound on the estimation accuracy of the procedure showing

that it is optimal in a minimax sense. We show that the achieved rate is only

of a logarithmic order. This fact has already been underlined by Goldenshluger

and Spokoiny (2004). Indeed, they pointed out that in view of reconstructing a

planar region, the upper bound was only in the order of logarithmic rate.

One might question this chronic slow rate which seems inherent to moment

problems. In fact, the underlying problem lies in the non orthogonal nature of

the monomials xk. They actually hamper the convergence rate to be improved

for bringing a small amount of information. This remark is highlighted in our

proof of the upper bound. As for the proof of the lower bound, it confirms the

severely ill-posed feature of the moment problem.

This paper is organized as follows: in section 2 we introduce the model and

the estimator of the unknown probability density and we finally state the two

theorems. Section 3 contains the proofs. The last section is an appendix in which

we prove some useful inequalities about binomial coefficients.

2. Estimation from moments
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Let µk be the moments of the unknown probability density f given by:

µk =

∫ 1

−1
xkf(x)dx k = 0, 1, . . . ,

One gets the following sequence of noisy observations:

yk = µk + εξk k = 0, 1, . . . , (4.1)

where 0 < ε < 1 and ξk are i.i.d standard Gaussian random variables. The

objective is to estimate the density f given these noisy moments observations.

Being supported on the finite interval [−1, 1], the measure having density f is

unique (see Feller (1968, Chap.7)), so that the statistical problem of recovering

f from (4.1) is relevant.

The smoothness of the probability density f is assessed in terms of its

Legendre-Fourier coefficients. In fact, we assume that f belongs to the Sobolev

ellipsoid Fr of order 2r defined by:

Fr = {f ∈ L2[−1, 1] : f ≥ 0,

∫ 1

−1
f(x)dx = 1,Σkk

2r|θk|2 < ∞}

where θk =
∫ 1
−1 f(x)Pk(x)dx and Pk denotes the normalized Legendre polynomial

of degree k.

The use of the Legendre polynomials in the Hausdorff classical moment

problem in order to approximate the unknown measure is quite natural (see

Ang, Gorenflo, Le and Trong (2002), Bertero, De Mol and Pike (1985)) as

they directly result from the Gram-Schmidt orthonormalization of the family

{xk}, k = 0, 1, . . . Consequently, the procedure which consists in representing

the density f to be estimated in the basis of Legendre polynomials appears nat-

urally.

Let us define now the estimator of f . This latter is induced by an orthogonal

series method through the Legendre polynomials.

Any function in L2[−1, 1] has an expansion:

f(x) =

∞
∑

k=0

θkPk(x) with θk =

∫ 1

−1
f(x)Pk(x)dx.



4 Thanh Mai Pham Ngoc

The problem of estimating f reduces to estimation of the sequence {θk}+∞
k=1 for

Legendre polynomials form a complete orthogonal function system in L2[−1, 1].

Denote βn,j the coefficients of the Legendre polynomial of degree n:

Pn(x) =

n
∑

j=0

βn,j xj

which yields

θk =

∫ 1

−1
f(x)Pk(x)dx =

k
∑

j=0

βk,j

∫ 1

−1
f(x)xjdx =

k
∑

j=0

βk,jµj .

This leads us to consider the following estimator of θ:

θ̂k =

k
∑

j=0

βk,jyj

and hence the estimator f̂N of f :

f̂N (x) =

N
∑

k=0

k
∑

j=0

βk,jyjPk(x) ≡
N

∑

k=0

f̂N,k(x),

where yj is given by (4.1) and N is an integer to be properly selected later.

The mean integrated square error of the estimator f̂N is:

Ef‖f̂N − f‖2,

where Ef denotes the expectation w.r.t the distribution of the data in the model

(4.1) and for a function g ∈ L2[−1, 1],

‖g‖ =

(
∫ 1

−1
g2(x)dx

)1/2

.

In this paper we shall consider the problem of estimating f using the mean

integrated square risk in the model (4.1).

We state now the two results of the paper. The first theorem establishes an

upper bound.
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Theorem 1. For α > 0, define the integer N = ⌊α log (1/ε)⌋. Then we have

sup
f∈Fr

Ef‖f̂N − f‖2 ≤ C[log(1/ε)]2r ,

where C is an absolute positive constant and ⌊·⌋ denotes the floor function.

The second theorem provides a lower bound.

Theorem 2. We have

inf
f̂

sup
f∈Fr

Ef‖f̂ − f‖2 ≥ c[log(1/ε)]2r ,

where c is a positive constant which depends only on r and the infimum is taken

over all estimators f̂ .

3. Proofs

3.1 Proof of Theorem 1. By the usual MISE decomposition which involves

a variance term and a bias term, we get

Ef‖f̂N − f‖2 = Ef

N
∑

k=0

(f̂N,k − θk)
2 +

∑

k≥N+1

θ2
k

but

Ef

N
∑

k=0

(f̂N,k − θk)
2 = Ef

N
∑

k=0

(

k
∑

j=0

βk,j(yj − µj))
2

= ε2
E

N
∑

k=0

(
k

∑

j=0

βk,jξj)
2

and since ξj
iid∼ N(0, 1), it follows that

Ef‖f̂N − f‖2 = ε2
N

∑

k=0

k
∑

j=0

β2
k,j +

∑

k≥N+1

θ2
k

= VN + B2
N

We first deal with the variance term VN . To this end, we have to upper bound the



6 Thanh Mai Pham Ngoc

sum of the squared coefficients of the normalized Legendre polynomial of degree

k. Set σ2
k =

∑k
j=0 β2

k,j. An explicit form of Pk(x) is given by (see Abramowitz

and Stegun (1970)):

Pk(x) =

(

2k + 1

2

)1/2 1

2k

[k/2]
∑

j=0

(−1)k
(

k

j

)(

2k − 2j

k

)

xk−2j,

where [·] denotes the integer part and
(k

j

)

denotes the binomial coefficient,
(k

j

)

=
k!

(k−j)!j! . This involves

σ2
k =

2k + 1

2

1

4k

[k/2]
∑

j=0

{(

k

j

)(

2k − 2j

k

)}2

≤ 2k + 1

2

1

4k

{(

2k

k

)}2 [k/2]
∑

j=0

{(

k

j

)}2

≤ 2k + 1

2

1

4k

{(

2k

k

)}2

(2k)2.

By using now the fact that {
(2k

k

)

}2 ≤ 42k
√

k
(see lemma 3 from Appendix) we have

σ2
k ≤ 2k + 1

2

42k

√
k

which yields

VN ≤ Cε2N1/242N ,

where C > 0 denotes an absolute positive constant.

Now, it remains to upper bound the bias term B2
N . As the density f belongs

to the Sobolev ellipsoid Fr

B2
N ≤ N−2r.

Finally we get

Ef‖f̂N − f‖2 ≤ Cε2N1/242N + N−2r

from which the desired result follows.

3.2 Proof of Theorem 2. In order to prove the lower bound of theorem 2, we

first see that the model (4.1) is equivalent to an heteroscedastic model. Indeed, if
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we multiply both sides of the model (4.1) by the coefficients βk,j of the Legendre

polynomials we get the following model:

ỹk = θk + εσkξk (3.1)

where σ2
k =

∑k
j=0 β2

k,j, ỹk =
∑k

j=0 βk,jyj, θk =
∑k

j=0 βk,jµj =
∫ 1
−1 f(x)Pk(x)dx

and ξk are i.i.d standard Gaussian random variables.

In consequence, the model (3.1) is an heteroscedastic gaussian sequence space

model through the basis of Legendre polynomials. From now on, we shall consider

the model (3.1).

Before going any further, we can make a remark at this stage concerning

the model (3.1). Indeed, this latter has clear similarities with standard ill-posed

problems (see Cavalier, Golubev, Lepski and Tsybakov (2004), Golubev and

Khasminskii (1999)). Depending on the asymptotic behavior of the intensity

noise σ2
n one may characterize the nature of the problem. Here, in our case,

σ2
n ≥ 1

44n (see lemma 4 from Appendix) and hence tends to infinity exponen-

tially. We may say that we are dealing with a severely ill-posed problem with

log-rates (see Cavalier, Golubev, Lepski and Tsybakov (2004)).

The proof of the lower bound essentially leans on the following particular

version of Fano’s lemma (see Birgé and Massart (2001)). It uses the Kullback-

Leibler divergence K(p1, p0) between two probability densities p1 and p0 defined

by :

K(p1, p0) =

{

∫

R
log(p1(x)

p0(x))p1(x)dx if P1 ≪ P0

+∞ otherwise

Lemma 1. Let η be a strictly positive real number and C be a finite set of prob-

ability densities {f0, . . . , fM} on R with |C| ≥ 6 such that :

(i) ‖fi − fj‖ ≥ η > 0, ∀ 0 ≤ i < j ≤ M .

(ii) Pj ≪ P0, ∀ j = 1, . . . ,M, and

K(fj, f0) ≤ H < log M

then for any estimator f̂ and any nondecreasing function ℓ

sup
f∈C

Ef

[

ℓ(‖f̂ − f‖)
]

≥ ℓ(
η

2
)

[

1 −
(

2

3
∨ H

log M

)]

.
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We define E as a set of functions of the following type

E =

{

fδ ∈ Fr : fδ =
1

2
1[−1,1](1+

co

m(4r+3)/2

2m−1
∑

k=m

δkk
(2r+2)/2Pk), δ = (δm, . . . , δ2m−1) ∈ ∆ = {0, 1}m

}

We check that the functions fδ defined above are probability densities. Clearly,

since
∫ 1
−1 Pk(x)dx = 0, for any δ ∈ {0, 1}m, fδ satisfies

∫ 1
−1 fδ(x)dx = 1. Fur-

thermore, it is well known that |Pk(x)| ≤ 1, ∀x ∈ [−1, 1] (see Abramowitz and

Stegun (1970)) so fδ ≥ 0.

Secondly, we verify that fδ belongs to Fr. In this aim, we have to calculate the

Legendre-Fourier coefficients associated with the density fδ:

θδ l =

∫ 1

−1
fδ(x)Pl(x)dx

=

{

c0
m(4r+3)/2 · l(2r+2)/2 · δl if l ∈ [m, 2m − 1]

0 else
(3.2)

hence

+∞
∑

k=0

k2rθ2
δ k =

c2
0

m4r+3

2m−1
∑

k=m

k2rk2r+2δ2
k

≤ c2
0

m4r+3

2m−1
∑

k=m

k4r+2δ2
k

≤ c2
0(2m)4r+2

m4r+3

2m−1
∑

k=m

δ2
k ≤ c2

02
4r+2 < ∞,

since δk ∈ {0, 1}.
We set δ(0) = (0, . . . , 0) and fδ(0) ≡ f0. The Legendre-Fourier coefficients of

f0 are null:

θ0 l = 0 ∀ l ∈ N. (3.3)

We now exhibit a suitable subset of densities C. We only take into consideration

a subset of M + 1 densities of E :

C = {fδ(0) , . . . , fδ(M)}
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where {δ(1), . . . , δ(M)} is a subset of {0, 1}m.

We are now going to apply lemma 1. We first check the condition (i), ac-

cordingly, we have to assess the distance ‖fδ(i) − fδ(j)‖2. By the orthogonality of

the system {Pk}k and thanks to Parseval equality we get, for 0 ≤ i < j ≤ M ,

‖fδ(i) − fδ(j)‖2 =
c2
0

m4r+3

2m−1
∑

k=m

k2r+2(δ
(i)
k − δ

(j)
k )2

≥ c2
0

m4r+3
· m2r+2

2m−1
∑

k=m

(δ
(i)
k − δ

(j)
k )2

≥ c2
0

m2r+1

2m−1
∑

k=m

(δ
(i)
k − δ

(j)
k )2

=
c2
0

m2r+1
ρ(δ(i), δ(j)),

where ρ(·, ·) is the Hamming distance. We are going to resort to the Varshamov-

Gilbert bound which is stated in the following lemma:

Lemma 2. (Varshamov-Gilbert bound, 1962). Fix m ≥ 8. Then there exists a

subset {δ(0), . . . , δ(M)} of ∆ such that M ≥ 2m/8 and

ρ(δ(j), δ(k)) ≥ m

8
, ∀ 0 ≤ j < k ≤ M.

Moreover we can always take δ(0) = (0, . . . , 0).

For a proof of this lemma see for instance Tsybakov (2004), p 89.

Hence

‖fδ(i) − fδ(j)‖2 ≥ (c2
0)/(8m

2r).

We now check the condition (ii) in lemma 1. It is well known that for the

Kullback-Leibler divergence in the case of an heteroscedastic gaussian sequence

space model we have

K(fδ, f0) =
1

ε2

∞
∑

l=1

|θδ l − θ0 l|2
σ2

l

. (3.4)
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Hence, by virtue of (3.2), (3.3) and (3.4), the Kullback-Leibler divergence between

the two probability densities f0 and fδ for all δ ∈ C satisfies

K(fδ, f0) =
1

ε2

c2
0

m4r+3

2m−1
∑

l=m

l2r+2δ2
l

σ2
l

≤ c2
02

2r+2

ε2

m2r+2

m4r+3

2m−1
∑

l=m

δ2
l

σ2
l

but thanks to lemma 4 (see Appendix) we have

1

σ2
l

≤ 4l−1

which implies

K(fδ, f0) ≤ c2
02

2r+4

ε2

1

m2r+14m

2m−1
∑

l=m

δ2
l ≤ c2

02
2r+4m

ε24m

One chooses m = 1
log 4 log( 1

ε2 ) so that

K(fδ, f0) ≤ c2
02

2r+4m

and since m ≤ 8 log M/ log 2 (see lemma 2)

K(fδ, f0) ≤
c2
02

2r+7

log 2
log M

Eventually one can choose c0 small enough to have c ≡ c2022r+7

log 2 < 1.

We are now in position to apply lemma 1 with ℓ(x) = x2. We derive that,

whatever the estimator f̂ ,

sup
f∈C

Ef [‖f̂ − f‖2] ≥ c2
0

32m2r

[

1 −
(

2

3
∨ c

log M

)]

≥ c2
0

96m2r
,

which gives the desired result.

4. Appendix
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Lemma 3. For all n ≥ 1 we have:

(

2n

n

)

≤ 4n

n1/4
(4.1)

Proof. Let us prove (4.1) by recursion on n. The inequality is clearly true for

n = 1.

Suppose (4.1) true for a certain n ≥ 1.

(

2(n + 1)

n + 1

)

=

(

2n

n

)

2(2n + 1)

n + 1
≤ 4n

n1/4

2(2n + 1)

n + 1
,

by recursion hypothesis. It remains to prove that

4n

n1/4

2(2n + 1)

n + 1
≤ 4n+1

(n + 1)1/4
. (4.2)

(4.2) ⇐⇒ 2(2n + 1)

n1/4(n + 1)
≤ 4

(n + 1)1/4

⇐⇒ n + 1

n

(2n + 1

n + 1

)4 ≤ 24

⇐⇒ (n +
1

2
)1/4 ≤ n(n + 1)3,

which is true because we have (n+ 1
2)1/4 ≤ (n+ 1

2)3(n+1) and (n+ 1
2)3 ≤ n(n+1)2

since 1
8 ≤ n2/2 + n/4. This completes the proof.

Lemma 4. For all n ≥ 1, we have:

σ2
n ≥ 4n−1 (4.3)

where σn is defined in (3.1).

Proof. Firstly, let us recall the value of the noise intensity σ2
n:

σ2
n =

2n + 1

2

1

4n

[n/2]
∑

j=0

{(

n

j

)(

2n − 2j

n

)}2

≥ n

4n

(

2n

n

)2

.
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And so, in order to prove (4.3) it remains to prove that

(

2n

n

)

≥ 4n

2
√

n
n ≥ 1.

We again use a recursion on n.

The inequality (4.3) is clear for n = 1. We suppose the property true for a certain

n ≥ 1 and we shall prove it at the rank (n + 1).

(

2(n + 1)

n + 1

)

=

(

2n

n

)

2(2n + 1)

n + 1

≥ 4n

2
√

n

2(2n + 1)

n + 1

>
4n+1

2
√

n + 1
(4.4)

the inequality (4.4) is true because it is equivalent to 4n2 + 4n + 1 > 4n2 + 4n

what we always have.
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