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CMBSTRACT

>, The goal of this paper is to define the n-connected re-

(@ions in the Cartesian workspace of fully-parallel mardggpois,
e. the maximal regions where it is possible to executetpoin
to-point motions. The manipulators considered in this wtud
ay have multiple direct and inverse kinematic solutionke T
IN-connected regions are characterized by projection, thgo
—{fartesian workspace, of the connected components of tok-rea
ble configuration space defined in the Cartesian produtieof t
artesian space by the joint space. Generalized octreelsarde
.=tised for the construction of all spaces. This study is ilatet]
Ulith a simple planar fully-parallel manipulator.
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HNTRODUCTION

The Cartesian workspace of fully-parallel manipulators is

enerally defined as the set of all reachable configuratibtieeo
oving platform. However, this definition is misleading cn

e manipulator may not be able to move its platform between

—iwo prescribed configurations in the Cartesian workspat¢es T
Cleature is well known in serial manipulators when the enviro
Centincludes obstaclels (Wenget, 91). For fully-parallehipu-
lators, point-to-point motions may be infeasible even istable-
(Tree environments. For manipulators with one unique sofuti
Ciheir inverse kinematics (like Gough-platforms), one ogunfa-
tion of the moving platform is associated with one uniquatoi
configuration and the connected-components of the singular
free regions of the Cartesian workspace are the maximaimegi

of point-to-point motions|(Chablat, 98a). Unfortunatehjs re-
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sult does not hold for manipulators which have multiple Sohs

to both their direct and inverse kinematics. For such mdaipu
tors which are the subject of this study, the singularityubb

the Cartesian workspace depends on the choice of the inver
kinematic solution[(Chablat, D7) and the actual reachgidee
must be firstly defined in the Cartesian product of the Catesi
space by the joint space. The goal of this paper is to define th
N-connected regions in the Cartesian workspace of fulladbel
manipulators, i.e., the maximal regions where it is posstbl
execute any point-to-point motion. The N-connected regamne
characterized by projection, onto the Cartesian spacbgeafdn-
nected components of the manipulator configuration space d¢
fined in the Cartesian product of the Cartesian space by the jo
space. Generalized Octree models are used for the comstruct
of all spaces. This study is illustrated with a simple pldindy-
parallel manipulator.

1 Preliminaries
Some useful definitions are recalled in this section.

1.1 Fully-parallel manipulators

Definition 1. A fully-parallel manipulator is a mechanism that
includes as many elementary kinematic chains as the movin
platform does admit degrees of freedom. In addition, eviry e
mentary kinematic chain possesses only one actuated jwist (
matic, pivot or kneecap). Besides, no segment of an elenyenta
kinematic chain can be linked to more than two bodies (Mgrlet
97).
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In this study, kinematic chains, also called “leg” (Angel@¥),

will be always independent.

1.2 Kinematics

The input vectorg (the vector of actuated joint values) is
related to the output vectot (the vector of configuration of the
moving platform) through the following general equation :

F(X,q)=0 1)

Vector (X, q) will be called manipulator configuratiorand X

is the platform configuration and will be more simply termed
configuration Differentiating equation[[l) with respect to time
leads to the velocity model

At+Bq=0 )

With t = [w,&]", for planar manipulators\(is the scalar angular-
velocity andc is the two-dimensional velocity vector of the op-
erational point of the moving platformj,= [W]T, for spherical
manipulators and = [w, (':]T, for spatial manipulatorsc(is the
three-dimensional velocity vector aiads the three-dimensional
angular velocity-vector of the operational point of movlgt-
form).

Moreover,A and B are respectively the direct-kinematics
and the inverse-kinematics matrices of the manipulatorinA s
gularity occurs whenevek or B, (or both) can no longer be in-

verted. Three types of singularities ex , 90):

det(A)
det(B)
det(A)

0
0
0

and detB)=0

1.3 Parallel singularities

Parallel singularities occur when the determinant of the di
rect kinematics matri¥A vanishes. The corresponding singular
configurations are located inside the Cartesian workspeoey
are particularly undesirable because the manipulator oanen
sist any effort and control is lost.

1.4 Serial singularities

Serial singularities occur when the determinant of the in-
verse kinematics matriB vanishes. By definition, the inverse-
kinematic matrix is always diagonal: for a manipulator with
degrees of freedom, the inverse kinematic masrizan be writ-
ten like in equation[{3). Each terBy; is associated with one leg.

2

A serial singularity occurs whenever at least one of thesage
vanishes.

When the manipulator is in serial singularity, there is @&diion
along which no Cartesian velocity can be produced.

1.5 Postures

Theposturesare defined for fully-parallel manipulators with
multiple inverse kinematic solutionf (Chablat] 97). Wébe the
reachable Cartesian workspace, that is, the set of all aédeh
configurations of the moving platform[((Kumar,|92) and (Pen-
nock, 93)). LetQ be the reachable joint space, that is, the set of
all joint vectors reachable by the actuated joints.

Definition 2. For a given configuratiorX in W, a postureis
defined as a solution to the inverse kinematics of the magtipul

According to the joint limit values, all postures do not nesagily
exist. Changing posture is equivalent to changing the pestf
one or several legs.

1.6 Point-to-point trajectories

There are two major types of tasks to consider : point-to-
point motions and continuous path tracking. Only poinptonat
motions will be considered in this study.

Definition 3. A point-to-point trajectory T is defined by a
set of p configurations in the Cartesian workspace : =T
(X1, Xiy oo, Xp -

By definition, no path is prescribed between any two configura
tionsX; andXj.

Hypothesis: In a point-to-point trajectory, the moving plat-
form can not move through a parallel singularity.

Although it was shown recently that in some particular case:
a parallel singularity could be cross¢d (Nenchely, 97), Hygsis
1is set for the most general cases.

A point-to-point trajectoryl’ will be feasible if there exists
a continuous path in the Cartesian product of the Cartepiaces
by the joint space which does not meet a parallel singularity
which makes the moving platform pass through all prescribec
configurations{; of the trajectoryT .

Remark : A fully-parallel manipulator with several inverse
kinematic solutions can change its posture between two pre
scribed configurations. Such a manoeuver may enable the m
nipulator to avoid a parallel singularity (Figqﬂe 1). Morergpr-
ally, the choice of the posture for each configuratignof the
trajectoryT can be established by any other criteria like stiff-
ness or cycle time (Chablat, 98b). Note that a change of mstu
makes the manipulator run into a serial singularity, whchat
redhibitory for the feasibility of point-to-point trajemties.
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Figure 1. Singular (left) and a regular (right) configurations (the actuated
joints are A and B)

A

1.7 The generalized octree model

Proposition : A trajectoryT = {X1,...,X,} defined in the
Cartesian workspad# is feasible if and only if :

{VX € {X1,.. Xp} such that(X;, i) € R;

dgi € Q,3R;

In other words, for each configuratiotin T, there exists at least
one postura); and one region of manipulator reachable config-
urationsR; such that the manipulator configuratigxi,q) is in
R;.

Proof : Indeed, if for all configurationX;, there is one joint
configurationg; such that(X;, q;) € R; then the trajectory is fea-
sible because, by definition, a region of manipulator redatba

The quadtree and octree models are hierachical data struc-configurationsis connected and free of parallel singuiar@on-

tures based on a recursive subdivision of the plane and deesp

respectively [(Meagher, B1). There are useful for représgnt

versely, if for a given configuratioX;, it is not possible to find
a postureq; such that(X;,q;) € R;, then no continuous, paral-

complex 2-D and 3-D shapes. In this paper, we use a gener- lel singularity-free path exists in W which can link the other

alization of this model to dimensiok with k > 3, the X-tree
(Chablat, 98a). This model is suitable for Boolean openatio
like union, difference and intersection. Since this suuethas
an implicit adjacency graph, path-connectivity analyses taa-
jectory planning can be naturally achieved.

Whenk > 3, it is not possible to represent graphically the
2-tree. It is necessary to project this structure onto a laticer
mensional space (quadtree or octree). For a n-dof fullydfedr
manipulator, the Cartesian product of the Cartesian spatieeh
joint space defines generalized octree with dimension/Zhen
n = 3 (respectivelyn = 2), the projection onto the Cartesian space
and the joint space yields octree models (respectively ed
models).

2 The moveability in the Cartesian workspace

Definition 4. The N-connected regionsof the Cartesian
workspace are the maximal regions where any point-to-ficant
jectory is feasible.

For manipulators with multiple inverse and direct kineroait-
lutions, itis not possible to study the joint space and theeS&@n
space separately. First, we need to definer¢iggons of manip-
ulator reachable configurationi® the Cartesian product of the
Cartesian space by the joint spae.

Definition 5. The regions of manipulator reachable configura-
tions R are defined as the maximal sets inQ\such that

Rj e W.Q,
R;j is connected,
Rj = {X,q} such thatet(A) # 0

In other words, the regiorR; are the sets of all configurations

prescribed configurations.

Theorem : The N-connected regionsl; are the projec-
tion My of the region of manipulator reachable configurations
R; onto the Cartesian space :

Whj = MwR;

Proof : This results is a straightforward consequence of the
above proposition.

The N-connected regions cannot be used directly for plan
ning trajectories in the Cartesian workspace since it iessary
to choose one joint configuratianfor each configuratioiX of
the moving platform such thaX,q) is included in the same
region of manipulator reachable configuratids However,
the N-connected regions provide interesting global infation
with regard to the performances of a fully-parallel mangul
tors because they define the maximal regions of the Cartesic
workspace where it is possible to execute any point-totfran
jectory.

A consequence of the above theorem is that the Cartesic
workspaceW is N-connected if and only if there exists a N-
connected regioMij which is coincident with the Cartesian
workspace :

Whj =W

3 Example: A Two-DOF fully-parallel manipulator

For more legibility, a planar manipulator is used as illus-
trative example in this paper. This is a five-bar, revolu®g (
closed-loop linkage, as displayed in figlﬂe 2. The actuated |

(X, q) that the manipulator can reach without meeting a parallel variables ar®; and6,, while the Output values are the §) co-

singularity and which can be linked by a continuous patVi@.

ordinates of the revolute centér The passive joints will always

Copyright 0 1999 by ASME



be assumed unlimited in this study. LengthsL;, L, L3, and

L4 define the geometry of this manipulator entirely. The dimen-
sions are defined in tabjg 1 in certain units of length that eesin
not specify.

Figure 2. A two-dof fully-parallel manipulator

Lo |Li|L2| L3 |La B2min
71 8|5 81| 5 0 T 0

e1min e1max e2max

n |

Table 1. The dimensions of the RR-RRR studied

As shown in tabld]1, the actuated joints are limited. The
Cartesian workspace is shown in figl[||e 3. We want to know
whether this manipulator can execute any point-to-pointiano
in the Cartesian workspace. To answer this question, we toeed
determine the the N-connected regions.

w

Figure 3. The Cartesian workspace

3.1 Singularities

For the manipulator studied, the parallel singularitiesusc
whenever the points, D, andP are aligned (Figurﬂ 4). Manipu-
lator postures wherelf§s — 84 = kitdenote a singular matri,
and hence, define the boundary of the joint space of the maniy
ulator. For the manipulator at hand, the serial singuksiticcur

Figure 4. Example of par- Figure5. Example of serial

allel singularity singularity

whenever the pointé, C, andP or the pointsB, D, andP are
aligned (FigureﬂS). Manipulator postures wherégy- 6; = kit
or 84— 62 = krtdenote a singular matrg, and hence, define the
boundary of the Cartesian workspace of the manipulator.

3.2 Postures

The manipulator under study has four postures, as depicte
in figure B According to the posture, the parallel singtyari
locus changes in the Cartesian workspace, as already stmown
figure[].

Figure 6. The four postures
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3.3 The N-connected regions Y
It turns out that the Cartesian workspace of the manipulator

at hand is not N-connected, e.g. the manipulator cannot move

its platform between any set of configurations in the Caatesi

workspace. In effect, due to the existence of limits on the-ac

ated joints, not all postures are accessible for any corstour

in the Cartesian workspace. Thus, the manipulator may loose

its ability to avoid a parallel singularity when moving froone %

configuration to another. This is what happens between point

X1 andXsy (FigureﬂS). These two points cannot be linked by the Y
manipulator although they lie in the Cartesian workspacikvh T x () Y ]

is connected in the mathematical sense (path-connectedpbu 2 |
N-connected. In fact, there are two separate N-connecggaire
which do not coincide with the Cartesian workspace and tloe tw

points do not be|0ng to the same N-connected region (Figﬂjres Figure 8. The second N-connected region of the Cartesian workspace
and[B). when0.0< 81,0, < Tt

% A Of B B
e (a) (b)
X
X X, 4
D o
Figure 7. The first N-connected region of the Cartesian workspace when 4 4 B
0.0<01,0, <1t
(©) (d)
s
O Iy
Physically, any attempt in moving the point P frota to X, VIRV e
will cause the manipulator either cross a parallel singtylar D ]
reach a joint limit. g
In effect, pointX is accessible only in the manipulator con- 4 B 4 B
figuration shown in figur§|9a because of the joint limits. When
moving towards poinK,, the manipulator cannot remain in its (e) ®
initial posture because it would meet a parallel singujgifig- Figure 9. Moving from X1 to X4
ure[§b). Thus, it must change its posture, let sa}tafFigure
Ec). The only new posture which can be chosen is the one de-
picted in figure[pd because any other posture would make the
manipulator meet a parallel singularity (FigL[lle 9e). Theis computed N-connected regions are coincident with the Siarte
apparent that the manipulator cannot rexghfrom X4 since workspace (Figurg 10). In effect, it can be verified in thisea
joint A attains its limits (figuré]9f). that for every configuration of the moving platform, there ar
If we change the values of the joint limit81min = B2min = four postures which define two regions of accessible cordigur

—T), the Cartesian workspace is now N-connected since the tions whose projection onto the Cartesian space yieldstthe f
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A

Figure 10. The N-connected regions of the Cartesian workspace when
-Tm< 01,6 <M

Cartesian workspace.

4 Conclusions

The aim of this paper was the characterization of the N-
connected regions in the Cartesian workspace of fullyifgra
manipulators, i.e. the regions of feasible point-to-paiajec-
tories. The word feasible means that the manipulator shiogild
able to move between all prescribed configurations whileenev
meeting a parallel singularity. The manipulators congden
this study have multiple solutions to their direct and irseskine-
matics. The N-connected regions were defined by first determi
ing the maximum path-connected, parallel singularityefre-
gions in the Cartesian product of the Cartesian workspactkdy
joint space. The projection of these regions onto the Gartes
workspace were shown to define the N-connected regions.

The N-connectivity analysis of the Cartesian workspace is
of high interest for the evaluation of manipulator globaifpe
mances as well as for off-line task programming.

Further research work is being conducted by the authors to
take into account the collisions and to characterize themamx
regions of the Cartesian workspace where the manipulator ca
track any continuous trajectory.
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