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Abstract

We consider the linear regression problem with Gaussian error. We estimate the
unknown parameters via an estimator constructed from a grouped variables penalty.
It can be viewed as a slight modification of the Group Lasso estimator introduced by
Yuan and Lin [15]. We establish several new theoretical results which prove that the
considered estimator exploits more the sparsity in the model than the well-known
Lasso estimator.
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1 Introduction

We focus on the usual linear regression model:

yi = xiβ
∗ + εi, i = 1, . . . , n, (1.1)

where the design xi = (xi,1, . . . , xi,p) ∈ R
p is deterministic, β∗ = (β∗

1 , ..., β
∗
p)

′ ∈
R

p is the unknown parameter vector of interest and ε1, ..., εn, are i.i.d. centered
Gaussian random variables with variance σ2. We wish to estimate β∗ in the
sparse case i.e. when many of its unknown components are equal to zero. Thus,
only a subset of the design variables (x.,j)j are truly of interest.

It is well known that, in such case, Ordinary Least Square and Ridge regression
procedures lead to bad control of the variance in the estimation. Selection type
procedures are then recommended. They are of the form:

β̃ = Argmin
β∈Rp

{

‖Y − Xβ‖2
n + pen(β)

}

,
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where X = (x1, . . . , xn)′, Y = (y1, . . . , yn)
′ and pen : R

p → R, a positive
convex function. For any vector a = (a1, . . . , an)′, we adopt the notation
‖a‖2

n = n−1∑n
i=1 |ai|2. The Lasso procedure introduced by Tibshirani [13]

seems to respond to our objective: it performs both regression parameters
estimation and variable selection. In the literature, the theoretical and com-
putational Lasso properties as well as its asymptotic results have been inten-
sively studied. See, for instance, Efron et al. [6], Meinshausen and Bühlmann
[12], Fan and Li [7], Knight and Fu [9], Zou [17] and Zhao and Yu [16], among
others. Using the advantages of the Lasso l1-penalty, many new penalized pro-
cedures have been proposed to solve the linear regression problem. We refer to
Fan and Li [7], Meinshausen [11], Zou [17], Zou and Hastie [18] and Tibshirani
et al. [14].

In this paper, we study Lasso-type procedures which take into account the
group structure of the variables. We consider a slight modification of the
Group Lasso procedure developed by Yuan and Lin [15]. This construction
has the ability of selecting variables by groups and evaluating the estimation
of the regression parameters inside the groups in a Ridge-type fashion. For the
sake of clarity, we call our modified Group Lasso: Grouped Variables Lasso.
Such procedures are really promising as they nicely combine Lasso and Ridge
with a single control parameter. Here, we derive new theoretical results to
the Grouped Variables Lasso estimator based on the sparsity of the model.
We adopt the following criterion that measures the performance of a given
estimator β̃ of β∗: find the best rate ϕn,p (i.e. as small as possible) satisfying
the following inequality:

P

(

‖Xβ̃ − Xβ∗‖2
n ≤ ϕn,p

)

≥ 1 − un,p,

where un,p is a positive sequence of the form n−αp−γ with α, γ > 0. We prove
that, for the same un,p, the Group Lasso exploits the sparsity of the model
more efficiently than the original Lasso. This can easily be seen through the
form of ϕn,p which depends on the sparsity. This study is in the same spirit
as that of Bunea et al. [3] for the aggregation problem via the Lasso penalty.

The rest of this article is organized as follows. The Grouped Variables Lasso
estimator is described in the next section. Section 3 presents the assumptions
made on the model. The theoretical performances of the considered estimator
are studied in Section 4. Proofs are given in Section 5.
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2 The Grouped Variables Lasso (GVL) estimator

We define the estimator β̂ by

β̂ = Argmin
β∈Rp

{

‖Y − Xβ‖2
n + pen(β)

}

, (2.1)

where pen is the penalty function defined by

pen(β) = 2
L∑

l=1

√
∑

j∈Gl

|wn,j|2|βj|2.

In this expression, L is a positive integer, G = (Gl)l is a sequence of sets
satisfying ∪L

l=1Gl = {1, ..., p} and, for any u 6= v with u, v ∈ {1, . . . , L},
Gu ∩ Gv = ∅. The sequence w = (wn,j)j is defined by

wn,j = λn,p(
√

n‖x.,j‖n) = λn,p

√
√
√
√

n∑

i=1

|xi,j|2, (2.2)

with

λn,p = κσn−1
√

log n + log p, (2.3)

where κ is a real number greater than 1. Given the definition of β̂, specific
choices of the sequence G determine specific estimators.

- The Lasso estimator: The Lasso estimator β̂L is defined by (2.1) with L = p
and, for any l ∈ {1, ..., L}, Gl = {l}.

- The Grouped Variables Lasso (GVL) estimator: Assume that p/⌊log p⌋ is an
integer where ⌊a⌋ denotes the whole number part of a. The Grouped Variables
Lasso estimator β̂G is defined by (2.1) with L = p/⌊log p⌋ and, for any l ∈
{1, ..., L}, Gl is the following set:

Gl =
{

k ∈ {1, . . . , p} : (l − 1)⌊log p⌋ + 1 ≤ k ≤ l⌊log p⌋
}

. (2.4)

Comments on the GVL estimator. The GVL estimator is a slight modification
of the Group Lasso estimator proposed by Yuan and Lin [15]. The only differ-
ences are the choice of the blocks Gl and the fact that, in our setting, we do
not have X ′

Gl
XGl

= ICard(Gl), where XGl
is the restriction of X on the block

Gl. Recent developments concerning the Group Lasso method can be found
in Kim et al. [8] and Meier et al. [10].

If X is the identity matrix In, then the linear regression model (1.1) becomes
the standard Gaussian sequence model. Moreover, each component of the GVL

3



estimator β̂G in the block Gl can be expressed in the following explicit form

β̂G
i =



1 −√
nλn,n/

√
∑

j∈Gl

|yj|2




+

yi,

where λn,n = κσn−1
√

2 log n. The notation (a)+ means max(a, 0). In this case,

β̂G can be viewed as a slight modification of the blockwise Stein estimator.
This construction enjoys powerful theoretical properties in various statisti-
cal approaches (oracle inequalities, (near) minimax optimality,...). See, for
instance, Cavalier and Tsybakov [4].

3 Assumptions

Here, we adopt the notations of the previous section.

Assumption (A1). Let X = (xi,j)i,j be a n×p matrix. Let us define the sequence
(vn,j)j by

vn,j =

√
√
√
√

n∑

i=1

|xi,j |2 (3.1)

and the set S2 by S2 = {a = (aj)j ∈ Z
∗;
∑

j∈Gl
|aj|2 ≤ 1}. There exists a

constant Cp ≥ 1 such that

sup
l=1,...,L

sup
a∈S2




∑

j∈Gl

∑

k∈Gl

ajak|vn,j|−1|vn,k|−1
n∑

i=1

xi,jxi,k



 ≤ Cp.

Lemma 3.1 below proves that Assumption (A1) is satisfied by a large variety
of matrix.

Lemma 3.1 Let X = (xi,j)i,j be a n × p matrix. Suppose that, for any j, k ∈
{1, .., p}, each component of the p × p matrix X ′X satisfies

n∑

i=1

xi,jxi,k = zjzkb|j−k|, (3.2)

where z = (zu)u denotes a positive sequence and b = (bu)u denotes a sequence
in l1(N) with b0 > 0. Then X satisfies Assumption (A1) with Cp = 1 +
2b−1

0 ‖b‖l1.

For any set B ⊆ {1, ..., L}, we make the following assumption:
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Assumption (A2)(B) . Let us consider the sequence (vn,j)j defined by (3.1).
We have

sup
l∈B

sup
u=1,...,L

√
√
√
√
√

∑

j∈Gl

∑

k∈Gu
k 6=j

|vn,j|−2|vn,k|−2|
n∑

i=1

xi,jxi,k|2 ≤ (32)−1Card(B)−1.

If, for each l ∈ {1, ..., p/⌊log p⌋}, the set Gl is defined by (2.4), then Assump-
tion (A2)(B) can be viewed as a particular grouped version of the ”local”
mutual coherence condition considered by Bunea et al. [2] in the aggregation
framework. This ”local” mutual coherence condition has been introduced by
Donoho et al. [5].

Remark 3.1 For any two sets B1 and B2 such that B1 ⊆ B2 ⊆ {1, ..., L},
Assumption (A2)(B2) implies Assumption (A2)(B1).

Remark 3.2 If B = {1, ..., L} then Assumption (A2)(B) implies Assumption
(A1) with Cp = (32)−1L−1. This is an immediate consequence of the Hölder
inequality.

Example. A simple example of n × p matrix X = (xi,j)i,j which satisfies As-
sumptions (A1) and (A2)(B) for any B ⊆ {1, ..., L} is the one characterized
by the equality

∑n
i=1 xi,jxi,k = (32)−1p−α|j−k|, with α ≥ 1. A concise proof is

given below.

Thanks to Lemma 3.1, Assumption (A1) is satisfied with Cp = 1+2p/(p−1) ≤
4. Moreover, we have (32)−1 supl=1,...,L supu=1,...,L

√∑

j∈Gl

∑

k∈Gu
k 6=j

p−2α|j−k| ≤
(32)−1p−α supl=1,...,L Card(Gl) ≤ (32)−1L−1 and Assumption (A2)(B) is satis-
fied.

4 Theoretical properties

In this section, we set theoretical results for the GVL estimator and the Lasso
estimator. We show that the GVL estimator is better, in some sense, than the
Lasso estimator. Let us mention that all results in the present section do not
exclude the case p ≥ n.

4.1 Main results

Theorem 4.1 below investigates the upper bound for the least square error of
the GVL estimator and the Lasso estimator.
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Theorem 4.1 Let us consider the regression model (1.1). Let β̂ be either the
Lasso estimator β̂L or the GVL estimator β̂G. Let Λn,p be the random event
defined by

Λn,p =






max

l=1,...,L

√
∑

j∈Gl

|wn,j|−2|Vj|2 ≤ 2−1






, (4.1)

where Vj = n−1∑n
i=1 xi,jεi, wn,j is defined by (2.2),

- L = p and Gl = {l} when β̂ = β̂L,
- L = p/⌊log p⌋ and Gl is described by (2.4) when β̂ = β̂G.

Let Θ be the sparsity set defined by:

Θ =
{

l ∈ {1, . . . , L} : there exists an integer j0 ∈ Gl such that β∗
j0 6= 0

}

.

(4.2)
Suppose that X satisfies Assumption (A2)(B) for any set B such that Θ ⊆
B ⊆ {1, ..., L}. Then, on the event Λn,p, we have

‖Xβ̂ − Xβ∗‖2
n ≤ sn,pCard(Θ), (4.3)

where sn,p = 16nλ2
n,p.

The proof of Theorem 4.1 is based on the ’argmin’ definition of the estimators
{β̂L, β̂G} and some technical inequalities. The main contribution of Theorem
4.1 concerns the GVL estimator β̂G. The result obtained for the Lasso esti-
mator is an adaptation of those in Bunea et al. [3]. We have formulated it
in order to make easier the comparison with the GVL estimator. Let us just
mention that the nature of Θ defined by (4.2) will play a crucial role in our
comparative study. Further details are given in Subsection 4.2.

Remark 4.1 The inequality (4.3) can be proved for any λn,p ≥ 0 instead of
the specific choice of λn,p given by (2.3).

Thanks to the definition of λn,p, Propositions 4.1 below proves that, under
some assumptions on X, the inequality (4.3) of Theorem 4.1 is true with a
high probability.

Proposition 4.1 Let us consider the regression model (1.1). Let β̂ be either
the Lasso estimator β̂L or the GVL estimator β̂G. Let Θ be the sparsity set
defined by (4.2). Suppose that X satisfies Assumptions (A1) and (A2)(B) for
any set B such that Θ ⊆ B ⊆ {1, ..., L}. Then we have

P

(

‖Xβ̂ − Xβ∗‖2
n ≤ sn,pCard(Θ)

)

≥ 1 − un,p, (4.4)

where sn,p = 16κ2σ2n−1(log n + log p) and un,p = p(np)−(2−1κ−1)2/(2Cp).
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The proof of Proposition 4.1 uses the result of Theorem 4.1 and a concentration
inequality of the form P(Λc

n,p) ≤ un,p, where Λc
n,p denotes the complementary

of the set (4.1). The main interest of this proposition is developed in Subsec-
tion 4.2 below.

Corollary 4.1 below shows that, under some extra condition on p and with an-
other choice of λn,p in the definitions of {β̂L, β̂G}, the result of Proposition 4.1
holds for a smaller bound sn,p.

Corollary 4.1 Let us adopt the same mathematical framework of Proposi-
tion 4.1. If there exists a positive sequence v = (vn)n such that limn→∞ vn = ∞
and vn ≤ p, then the estimator β̂ ∈ {β̂L, β̂G} defined with

λn,p = κσn−1
√

log p (4.5)

and κ ≥ 2(1+
√

2Cp), satisfies the inequality (4.4) with sn,p = 16κ2σ2n−1 log p

and un,p = v1−(2−1κ−1)2/(2Cp)
n .

The proof of Corollary 4.1 is rigorously similar to the proof of Proposition (4.1).
The restriction vn ≤ p is only used to obtain the following inequality P(Λc

n,p) ≤
p1−(2−1κ−1)2/(2Cp) ≤ v1−(2−1κ−1)2/(2Cp)

n . Note also that the main difference with
Proposition 4.1 is that Corollary 4.1 excludes the case p constant whereas
Proposition 4.1 does not.

4.2 Comparison with the Lasso

Starting from Proposition 4.1 (and Corollary 4.1), we can set a significant
result concerning the superiority of the GVL estimator over the Lasso esti-
mator. First of all, let us notice that the set Θ defined by (4.2) does the link
between the considered estimators and the sparsity in the model. For the Lasso
estimator, it can be reexpressed as

Θ = ΘL = {l ∈ {1, ..., p}; β∗
l 6= 0}.

For the GVL estimator, we have

Θ = ΘG =
{

l ∈ {1, . . . , L} : there exists an integer j0 ∈ Gl such that β∗
j0
6= 0

}

,

where L = p/⌊log p⌋ and Gl is described by (2.4). Therefore, for any β∗, the
following inequality always holds:

Card(ΘG) ≤ Card(ΘL).
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It follows from Proposition 4.1 that, with a high probability, the GVL estima-
tor has a smaller least squared error than the Lasso estimator. This is only due
to the fact that the GVL estimator exploits more the sparsity in the model
than the Lasso.

Moreover, in the sparse case, the quantity Card(ΘG) can be asymptotically
smaller than Card(ΘL). For example, if p = n and the unknown parameter
vector β∗ = (β∗

1 , ..., β
∗
n)′ is defined by

β∗ = (1, . . . , 1
︸ ︷︷ ︸

log n

, 0, . . . , 0
︸ ︷︷ ︸

n−log n

),

then Card(ΘG) = 1 and Card(ΘL) = log n.

4.3 Discussion on Assumption (A2)(B)

According to Remark 3.1, Assumption (A2)(Θ) is clearly less restrictive than
Assumption (A2)(B) with Θ ⊆ B ⊆ {1, ..., L}. However, it requires the knowl-
edge of the set Θ by the statistician. Moreover, we understand that this as-
sumption is related to the sparsity of the model. Indeed the more sparse β∗

is, the easier Assumption (A2)(Θ) will be fulfilled. The best case being when
the correlations between variables in groups belonging to Θ and those in the
others groups are concentrated in a few correlation coefficients. The others are
set to 0.

We now introduce a new assumption which can replace, in some cases, As-
sumption (A2)(B).

Assumption (A3). Here, we exclusively consider the case where p ≤ n. Let us
consider the p × p matrix Ψ defined by Ψ = (

∑n
i=1 xi,jxi,k)j,k. For any p ≥ 2,

there exists a constant cp > 0 such that the matrix Z defined by

Z = Ψ − cp diag(Ψ),

is positive semi-definite.

Assumption (A3) is the same as in Bunea et al. [2, Assumption (A3)] which
has been introduced in the aggregation framework. We then refer to Bunea
et al. [2, Remarks 4-5] for more details. Assumption (A3) is, for instance,
always fulfilled for positive matrices X’X. It is important to notice that this
assumption can be helpful when the ”group mutual coherence” is not small
enough. In other words, Assumptions (A2)(B) and (A3) can recover different
types of design matrices.

Moreover, we can rewrite Proposition 4.1 with Assumption (A3) instead of
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Assumption (A2)(B) with Θ ⊆ B ⊆ {1, ..., L}. The only difference is the
quantity sn,p which becomes sn,p = 16cp

−1κ2σ2n−1(log n + log p), where cp is
the constant appearing in Assumption (A3).

5 Proofs of the main results

[Proof of Lemma 3.1.] For the sake of simplicity in exposition and without loss
of generality, we work on the set G1 = {1, ..., ⌊log p⌋}. Let us notice that, for

any u ∈ G1, we have vn,u =
√
∑n

i=1 |xi,u|2 = zu

√
b0. Therefore,

∑

j∈G1

∑

k∈G1

ajakv
−1
n,jv

−1
n,k

n∑

i=1

xi,jxi,k

= b−1
0

⌊log p⌋
∑

j=1

⌊log p⌋
∑

k=1

ajakb|j−k| =
⌊log p⌋
∑

j=1

|aj|2 + 2b−1
0

⌊log p⌋
∑

j=2

j−1
∑

k=1

ajakbj−k

≤
⌊log p⌋
∑

j=1

|aj|2 + b−1
0

⌊log p⌋
∑

j=2

j−1
∑

u=1

(|aj |2 + |aj−u|2)bu.

For any a ∈ S2, we have
∑⌊log p⌋

j=1 |aj |2 ≤ 1 and, a fortiori,

⌊log p⌋
∑

j=2

j−1
∑

u=1

|aj |2bu =
⌊log p⌋
∑

j=2

|aj|2
j−1
∑

u=1

bu ≤ ‖b‖l1

and
⌊log p⌋
∑

j=2

j−1
∑

u=1

|aj−u|2bu =
⌊log p⌋−1
∑

u=1

bu

⌊log p⌋
∑

j=u+1

|aj−u|2 ≤ ‖b‖l1 .

Therefore,

sup
a∈S2




∑

j∈G1

∑

k∈G1

ajakv
−1
n,jv

−1
n,k

n∑

i=1

xi,jxi,k



 ≤ (1 + 2b−1
0 ‖b‖l1) = Cp.

This inequality can easily be extended to any set Gl. Thus, the matrix X
satisfies Assumption (A1) with Cp = 1 + 2b−1

0 ‖b‖l1 .

[Proof of Theorem 4.1.] By definition of the penalized estimator (2.1), for any
β ∈ R

p, we have

9



‖Xβ̂ − Xβ∗‖2
n + 2

L∑

l=1

√
∑

j∈Gl

|wn,j|2|β̂j |2 −
2

n

n∑

i=1

εixiβ̂

≤‖Xβ − Xβ∗‖2
n + 2

L∑

l=1

√
∑

j∈Gl

|wn,j|2|βj|2 −
2

n

n∑

i=1

εixiβ.

Therefore, if we chose β = β∗, we obtain the following inequality:

‖Xβ̂ − Xβ∗‖2
n ≤ 2

L∑

l=1





√
∑

j∈Gl

|wn,j|2|β∗
j |2 −

√
∑

j∈Gl

|wn,j|2|β̂j|2




+
2

n

n∑

i=1

εixi

(

β̂ − β∗
)

. (5.1)

Using the Hölder inequality, on the event Λn,p, we have

2

n

n∑

i=1

εixi

(

β̂ − β∗
)

= 2
L∑

l=1

∑

j∈Gl

Vj

(

β̂j − β∗
j

)

≤ 2
L∑

l=1

√
∑

j∈Gl

|wn,j|−2|Vj|2
√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2

≤
L∑

l=1

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2. (5.2)

It follows from (5.1), (5.2) and the definition of Θ that

‖Xβ̂ − Xβ∗‖2
n +

L∑

l=1

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2

≤ 2
L∑

l=1

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2 + 2

L∑

l=1





√
∑

j∈Gl

|wn,j|2|β∗
j |2 −

√
∑

j∈Gl

|wn,j|2|β̂j|2




= 2
∑

l∈Θ

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2 + 2

∑

l∈Θ





√
∑

j∈Gl

|wn,j|2|β∗
j |2 −

√
∑

j∈Gl

|wn,j|2|β̂j|2


 .

By the Minkowski inequality, for any l ∈ {1, ..., L}, we have

√
∑

j∈Gl

|wn,j|2|β∗
j |2 −

√
∑

j∈Gl

|wn,j|2|β̂j|2 ≤
√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2.

Therefore,
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‖Xβ̂ − Xβ∗‖2
n +

L∑

l=1

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2 ≤ 4

∑

l∈Θ

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2

≤ 4
√

Card(Θ)
√
∑

l∈Θ

∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2. (5.3)

Now, let us bound the term
∑

l∈Θ

∑

j∈Gl
|wn,j|2|β̂j − β∗

j |2. By a simple decom-
position, we have

‖Xβ̂ − Xβ∗‖2
n =

∑

l∈Θ

∑

j∈Gl

(

n−1
n∑

i=1

|xi,j|2
)

|β̂j − β∗
j |2 + n−1

n∑

i=1




∑

l 6∈Θ

∑

j∈Gl

xi,j(β̂j − β∗
j )





2

+R(Θ), (5.4)

where

R(Θ) =2
∑

l∈Θ

∑

l′ 6∈Θ

∑

j∈Gl

∑

j′∈Gl′

(

n−1
n∑

i=1

xi,jxi,j′

)

(β̂j − β∗
j )(β̂j′ − β∗

j′)

+
∑

l∈Θ

∑

l′∈Θ
l′ 6=l

∑

j∈Gl

∑

j′∈Gl′

(

n−1
n∑

i=1

xi,jxi,j′

)

(β̂j − β∗
j )(β̂j′ − β∗

j′)

+
∑

l∈Θ

∑

j∈Gl

∑

j′∈Gl

j′ 6=j

(

n−1
n∑

i=1

xi,jxi,j′

)

(β̂j − β∗
j )(β̂j′ − β∗

j′).

By noticing that n−1∑n
i=1

(
∑

l 6∈Θ

∑

j∈Gl
xi,j(β̂j − β∗

j )
)2 ≥ 0 and

|R(Θ)| ≤ 2
∑

l∈Θ

L∑

l′=1

∑

j∈Gl

∑

j′∈Gl′

j′ 6=j

|n−1
n∑

i=1

xi,jxi,j′||β̂j − β∗
j ||β̂j′ − β∗

j′|,

the equality (5.4) implies that:

∑

l∈Θ

∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2

≤λ2
n,pn

(

‖Xβ̂ − Xβ∗‖2
n − R(Θ)

)

≤ λ2
n,pn

(

‖Xβ̂ − Xβ∗‖2
n + |R(Θ)|

)

≤λ2
n,pn

(

‖Xβ̂ − Xβ∗‖2
n +

2
∑

l∈Θ

L∑

l′=1

∑

j∈Gl

∑

j′∈Gl′

j′ 6=j

|n−1
n∑

i=1

xi,jxi,j′||β̂j − β∗
j ||β̂j′ − β∗

j′|
)

. (5.5)
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Let us set Πj,j′ = n−1∑n
i=1 |wn,j|−1|wn,j′|−1xi,jxi,j′. The Cauchy-Schwarz in-

equality yields

∑

l∈Θ

L∑

l′=1

∑

j∈Gl

∑

j′∈Gl′

j′ 6=j

|n−1
n∑

i=1

xi,jxi,j′||β̂j − β∗
j ||β̂j′ − β∗

j′|

=
∑

l∈Θ

L∑

l′=1

∑

j∈Gl

∑

j′∈Gl′

j′ 6=j

|Πj,j′||wn,j||wn,j′||β̂j − βj ||β̂j′ − β∗
j′|

≤
∑

l∈Θ

L∑

l′=1

√
√
√
√
√

∑

j∈Gl

∑

j′∈Gl′

j′ 6=j

|Πj,j′|2
√
∑

j∈Gl

∑

j′∈Gl′

|wn,j|2|wn,j′|2|β̂j − βj |2|β̂j′ − β∗
j′|2

≤ sup
l∈Θ

sup
l′=1,...,L

√
√
√
√
√

∑

j∈Gl

∑

j′∈Gl′

j′ 6=j

|Πj,j′|2




L∑

l=1

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2




2

= B(Θ).

Combining (5.3), (5.5), the previous inequality and using an elementary in-
equality of convexity, we obtain

‖Xβ̂ − Xβ∗‖2
n +

L∑

l=1

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2

≤ 4n1/2λn,p

√

Card(Θ)
√

‖Xβ̂ − Xβ∗‖2
n + 2B(Θ)

≤ 4n1/2λn,p

√

Card(Θ)
√

‖Xβ̂ − Xβ∗‖2
n + 4

√
2n1/2λn,p

√

Card(Θ)B(Θ).

(5.6)

Assumption (A2)(B), with B such that Θ ⊆ B ⊆ {1, ..., L}, yields

4
√

2n1/2λn,p

√

Card(Θ)B(Θ) ≤
L∑

l=1

√
∑

j∈Gl

|wn,j|2|β̂j − β∗
j |2. (5.7)

It follows from (5.6) and (5.7) that

‖Xβ̂ − Xβ∗‖2
n ≤ 4n1/2λn,p

√

Card(Θ)‖Xβ̂ − Xβ∗‖n.

Therefore,

‖Xβ̂ − Xβ∗‖2
n ≤ 16nλ2

n,pCard(Θ).

This ends the proof of Theorem 4.1.
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[Proof of Proposition 4.1.] We split this proof into two parts. The first part
considers the case where β̂ = β̂G. The second part focuses on the case where
β̂ = β̂L.

- The case where β̂ = β̂G. According to Theorem 4.1, it suffices to prove that

P



 max
l=1,...,L

√
∑

j∈Gl

|wn,j|−2|Vj|2 ≥ 2−1



 ≤ p(np)−(2−1κ−1)2/(2Cp).

We have

P



 max
l=1,...,L

√
∑

j∈Gl

|wn,j|−2|Vj|2 ≥ 2−1



 ≤
L∑

l=1

P





√
∑

j∈Gl

|wn,j|−2|Vj|2 ≥ 2−1





≤ (p/⌊log p⌋) max
l=1,...,L

P





√
∑

j∈Gl

|vn,j|−2|Vj|2 ≥ 2−1κσn−1
√

log n + log p



 .

(5.8)

In order to bound this last term, we introduce the Borell inequality. For further
details about this inequality, see, for instance, Adler [1].

Lemma 5.1 (The Borell inequality) Let D be a subset of R and (ηt)t∈D

be a centered Gaussian process. Suppose that

E

(

sup
t∈D

ηt

)

≤ N and sup
t∈D

V ar(ηt) ≤ Q.

Then, for any x > 0, we have

P

(

sup
t∈D

ηt ≥ x + N

)

≤ exp(−x2/(2Q)). (5.9)

Let us consider the set S2 defined by S2 = {a = (aj) ∈ Z
∗;
∑

j∈Gl
|aj|2 ≤ 1},

and the centered Gaussian process Z(a) defined by

Z(a) =
∑

j∈Gl

ajVjv
−1
n,j.

By an argument of duality, we have

sup
a∈S2

Z(a) = sup
a∈S2

∑

j∈Gl

ajv
−1
n,jVj =

√
∑

j∈Gl

|vn,j|−2|Vj|2.

Let us investigate the upper bounds for E(supa∈S2
Z(a)) and supa∈S2

V ar(Z(a)),
in turn.
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The upper bound for E(supa∈S2
Z(a)). Since Vj ∼ N (0, σ2n−2∑n

i=1 |xi,j|2), the
Cauchy-Schwarz inequality yields

E(sup
a∈S2

Z(a)) = E





√
∑

j∈Gl

|vn,j|−2|Vj|2


 ≤
√
∑

j∈Gl

|vn,j|−2E(|Vj |2)

=σn−1

√
√
√
√
∑

j∈Gl

n∑

i=1

|vn,j|−2|xi,j|2 = σn−1
√

log p.

So, N = σn−1
√

log p.

The upper bound for supa∈S2
V ar(Z(a)). We have

V arn
f (Z(a)) =

∑

j∈Gl

∑

k∈Gl

ajakv
−1
n,jv

−1
n,kE(VjVk),

with E(VjVk) = n−2∑n
u=1

∑n
v=1 xu,jxv,kE(ǫuǫv) = σ2n−2∑n

u=1 xu,jxu,k. Using
this with Assumption (A1), we obtain:

sup
a∈S2

V ar(Z(a)) = σ2n−2 sup
a∈S2




∑

j∈Gl

∑

k∈Gl

ajakv
−1
n,jv

−1
n,k

n∑

u=1

xu,jxu,k



 ≤ Cpσ
2n−2.

So, Q = Cpσ
2n−2.

Combining the obtained values of N and Q with Lemma 5.1, for any l ∈
{1, ..., L}, we have

P





√
∑

j∈Gl

|vn,j|−2|Vj|2 ≥ 2−1κσn−1
√

log n + log p





≤P





√
∑

j∈Gl

|vn,j|−2|Vj|2 ≥ (2−1κ − 1)σn−1
√

log n + log p + σn−1
√

log p





= P

(

sup
t∈D

ηt ≥ (2−1κ − 1)σn−1
√

log n + log p + N

)

≤ exp
(

−(2−1κ − 1)2σ2n−2 log(np)/(2Q)
)

= (np)−(2−1κ−1)2/(2Cp). (5.10)

Putting (5.8) and (5.10) together, we obtain

P



 max
l=1,...,L

√
∑

j∈Gl

|wn,j|−2|Vj|2 ≥ 2−1



 ≤ p(np)−(2−1κ−1)2/(2Cp) = un,p.

This ends the proof of Proposition 4.1 when β̂ = β̂G.
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- The case where β̂ = β̂L. According to Theorem 4.1, it suffices to prove that

P



 max
l=1,...,L

√
∑

j∈Gl

|wn,j|−2|Vj|2 ≥ 2−1



 ≤ p(np)−(2−1κ−1)2/(2Cp),

i.e., due to the definition of L and Gl in the Lasso definition,

P

(

max
l=1,...,p

|wn,l|−1|Vl| ≥ 2−1
)

≤ p(np)−(2−1κ−1)2/(2Cp).

Since Vj = n−1∑n
i=1 xi,jεi ∼ N (0, σ2n−2∑n

i=1 |xi,j|2), an elementary Gaussian
inequality gives

P

(

max
l=1,...,p

|wn,l|−1|Vl| ≥ 2−1
)

≤ p max
l=1,...,p

P

(

|wn,l|−1|Vl| ≥ 2−1
)

≤ p exp
(

−n2κ2λ2
n,p/(8σ2)

)

= p(np)−κ2/8

≤ p(np)−(2−1κ−1)2/(2Cp) = un,p.

This ends the proof of Proposition 4.1 when β̂ = β̂L.

Acknowledgement. We would like to thank Professor Alexander Tsybakov
and Professor Nicolas Vayatis for insightful comments.

References

[1] Adler, R. J. (1990). An introduction to continuity, extrema, and related
topics for general gaussian processes. Institute of Mathematical Statistics,
Hayward, CA.

[2] Bunea, F., Tsybakov, A., and Marten, H. (2007). Aggregation for
gaussian regression. Technical Report .

[3] Bunea, F., Tsybakov, A., and Wegkamp, M. (2006). Aggregation
and Sparsity via l1 Penalized Least Squares , vol. pp. 379 - 391. Springer,
New York, proceedings of the annual conference on learning theory, lec-
ture notes in artificial intelligence (colt 2006) ed.

[4] Cavalier, L. and Tsybakov, A. (2001). Penalized blockwise Stein’s
method, monotone oracles and sharp adaptive estimation. Mathematical
Methods of Statistics, 10(3):247–282.

[5] Donoho, D. L., Elad, M., and Temlyakov, V. N. (2006). Stable
recovery of sparse overcomplete representations in the presence of noise.
Institute of Electrical and Electronics Engineers. Transactions on Infor-
mation Theory , 52(1):6–18.

15



[6] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004).
Least angle regression. The Annals of Statistics , 32(2):407–499. With
discussion, and a rejoinder by the authors.

[7] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American Statistical
Association, 96(456):1348–1360.

[8] Kim, Y., Kim, J., and Kim, Y. (2006). Blockwise sparse regression.
Statistica Sinica, 16:375–390.

[9] Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators.
The Annals of Statistics , 28(5):1356–1378.

[10] Meier, L., van de Geer, S., and Bühlmann, P. (2007). The group
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