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We consider the linear regression model with Gaussian error.

. We show that this estimator satisfies a sparsity oracle inequality, i.e., a bound in terms of the number of non-zero components of the oracle vector. We prove that this bound is better, in some cases, than the one achieved by the Lasso and the Dantzig selector.

Introduction

We consider the linear regression model

y i = x i β * + ε i , i = 1, . . . , n, (1.1) 
where the design x i = (x i,1 , . . . , x i,p ) ∈ R p is deterministic, β * = (β * 1 , . . . , β * p ) ∈ R p is the unknown parameter vector of interest and ε 1 , . . . , ε n , are i.i.d. centered Gaussian random variables with variance σ 2 . We wish to estimate β * in the sparse case, i.e. when many of its components are equal to zero. If we define the covariates ξ j = (x 1,j , . . . , x n,j ) , j = 1, . . . , p, the sparsity of the model means that only a 1 Université de Caen, LMNO, Campus II, Science 3, 14032, Caen, France 2 Université Paris VII, LPMA, 175 rue du Chevaleret, 75013, Paris, France 1 small subset of (ξ j ) j is relevant for explaining the response y i , i = 1, . . . , n. We are mainly interested in the case where the number of the covariates p is much larger than the sample size n. In such a situation, the classical methods of estimation such as ordinary least squares are inconsistent. In the last decade, a wide variety of procedures has been developed for estimation and variable selection under sparsity assumption. Most popular procedures are of the form:

β = Argmin β∈R p Y -Xβ 2 n + pen(β) , (1.2) 
where X = (x 1 , . . . , x n ) , Y = (y 1 , . . . , y n ) , pen : R p → R is a positive function measuring the complexity of the vector β and, for any vector a = (a 1 , . . . , a n ) , a 2 n = n -1 n i=1 a 2 i (we denote by •, • n the corresponding inner product in R n ). When X is standardized, the Lasso procedure introduced in [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] is defined by (1.2) with pen(β) = λ n,p n i=1 |β i |, where λ n,p denotes a tuning parameter. This estimator is attractive as it performs both regression parameters estimation and variable selection. In the literature, the theoretical and empirical properties of the Lasso procedure have been extensively studied. See, for instance, [START_REF] Efron | Least angle regression[END_REF], [START_REF] Meinshausen | High dimensional graphs and variable selection with the lasso[END_REF], [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], [START_REF] Knight | Asymptotics for lasso-type estimators[END_REF], [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] and [START_REF] Zhao | On model selection consistency of Lasso[END_REF], among others. Recent extensions of the Lasso and their performances can be found in [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], [START_REF] Meinshausen | Lasso with relaxation[END_REF], [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] and [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF].

In this paper, we study a "grouped" version of the Lasso procedure. It is defined with a penalty of the form pen(β) = λ n,p L l=1 j∈G l ξ j 2 n β j 2 , where the tuning parameter λ n,p depends on n and on p. It can be viewed as a slight modification of the Group Lasso procedure developed in [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. For the sake of clarity, we call our modified Group Lasso: Grouped Variables Lasso. We measure its performance by considering a statistical approach derived from confidence balls.

We aim to find the smallest bound ϕ n,p such that

P X β -Xβ * 2 n ≤ C ϕ n,p ≥ 1 -u n,p , (1.3) 
where β is the Grouped Variables Lasso estimator, u n,p is a positive sequence of the form n -α p -γ with α > 0, γ > 0 and C is a positive constant which does not depend on n and p. The obtained rate ϕ n,p depends only on n, on p and on an index of sparsity of the model. From this point of view, the inequality (1.3) is a Sparsity Oracle Inequality (SOI) for the Grouped Variable Lasso estimator. Such SOIs have already been investigated for other estimators ( [START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF], [START_REF] Dalalyan | Aggregation by exponential weighting and sharp oracle inequalities[END_REF], [START_REF] Koltchinskii | Sparsity in penalized empirical risk minimization[END_REF], [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF] and [START_REF] Candes | The dantzig selector: statistical estimation when p is much larger than n[END_REF]). As a benchmark, we use the SOIs provided for the Lasso estimator [START_REF] Bunea | Aggregation and sparsity via l 1 penalized least squares[END_REF] and the Dantzig selector [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF]. If we compare the corresponding ϕ n,p , we remark that the one achieved by the Grouped Variables Lasso is smaller than the one achieved by the Lasso and the Dantzig selector. This illustrates the fact that, in some situations, the Grouped Variables Lasso exploits the sparsity of the model more efficiently than the Lasso and the Dantzig selector.

The rest of the paper is organized as follows. The Grouped Variables Lasso estimator is described in Section 2. Section 3 presents the assumptions made on the model. The theoretical performance of the considered estimator is investigated in Section 4. The proofs are postponed to Section 5.

2 The Grouped Variables Lasso (GVL) estimator

In this study, for any real number a, [a] denotes the integer part of a. For convenience, we assume that p/[log p] is an integer. We define the Grouped Variables Lasso (GVL) estimator by

β = Argmin β∈R p    Y -Xβ 2 n + 2 L l=1 j∈G l w 2 n,j β j 2    , ( 2.1) 
where L = p/[log p], for any j ∈ {1, ..., p},

w n,j = λ n,p ξ j n , λ n,p = κσ n -1 log(np), (2.2) 
κ ≥ 2 and, for any l ∈ {1, . . . , L},

G l = k ∈ {1, . . . , p} : (l -1)[log p] + 1 ≤ k ≤ l[log p] . (2.3) Note that G = (G l ) l is a partition of the set {1, . . . , p} such that, for any l ∈ {1, . . . , L}, Card(G l ) = [log p].
The GVL estimator is a slight modification of the Group Lasso estimator developed in [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. The only differences are the choice of the blocks G l and the fact that, in our setting, we do not assume that

X G l X G l = I Card(G l )
, where X G l is the restriction of X on the block G l . The length of each block, Card(G l ) = [log p], is based on theoretical considerations. Further details are given in Section 4. Recent developments concerning the Group Lasso method can be found in [START_REF] Kim | Blockwise sparse regression[END_REF] and [START_REF] Meier | The group lasso for logistic regression[END_REF].

For any real number a, we set (a) + = max(a, 0). If X is the identity matrix I n (and, a fortiori, the model (1.1) is the standard Gaussian sequence model), each component of the GVL estimator β in the block G l can be expressed in the following form

β i = 1 -κσ 2n -1 log n / j∈G l y j 2 + y i . In this case,
β can be viewed as a slight modification of the blockwise Stein estimator. This construction enjoys powerful theoretical properties in various statistical approaches (oracle inequalities, (near) minimax optimality,...). See, for instance, [START_REF] Cavalier | Penalized blockwise Stein's method, monotone oracles and sharp adaptive estimation[END_REF].

Assumptions

Recall that X = (x i,j ) i,j is the n × p design matrix and, for any j ∈ {1, . . . , p}, ξ j = (x 1,j , . . . , x n,j ) . Let ρ p = (ρ p (j, k)) j,k be the correlation matrix defined by

ρ p (j, k) = ξ j , ξ k n ξ j n ξ k n , (j, k) ∈ {1, . . . , p} 2 .
We now present three assumptions we need to establish a SOI for the GVL estimator. They relate to the correlation matrix ρ p :

-Assumption (A1). Consider the set

S l 2 = {a = (a j ) j∈G l ∈ R [log p] ; j∈G l a 2 j ≤ 1 }. There exists a constant C * ≥ 1 independent of n and of p such that max l=1,...,L sup a∈S l 2   j∈G l k∈G l a j a k ρ p (j, k)   ≤ C * .
The second assumption must be satisfied for a subset B ⊆ {1, . . . , L} to be specified later.

-Assumption (A2)(B). The correlation matrix ρ

p satisfies max l∈B max m=1,...,L j∈G l k∈G m k =j ρ 2 p (j, k) ≤ (32) -1 Card(B) -1 .
Remark 3.1 The condition in Assumption (A1) is equivalent to say that the larger eigenvalue of the diagonal blocks of the matrix ρ p (i.e. eigenvalues of the correlation matrices restricted to covariates in the same group) is bounded by C * .

Lemma 3.1 below determines a standard family of matrices satisfying Assumption (A1).

Lemma 3.1 Let X = (x i,j ) i,j be a n × p matrix and, for any j ∈ {1, . . . , p}, ξ j = (x 1,j , . . . , x n,j ) . Suppose that, for any j, k ∈ {1, .., p}, we have

ξ j , ξ k n = r n z j z k b |j-k| , where r = (r n ) n is a sequence of real numbers, z = (z u ) u denotes a positive sequence and b = (b u ) u denotes a sequence in l 1 (N) with b 0 > 0. Then X satisfies Assumption (A1) with C * = 1 + 2b -1 0 b l 1 , where b l 1 = p j=1 |b j |.
Here are some comments on Assumption (A2)(B). In our study, Assumption (A2)(B) only needs to be satisfied for a particular set B = Θ G ⊆ {1, . . . , L} (to be defined in Subsection 4.1). This set characterizes the sparsity of the model. Note also that Assumption (A2)(B) can be viewed as an extension of the "local" mutual coherence condition considered by [START_REF] Bunea | Aggregation for Gaussian regression[END_REF]. This "local" mutual coherence condition has been introduced by [ 

k =j p -2α|j-k| ≤ p -α max l=1,...,L Card(G l ) = p -α+1 ([log p]/p) ≤ (32) -1 L -1 ≤ (32) -1 Card(B) -1 and Assumption (A2)(B) is satisfied.
When p ≤ n, Assumption (A2)(B) can replaced by the following:

-Assumption (A3). Consider the p × p Gram matrix Ψ n defined by Ψ n = ξ j , ξ k n j,k . For any p ≥ 2, there exists a constant c p > 0 such that the matrix Z defined by

Z = Ψ n -c p diag(Ψ n ),
is positive semi-definite. 

Assumption

Theoretical properties

In this section, we investigate some theoretical properties of the GVL estimator.

Notice that all the results include the case p ≥ n.

Main results

Here we provide SOIs acheived by the GVL estimator. These SOIs take advantage of the group structure of the estimator. The key is the introduction of a group sparsity set Θ G defined by: Θ G = l ∈ {1, . . . , L} : there exists an integer j 0 ∈ G l such that β * j 0 = 0 , (

where G l is defined by (2.3). Such a set contains group indexes and characterizes the sparsity of the model. Indeed, the "sparser" the model is, the smaller the sparsity index Card(Θ G ) is. Proposition 4.1 below provides an upper bound for the squared error of the GVL estimator. This bound brings into play the sparsity index inferred by the group sparsity set Θ G .

Proposition 4.1 We consider the linear regression model (1.1). Let Λ n,p be the random event defined by

Λ n,p =    max l=1,...,L j∈G l w -2 n,j V 2 j ≤ 2 -1    , ( 4.2) 
where V j = n -1 n i=1 x i,j ε i and w n,j is defined by (2.2). Let β be the GVL estimator defined by (2.1) and Θ G be the group sparsity set defined by (4.1). Suppose that X satisfies Assumption (A2)(Θ G ). Then, on Λ n,p , we have

X β -Xβ * 2 n ≤ C n -1 log(np) Card(Θ G ), (4.3 
)

where C = 16κ 2 σ 2 .
The proof of Proposition 4.1 is based on the 'argmin' definition of the estimator β and some technical inequalities. Theorem 4.1 below states that, under some assumptions on X, the SOI (4.3) is true with high probability. 

Theorem 4.1 We consider the linear regression model (1.1). Let β be the GVL estimator defined by (2.1) and Θ G be the group sparsity set defined by (4.1). Suppose that X satisfies Assumptions (A1) and (A2)(Θ G ). Then we have

P X β -Xβ * 2 n ≤ C n -1 log(np) Card(Θ G ) ≥ 1 -u n,p , ( 4 

Corollary 4.1 We consider the linear regression model (1.1). Let Θ G be the group sparsity set defined by (4.1). Suppose that X satisfies Assumptions (A1) and (A3).

Then the GVL estimator (2.1) satisfies the inequality (4.4) with

C = 16c p -1 κ 2 σ 2 ,
where c p is the constant appearing in Assumption (A3).

The proof of Corollary 4.1 is similar to the proof of Proposition 4.1.

Comparison with the Lasso and the Dantzig selector

A result similar to Theorem 4.1 has been proved for the Lasso estimator in [START_REF] Bunea | Aggregation and sparsity via l 1 penalized least squares[END_REF],

and for the Dantzig selector in [START_REF] Candes | The dantzig selector: statistical estimation when p is much larger than n[END_REF]. Moreover [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF] stated that the squared error of the Lasso and the Dantzig selector are equivalent up to a constant factor. In these works, the authors provided similar SOIs. The main difference lies in the sparsity index Card(Θ G ). For both the Lasso estimator and the Dantzig selector, it is replaced by Card(Θ * ), where Θ * = {j ∈ {1, . . . , p}; β * j = 0}. Since

Card(Θ G ) ≤ Card(Θ * ),
Theorem 4.1 states that, with high probability, the GVL estimator can have a smaller squared error than the Lasso estimator. This illustrates the fact that, in some cases, the GVL estimator exploits better the sparsity of the model than the Lasso estimator and the Dantzig selector. Moreover, Card(Θ G ) can be asymptotically significatively smaller than Card(Θ * ). For example, if p = n and the un-

known parameter vector β * = (β * 1 , . . . , β * n ) is defined by β * = (1, . . . , 1 log n , 0, . . . , 0 n-log n ),
then Card(Θ G ) = 1 whereas Card(Θ * ) = log n.

Proofs

Proof of Lemma 3.1. For the sake of simplicity in exposition and without loss of generality, we work on the set G 1 = {1, . . . , [log p]}. Let us notice that, for any u ∈ G 1 , we have ξ u n = z u √ r n b 0 . Therefore, for any (j, k) ∈ {1, . . . , p} 2 , we have

ρ p (j, k) = b -1 0 b |j-k| . Hence j∈G 1 k∈G 1 a j a k ρ p (j, k) = b -1 0 [log p] j=1 [log p] k=1 a j a k b |j-k| = [log p] j=1 a 2 j + 2b -1 0 [log p] j=2 j-1 k=1 a j a k b j-k ≤ [log p] j=1 a 2 j + b -1 0 [log p] j=2 j-1 u=1 (a 2 j + a 2 j-u )b u .
For any a ∈ S l 2 , we have

[log p] j=1 a 2 j ≤ 1. Therefore [log p] j=2 j-1 u=1 a 2 j b u = [log p] j=2 a 2 j j-1 u=1 b u ≤ b l 1 and [log p] j=2 j-1 u=1 a 2 j-u b u = [log p]-1 u=1 b u [log p] j=u+1 a 2 j-u ≤ b l 1 .
Hence sup

a∈S l 2   j∈G 1 k∈G 1 a j a k ρ p (j, k)   ≤ (1 + 2b -1 0 b l 1 ) = C * .
This inequality can easily be extended to any set G l . Thus, the matrix X satisfies Assumption (A1) with

C * = 1 + 2b -1 0 b l 1 .
Proof of Proposition 4.1. By definition of the penalized estimator (2.1), for any β ∈ R p , we have

X β -Xβ * 2 n + 2 L l=1 j∈G l w 2 n,j β 2 j - 2 n n i=1 ε i x i β ≤ Xβ -Xβ * 2 n + 2 L l=1 j∈G l w 2 n,j β 2 j - 2 n n i=1 ε i x i β.
Therefore, taking β = β * , we obtain the following inequality:

X β -Xβ * 2 n ≤ 2 L l=1   j∈G l w 2 n,j (β * j ) 2 - j∈G l w 2 n,j β 2 j   + 2 n n i=1 ε i x i β -β * . ( 5.1) 
Recall that V j = n -1 n i=1 x i,j ε i and using the Hölder inequality, we have on the event Λ n,p

2 n n i=1 ε i x i β -β * = 2 L l=1 j∈G l V j β j -β * j ≤ 2 L l=1 j∈G l w -2 n,j V 2 j j∈G l w 2 n,j β j -β * j 2 ≤ L l=1 j∈G l w 2 n,j β j -β * j 2 . ( 5.2) 
It follows from (5.1), (5.2) and the definition of the group sparsity set Θ G (see

(4.1)) that X β -Xβ * 2 n + L l=1 j∈G l w 2 n,j β j -β * j 2 ≤ 2 L l=1 j∈G l w 2 n,j β j -β * j 2 + 2 L l=1   j∈G l w 2 n,j (β * j ) 2 - j∈G l w 2 n,j β 2 j   = 2 l∈Θ G j∈G l w 2 n,j β j -β * j 2 + 2 l∈Θ G   j∈G l w 2 n,j (β * j ) 2 - j∈G l w 2 n,j β 2 j   .
Therefore using the Minkowski inequality, we have

X β -Xβ * 2 n + L l=1 j∈G l w 2 n,j β j -β * j 2 ≤ 4 l∈Θ G j∈G l w 2 n,j β j -β * j 2 ≤ 4 Card(Θ G ) l∈Θ G j∈G l w 2 n,j β j -β * j 2 . ( 5.3) 
Now, let us bound the term l∈Θ G j∈G l w 2 n,j β j -β * j 2

. By a simple decomposition, we have

X β -Xβ * 2 n = l∈Θ G j∈G l ξ j 2 n β j -β * j 2 + n -1 n i=1   l ∈Θ G j∈G l x i,j ( β j -β * j )   2 + R(Θ G ), (5.4) 
where

R(Θ G ) = 2 l∈Θ G m ∈Θ G j∈G l k∈Gm ξ j , ξ k n ( β j -β * j )( β k -β * k ) + l∈Θ G m∈Θ G m =l j∈G l k∈G m ξ j , ξ k n ( β j -β * j )( β k -β * k ) + l∈Θ G j∈G l k∈G l k =j ξ j , ξ k n ( β j -β * j )( β k -β * k ). Note that R(Θ G ) is such that |R(Θ G )| ≤ 2 l∈Θ G L m=1 j∈G l k∈Gm k =j | ξ j , ξ k n | | β j -β * j | | β k -β * k |. Moreover, since n -1 n i=1 l ∈Θ G j∈G l x i,j ( β j -β * j )
2 ≥ 0, the equality (5.4) implies that:

l∈Θ G j∈G l w 2 n,j β j -β * j 2 ≤ κσn -1 log(np) 2 n X β -Xβ * 2 n -R(Θ G ) ≤ κσn -1 log(np) 2 n X β -Xβ * 2 n + |R(Θ G )| ≤ κσn -1 log(np) 2 n X β -Xβ * 2 n +2 l∈Θ G L m=1 j∈G l k∈Gm k =j | ξ j , ξ k n | | β j -β * j | | β k -β * k | . ( 5.5) 
Let us set Π j,k = w -1 n,j w -1 n,k ξ j , ξ k n . The Cauchy-Schwarz inequality yields

l∈Θ G L m=1 j∈G l k∈G m k =j | ξ j , ξ k n | | β j -β * j | | β k -β * k | = l∈Θ G L m=1 j∈G l k∈Gm k =j |Π j,k | w n,j w n,k | β j -β * j | | β k -β * k | ≤ l∈Θ G L m=1 j∈G l k∈G m k =j Π 2 j,k j∈G l k∈G m w 2 n,j w 2 n,k β j -β * j 2 β k -β * k 2 ≤ sup l∈Θ G sup m=1,...,L j∈G l k∈G m k =j Π 2 j,k   L l=1 j∈G l w 2 n,j β j -β * j 2   2 = B(Θ G ).
Combining (5.3), (5.5), the previous inequality and using an elementary inequality of convexity, we obtain

X β -Xβ * 2 n + L l=1 j∈G l w 2 n,j β j -β * j 2 ≤ 4n 1/2 κσn -1 log(np) Card(Θ G ) X β -Xβ * 2 n + 2B(Θ G ) ≤ 4n 1/2 κσn -1 log(np) Card(Θ G ) X β -Xβ * 2 n + 4 √ 2n 1/2 κσn -1 log(np) Card(Θ G )B(Θ G ). (5.6) An application of Assumption (A2)(B), with B = Θ G yields 4 √ 2n 1/2 κσn -1 log(np) Card(Θ G )B(Θ G ) ≤ L l=1 j∈G l w 2 n,j β j -β * j 2 .(5.7)
It follows from (5.6) and (5.7) that

X β -Xβ * 2 n ≤ 4n 1/2 κσn -1 log(np) Card(Θ G ) X β -Xβ * n . Therefore, X β -Xβ * 2 n ≤ 16n κσn -1 log(np)
where C = 16κ 2 σ 2 . This ends the proof of Proposition 4.1.

Proof of Theorem 4.1. We set v n,j = n i=1 x 2 i,j = n 1/2 ξ j n . Thanks to Proposition 4.1, it is enough to prove that

P   max l=1,...,L j∈G l w -2 n,j V 2 j ≥ 2 -1   ≤ p(np) -(2 -1 κ-1) 2 /(2C * ) .
We have

P   max l=1,...,L j∈G l w -2 n,j V 2 j ≥ 2 -1   ≤ L l=1 P   j∈G l w -2 n,j V 2 j ≥ 2 -1   ≤ (p/[log p]) max l=1,...,L P   j∈G l v -2 n,j V 2 j ≥ 2 -1 κσn -1 log(np)   . (5.8)
In order to bound this last term, we introduce the Borell inequality. For further details about this inequality, see, for instance, [START_REF] Adler | An introduction to continuity, extrema, and related topics for general Gaussian processes[END_REF]. Then, for any x > 0, we have

P sup t∈D η t ≥ x + N ≤ exp(-x 2 /(2Q)).
Let us consider the set S l 2 defined by S l 2 = {a = (a j ) j∈G l ∈ R [log p] ; j∈G l a 2 j ≤ 1}, and the centered Gaussian process Z(a) defined by

Z(a) = j∈G l a j V j v -1 n,j .
By an argument of duality, we have sup 

a∈S l 2 Z(a)) = E   j∈G l v -2 n,j V 2 j   ≤ j∈G l v -2 n,j E(V 2 j ) = j∈G l v -2 n,j (σ 2 n -1 ξ j 2 n ) = σn -1 log p.
So, we set N = σn -1 √ log p.

The upper bound for sup a∈S l 2

V ar(Z(a)). We have This ends the proof of Theorem 4.1.

V ar(Z(a)) = j∈G l k∈G l a j a k v -1 n,j v -1 n,k E(V j V k ), with E(V j V k ) = n -2 n u=1 n v=1 x u,j x v,k E( u v ) = σ 2 n -1 ξ j ,

. 4 )

 4 where C = 16κ 2 σ 2 and u n,p = p(np) -(2 -1 κ-1) 2/(2C * ) , with C * is the constant appearing in Assumption (A1). The proof of Theorem 4.1 uses Proposition 4.1 and a concentration inequality of the form P(Λ c n,p ) ≤ u n,p , where Λ c n,p denotes the complementary of the set (4.2). Corollary 4.1 below states that, when p ≤ n, Theorem 4.1 holds with Assumption (A3) instead of Assumption (A2)(B).

Lemma 5 . 1 (

 51 The Borell inequality) Let D be a subset of R and (η t ) t∈D be a centered Gaussian process. Suppose that E sup t∈D η t ≤ N and sup t∈D V ar(η t ) ≤ Q.

a∈S l 2 Z 2 Z(a)) and sup a∈S l 2 V 2 Zξ j 2 n

 22222 In order to use Lemma 5.1, let us investigate the upper bounds for E(sup a∈S l ar(Z(a)), in turn.The upper bound for E(sup a∈S l (a)). Since V j ∼ N 0, σ 2 n -1 , the Cauchy-Schwarz inequality yields E( sup

l 2 V 2 V 2 j ≥ 2 - 1 

 22221 ξ k n . This with Assumption (A1) implysup a∈S ar(Z(a)) = σ 2 n -2 sup a∈S l j∈G l k∈G l a j a k ρ p (j, k)   ≤ C * σ 2 n -2 . So, we set Q = C * σ 2 n -2 .Combining the obtained values of N and Q with Lemma 5.1, for any l ∈ {1, . . . , L}, we haveP   j∈G l v -2 n,j V 2 j ≥ 2 -1 κσn -1 log(np) V 2 j ≥ (2 -1 κ -1)σn -1 log(np) + σn -1 log p   = P sup t∈D η t ≥ (2 -1 κ -1)σn -1 log(np) + N ≤ exp -(2 -1 κ -1) 2 σ 2 n -2 log(np)/(2Q) = (np) -(2 -1 κ-1) 2 /(2C* ) . ≤ p(np) -(2 -1 κ-1) 2 /(2C * ) = u n,p .

Card(ΘG ) = C n -1 log(np) Card(Θ G ),
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