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ABSTRACT
The goal of this paper is to define the n-connected re-

gions in the Cartesian workspace of fully-parallel manipulators,
i.e. the maximal regions where it is possible to execute point-
to-point motions. The manipulators considered in this study
may have multiple direct and inverse kinematic solutions. The
N-connected regions are characterized by projection, ontothe
Cartesian workspace, of the connected components of the reach-
able configuration space defined in the Cartesian product of the
Cartesian space by the joint space. Generalized octree models are
used for the construction of all spaces. This study is illustrated
with a simple planar fully-parallel manipulator.

INTRODUCTION
The Cartesian workspace of fully-parallel manipulators is

generally defined as the set of all reachable configurations of the
moving platform. However, this definition is misleading since
the manipulator may not be able to move its platform between
two prescribed configurations in the Cartesian workspace. This
feature is well known in serial manipulators when the environ-
ment includes obstacles (Wenger, 91). For fully-parallel manipu-
lators, point-to-point motions may be infeasible even in obstacle-
free environments. For manipulators with one unique solution to
their inverse kinematics (like Gough-platforms), one configura-
tion of the moving platform is associated with one unique joint
configuration and the connected-components of the singularity-
free regions of the Cartesian workspace are the maximal regions
of point-to-point motions (Chablat, 98a). Unfortunately,this re-

sult does not hold for manipulators which have multiple solutions
to both their direct and inverse kinematics. For such manipula-
tors which are the subject of this study, the singularity locus in
the Cartesian workspace depends on the choice of the inverse
kinematic solution (Chablat, 97) and the actual reachable space
must be firstly defined in the Cartesian product of the Cartesian
space by the joint space. The goal of this paper is to define the
N-connected regions in the Cartesian workspace of fully-parallel
manipulators, i.e., the maximal regions where it is possible to
execute any point-to-point motion. The N-connected regions are
characterized by projection, onto the Cartesian space, of the con-
nected components of the manipulator configuration space de-
fined in the Cartesian product of the Cartesian space by the joint
space. Generalized Octree models are used for the construction
of all spaces. This study is illustrated with a simple planarfully-
parallel manipulator.

1 Preliminaries
Some useful definitions are recalled in this section.

1.1 Fully-parallel manipulators
Definition 1. A fully-parallel manipulator is a mechanism that
includes as many elementary kinematic chains as the moving
platform does admit degrees of freedom. In addition, every ele-
mentary kinematic chain possesses only one actuated joint (pris-
matic, pivot or kneecap). Besides, no segment of an elementary
kinematic chain can be linked to more than two bodies (Merlet,
97).
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In this study, kinematic chains, also called “leg” (Angeles, 97),
will be always independent.

1.2 Kinematics
The input vectorq (the vector of actuated joint values) is

related to the output vectorX (the vector of configuration of the
moving platform) through the following general equation :

F(X,q) = 0 (1)

Vector (X, q) will be called manipulator configurationand X
is the platform configuration and will be more simply termed
configuration. Differentiating equation (1) with respect to time
leads to the velocity model

At + Bq̇ = 0 (2)

With t = [w, ċ]T , for planar manipulators (w is the scalar angular-
velocity andċ is the two-dimensional velocity vector of the op-
erational point of the moving platform),t = [w]T , for spherical
manipulators andt = [w, ċ]T , for spatial manipulators (ċ is the
three-dimensional velocity vector andẇ is the three-dimensional
angular velocity-vector of the operational point of movingplat-
form).

Moreover,A and B are respectively the direct-kinematics
and the inverse-kinematics matrices of the manipulator. A sin-
gularity occurs wheneverA or B, (or both) can no longer be in-
verted. Three types of singularities exist (Gosselin, 90):

det(A) = 0

det(B) = 0

det(A) = 0 and det(B) = 0

1.3 Parallel singularities
Parallel singularities occur when the determinant of the di-

rect kinematics matrixA vanishes. The corresponding singular
configurations are located inside the Cartesian workspace.They
are particularly undesirable because the manipulator can not re-
sist any effort and control is lost.

1.4 Serial singularities
Serial singularities occur when the determinant of the in-

verse kinematics matrixB vanishes. By definition, the inverse-
kinematic matrix is always diagonal: for a manipulator withn
degrees of freedom, the inverse kinematic matrixB can be writ-
ten like in equation (3). Each termB j j is associated with one leg.

A serial singularity occurs whenever at least one of these terms
vanishes.

B = Diag[B11, ...,B j j , ...,Bnn] (3)

When the manipulator is in serial singularity, there is a direction
along which no Cartesian velocity can be produced.

1.5 Postures
Theposturesare defined for fully-parallel manipulators with

multiple inverse kinematic solutions (Chablat, 97). LetW be the
reachable Cartesian workspace, that is, the set of all reachable
configurations of the moving platform ((Kumar, 92) and (Pen-
nock, 93)). LetQ be the reachable joint space, that is, the set of
all joint vectors reachable by the actuated joints.

Definition 2. For a given configurationX in W, a postureis
defined as a solution to the inverse kinematics of the manipulator.

According to the joint limit values, all postures do not necessarily
exist. Changing posture is equivalent to changing the posture of
one or several legs.

1.6 Point-to-point trajectories
There are two major types of tasks to consider : point-to-

point motions and continuous path tracking. Only point-to-point
motions will be considered in this study.

Definition 3. A point-to-point trajectory T is defined by a
set of p configurations in the Cartesian workspace : T=
{X1, ...,Xi , ....,Xp}.

By definition, no path is prescribed between any two configura-
tionsXi andX j .

Hypothesis : In a point-to-point trajectory, the moving plat-
form can not move through a parallel singularity.

Although it was shown recently that in some particular cases
a parallel singularity could be crossed (Nenchev, 97), hypothesis
1 is set for the most general cases.

A point-to-point trajectoryT will be feasible if there exists
a continuous path in the Cartesian product of the Cartesian space
by the joint space which does not meet a parallel singularityand
which makes the moving platform pass through all prescribed
configurationsXi of the trajectoryT.

Remark : A fully-parallel manipulator with several inverse
kinematic solutions can change its posture between two pre-
scribed configurations. Such a manoeuver may enable the ma-
nipulator to avoid a parallel singularity (Figure 1). More gener-
ally, the choice of the posture for each configurationXi of the
trajectoryT can be established by any other criteria like stiff-
ness or cycle time (Chablat, 98b). Note that a change of posture
makes the manipulator run into a serial singularity, which is not
redhibitory for the feasibility of point-to-point trajectories.
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Figure 1. Singular (left) and a regular (right) configurations (the actuated

joints are A and B)

1.7 The generalized octree model
The quadtree and octree models are hierachical data struc-

tures based on a recursive subdivision of the plane and the space,
respectively (Meagher, 81). There are useful for representing
complex 2-D and 3-D shapes. In this paper, we use a gener-
alization of this model to dimensionk, with k > 3, the 2k-tree
(Chablat, 98a). This model is suitable for Boolean operations
like union, difference and intersection. Since this structure has
an implicit adjacency graph, path-connectivity analyses and tra-
jectory planning can be naturally achieved.

Whenk > 3, it is not possible to represent graphically the
2k-tree. It is necessary to project this structure onto a lowerdi-
mensional space (quadtree or octree). For a n-dof fully-parallel
manipulator, the Cartesian product of the Cartesian space by the
joint space defines generalized octree with dimension 2n. When
n= 3 (respectivelyn= 2), the projection onto the Cartesian space
and the joint space yields octree models (respectively quadtree
models).

2 The moveability in the Cartesian workspace
Definition 4. The N-connected regionsof the Cartesian
workspace are the maximal regions where any point-to-pointtra-
jectory is feasible.

For manipulators with multiple inverse and direct kinematic so-
lutions, it is not possible to study the joint space and the Cartesian
space separately. First, we need to define theregions of manip-
ulator reachable configurationsin the Cartesian product of the
Cartesian space by the joint spaceW.Q.

Definition 5. The regions of manipulator reachable configura-
tions Rj are defined as the maximal sets in W.Q such that

Rj ∈W.Q,
Rj is connected,
Rj = {X,q} such thatdet(A) 6= 0

In other words, the regionsRj are the sets of all configurations
(X, q) that the manipulator can reach without meeting a parallel
singularity and which can be linked by a continuous path inW.Q.

Proposition : A trajectoryT = {X1, ...,Xp} defined in the
Cartesian workspaceW is feasible if and only if :

{

∀X ∈ {X1, ...,Xp}
∃qi ∈ Q,∃Rj

such that(Xi ,qi) ∈ Rj

In other words, for each configurationXi in T, there exists at least
one postureqi and one region of manipulator reachable config-
urationsRj such that the manipulator configuration(Xi ,q) is in
Rj .

Proof : Indeed, if for all configurationsXi , there is one joint
configurationqi such that(Xi ,qi) ∈ Rj then the trajectory is fea-
sible because, by definition, a region of manipulator reachable
configurations is connected and free of parallel singularity. Con-
versely, if for a given configurationXi , it is not possible to find
a postureqi such that(Xi ,qi) ∈ Rj , then no continuous, paral-
lel singularity-free path exists in W.Q which can link the other
prescribed configurations.

Theorem : The N-connected regionsWN j are the projec-
tion ΠW of the region of manipulator reachable configurations
Rj onto the Cartesian space :

WN j = ΠWRj

Proof : This results is a straightforward consequence of the
above proposition.

The N-connected regions cannot be used directly for plan-
ning trajectories in the Cartesian workspace since it is necessary
to choose one joint configurationq for each configurationX of
the moving platform such that(X,q) is included in the same
region of manipulator reachable configurationsRj . However,
the N-connected regions provide interesting global information
with regard to the performances of a fully-parallel manipula-
tors because they define the maximal regions of the Cartesian
workspace where it is possible to execute any point-to-point tra-
jectory.

A consequence of the above theorem is that the Cartesian
workspaceW is N-connected if and only if there exists a N-
connected regionWN j which is coincident with the Cartesian
workspace :

WN j = W

3 Example: A Two-DOF fully-parallel manipulator
For more legibility, a planar manipulator is used as illus-

trative example in this paper. This is a five-bar, revolute (R)-
closed-loop linkage, as displayed in figure 2. The actuated joint
variables areθ1 andθ2, while the Output values are the (x, y) co-
ordinates of the revolute centerP. The passive joints will always
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be assumed unlimited in this study. LengthsL0, L1, L2, L3, and
L4 define the geometry of this manipulator entirely. The dimen-
sions are defined in table 1 in certain units of length that we need
not specify.

y

A

P(x, y)

B

x
q

2

D

C

L
3

q
1
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4

L
2

L
1

L0

Figure 2. A two-dof fully-parallel manipulator

L0 L1 L2 L3 L4 θ1min θ1max θ2min θ2max

7 8 5 8 5 0 π 0 π

Table 1. The dimensions of the RR-RRR studied

As shown in table 1, the actuated joints are limited. The
Cartesian workspace is shown in figure 3. We want to know
whether this manipulator can execute any point-to-point motion
in the Cartesian workspace. To answer this question, we needto
determine the the N-connected regions.

Y

X

X
2

X
1

Figure 3. The Cartesian workspace

3.1 Singularities
For the manipulator studied, the parallel singularities occur

whenever the pointsC, D, andP are aligned (Figure 4). Manipu-
lator postures wherebyθ3−θ4 = kπ denote a singular matrixA,
and hence, define the boundary of the joint space of the manip-
ulator. For the manipulator at hand, the serial singularities occur

Figure 4. Example of par-

allel singularity

Figure 5. Example of serial

singularity

whenever the pointsA, C, andP or the pointsB, D, andP are
aligned (Figure 5). Manipulator postures wherebyθ3− θ1 = kπ
or θ4−θ2 = kπ denote a singular matrixB, and hence, define the
boundary of the Cartesian workspace of the manipulator.

3.2 Postures
The manipulator under study has four postures, as depicted

in figure 6. According to the posture, the parallel singularity
locus changes in the Cartesian workspace, as already shown in
figure 1.

Figure 6. The four postures
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3.3 The N-connected regions
It turns out that the Cartesian workspace of the manipulator

at hand is not N-connected, e.g. the manipulator cannot move
its platform between any set of configurations in the Cartesian
workspace. In effect, due to the existence of limits on the actu-
ated joints, not all postures are accessible for any configuration
in the Cartesian workspace. Thus, the manipulator may loose
its ability to avoid a parallel singularity when moving fromone
configuration to another. This is what happens between points
X1 andX2 (Figure 3). These two points cannot be linked by the
manipulator although they lie in the Cartesian workspace which
is connected in the mathematical sense (path-connected) but not
N-connected. In fact, there are two separate N-connected regions
which do not coincide with the Cartesian workspace and the two
points do not belong to the same N-connected region (Figures7
and 8).

Y

X

X
2

X
1

Figure 7. The first N-connected region of the Cartesian workspace when

0.0≤ θ1,θ2 ≤ π

Physically, any attempt in moving the point P fromX1 to X2

will cause the manipulator either cross a parallel singularity or
reach a joint limit.

In effect, pointX1 is accessible only in the manipulator con-
figuration shown in figure 9a because of the joint limits. When
moving towards pointX4, the manipulator cannot remain in its
initial posture because it would meet a parallel singularity (Fig-
ure 9b). Thus, it must change its posture, let say atX3 (Figure
9c). The only new posture which can be chosen is the one de-
picted in figure 9d because any other posture would make the
manipulator meet a parallel singularity (Figure 9e). Then,it is
apparent that the manipulator cannot reachX1 from X4 since
joint A attains its limits (figure 9f).

If we change the values of the joint limits (θ1min = θ2min =
−π), the Cartesian workspace is now N-connected since the

Y

X
2

X
1

X

Figure 8. The second N-connected region of the Cartesian workspace

when 0.0≤ θ1,θ2 ≤ π

A B
P

C D

(a) (b)

A B

P

C

D

(c)

A B

PC

D

(d)

A B

P
C D

(e)

A B

P

C

D

(f)

Figure 9. Moving from X1 to X4

computed N-connected regions are coincident with the Cartesian
workspace (Figure 10). In effect, it can be verified in this case
that for every configuration of the moving platform, there are
four postures which define two regions of accessible configura-
tions whose projection onto the Cartesian space yields the full
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Figure 10. The N-connected regions of the Cartesian workspace when

−π ≤ θ1,θ2 ≤ π

Cartesian workspace.

4 Conclusions
The aim of this paper was the characterization of the N-

connected regions in the Cartesian workspace of fully-parallel
manipulators, i.e. the regions of feasible point-to-pointtrajec-
tories. The word feasible means that the manipulator shouldbe
able to move between all prescribed configurations while never
meeting a parallel singularity. The manipulators considered in
this study have multiple solutions to their direct and inverse kine-
matics. The N-connected regions were defined by first determin-
ing the maximum path-connected, parallel singularity-free re-
gions in the Cartesian product of the Cartesian workspace bythe
joint space. The projection of these regions onto the Cartesian
workspace were shown to define the N-connected regions.

The N-connectivity analysis of the Cartesian workspace is
of high interest for the evaluation of manipulator global perfor-
mances as well as for off-line task programming.

Further research work is being conducted by the authors to
take into account the collisions and to characterize the maximum
regions of the Cartesian workspace where the manipulator can
track any continuous trajectory.
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édition, Paris, 1997.

Angeles, J. “Fundamentals of Robotic Mechanical Systems”
SPRINGER 97.

Gosselin, C. and Angeles, J. “Singularity analysis of closed-
loop kinematic chains” IEEE Transactions On Robotics And Au-
tomation, Vol. 6, No. 3, June 1990.

Kumar V. “Characterization of workspaces of parallel ma-
nipulators” ASME J. Mechanical Design, Vol. 114, pp 368-375,
1992.

Pennock, G.R. and Kassner, D.J. “The workspace of a gen-
eral geometry planar three-degree-of-freedom platform-type ma-
nipulator” ASME J. Mechanical Design, Vol. 115, pp 269-276,
1993.

Nenchev, D.N., Bhattacharya, S., and Uchiyama, M., “Dy-
namic Analysis of Parallel Manipulators under the Singularity-
Consistent Parameterization” Robotica, Vol. 15, pp. 375-384.
1997.

Chablat, D., Wenger, Ph. , Angeles, J.“The isocondition-
ing Loci of A Class of Closed-Chain Manipulators”Proceeding
IEEE International Conference of Robotic and Automation, pp.
1970-1975, May 1998.

Meagher, D. “Geometric Modelling using Octree Encoding”
Technical Report IPL-TR-81-005, Image Processing Laboratory,
Rensselaer Polytechnic Institute, Troy, New York 12181, 1981.

6 Copyright  1999 by ASME


