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Abstract - This paper describes a new parallel kinematic architecture for machining applications, 
namely, the orthoglide. This machine features three fixed parallel linear joints which are mounted 
orthogonally and a mobile platform which moves in the Cartesian x-y-z space with fixed orientation. The 
main interest of the orthoglide is that it takes benefit from the advantages of the popular PPP serial 
machines (regular Cartesian workspace shape and uniform performances) as well as from the parallel 
kinematic arrangement of the links (less inertia and better dynamic performances), which makes the 
orthoglide well suited to high-speed machining applications. Possible extension of the orthoglide to 5-
axis machining is also investigated. 

1 Introduction 

Parallel kinematic machines (PKM) are commonly claimed to offer several advantages over their serial 
counterpart, like high structural rigidity, high dynamic capacities and high accuracy. On the other hand, 
they generally suffer from a reduced operational workspace due to the presence of internal singularities 
or self-collisions.  
PKM were first introduced by Gough in 1956 and have been used for many years as flight simulators, 
because of their higher load carrying capacity (Stewart 1965), (Gosselin and Wang 1998). Parallel robotic 
manipulators appeared later with the first industrial application proposed by Clavel (Clavel 1988). 
Parallel kinematic machine tools attract the interest of more and more researchers and companies. Since 
the first prototype presented in 1994 during the IMTS in Chicago by Gidding&Lewis (the Variax), many 
other prototypes have appeared as could be seen during the last World Exhibition EMO’99 which was 
held in Paris in May 1999. A recent comparative study, conducted on the basis of simple planar 
mechanisms, shows that certain parallel kinematic structures do have potential advantages over their 
serial counterparts (Wenger et al 1999). Despite this, it is worth noting that many users of machine tools 
are still not convinced by the potential benefits of PKM. Most industrial 3-axis machine tools have a PPP 
kinematic architecture with orthogonal joint axes. Thus, the motion of the tool in the space is quite 
simply related to the motion of the three actuated axes. Also, the performances (e.g. maximum speeds, 
forces, accuracy and rigidity) are constant in the most part of the Cartesian workspace, which is a 
parallelepiped. In contrast, the common feature of most existing PKM is that the Cartesian workspace 
shape is of complex geometry and the motion of the tool and the motion of the actuated axes are not 
simply connected. More precisely, the Jacobian matrix which relates the joint rates and the output 
velocities is not constant and not isotropic. Consequently, the performances may vary considerably for 
different points in the Cartesian workspace and for different directions at one given point, which is a 
serious drawback for machining applications. The orthoglide studied in this paper is designed in order 
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keep the regularity of the Cartesian workspace shape as well as the uniformity of performances of the 
PPP machine tools, while taking benefit from the parallel kinematic arrangement of the links. 

The organisation of this paper is as follows. Next section is devoted to the presentation of existing PKM 
and of the orthoglide. Section 3 investigates kinematic performances of the orthoglide, especially 
manipulability and Cartesian workspace. Possible extensions to 5-axis PKM of the orthoglide are 
discussed in section 4. Last section concludes this paper. 

2 Presentation of the orthoglide 

2.1 Existing PKM 

There are many possible types of PKM architectures which find applications in motion simulators, 
robotic manipulators and more recently in machine tools (Merlet 1997). In the context of machine tool 
applications, most existing prototypes or commercial PKM can be classified into two general families: (i) 
PKM with fixed foot points and variable strut lengths and (ii) PKM with fixed length struts and moveable 
foot points.  
The first family comprises the so-called hexapod machines which, in fact, feature a Gough-Stewart 
platform architecture. Numerous examples of hexapods PKM exist: the VARIAX-Hexacenter 
(Gidding&Lewis), the CMW300 (Compagnie Mécanique des Vosges), the TORNADO 2000 (Hexel), the 
MIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA (Okuma), the hexapod G500 (GEODETIC). 
In this first family, we find also hybrid architectures with a 2-axis wrist mounted in series with a 3-DOF 
parallel structure (e.g the TRICEPT 805, Neos Robotics).  
The second family (ii) of PKM has been more recently investigated. The most famous PKM of this 
category is the HEXAGLIDE (ETH Zürich) which features six parallel (also in the geometrical sense) 
and coplanar linear joints. The HexaM (Toyota) is another example with non coplanar linear joints. A 3-
axis translational version of the hexaglide is the TRIGLIDE (Mikron), which has three coplanar and 
parallel linear joints. Another 3-axis translational PKM is proposed by the ISW Uni Stuttgart with the 
LINAPOD. This PKM has with three vertical (non coplanar) linear joints. The URANE SX (Renault 
Automation) and the QUICKSTEP (Krause & Mauser) are 3-axis PKM with three non coplanar 
horizontal linear joints. A hybrid parallel/serial PKM with three parallel inclined linear joints and a two-
axis wrist is the GEORGE V (IFW Uni Hannover).  
To be complete, one should add the ECLIPSE machining center which does not fall in the 
aforementioned two PKM families. This is a 6-DOF over actuated machine with three vertical struts 
which can move independently on an horizontal circular prismatic joint.  
More detailed information about all these PKM can be found at http://www.ifw.uni-
hannover.de/robotool, http://www.renault-automation.com, http://www.krause-mauser.com. 
 

2.2 The orthoglide  

The orthoglide presented in this paper belongs to the family of 3-axis translational PKM with variable 
foot points and fixed length struts (figure 1). This machine has three identical legs which are PRRRR 
chains (figure 2). The actuated joints are the three orthogonal linear joints. These joints can be actuated 
by means of linear motors or by conventional rotary motors with ball screws. The output body is 
connected to the prismatic joints through a set of three parallelograms, so that it can moves only in 
translation (note that two parallelograms would be enough). An important feature of this PKM is the 
symmetry of the design (the three chains are identical, in particular, the lengths BiCi are equal) and the 
simplicity of the kinematic chains (all joints are simple one-DOF joints), which should contribute to 
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lower the manufacturing cost of such a design. Also, the orthoglide is free of singularities and self-
collisions. 
The design process which led us to this kinematic structure is a similar to the one we applied for a 2-axis 
machine (Chablat et al 2000). The main idea is to produce a parallel kinematic machine which be as close 
as possible to a serial PPP machine. Serial PPP machines are nice since their kinematics is quite simple 
and the displacements of the tool are intuitive. Furthermore, the Cartesian workspace is very simple since 
it is a parallelepiped defined by the limits of the actuated joints. Another interesting feature of PPP 
machines is the uniformity of the performances over the Cartesian workspace. However, the main 
drawback is due to the serial kinematic arrangement of the links: one link has to support and move the 
following link in the chain, which increases the total moving masses, and thus limit the dynamic 
performances of such machines. In the context of rapid machining, the parallel kinematic layout of the 
links is an interesting feature. The orthoglide has three orthogonal linear joints like conventional PPP 
machines but they have been put in parallel. The design is such that the Jacobian matrix which relates the 
joint rates and the Cartesian velocities is isotropic at the center point of the Cartesian workspace. At this 
point, the orthoglide is kinematically equivalent to a serial PPP machine. Furthermore, the design has 
been optimised such that, in the rest of the Cartesian workspace, the conditioning of the aforementioned 
Jacobian matrix remains under a reasonable limit. In particular, the singularities are sufficiently far away 
from the Cartesian workspace limits. 

 

Figure 1: orthoglide manipulator 

 

Figure 2: one leg of the orthoglide mechanism 
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2.3 Kinematic equations and singularity analysis 

Let 
.ρρρρ be defined as the vector of actuated joint rates and 

.
p as the vector of velocity of point P: 
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The velocity 

.
p of the point P can be written in three different ways. By traversing the closed-loop AiBiCiP 

in the three possible directions, we obtain: 
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where ai, bi and ci represent the position vector of the points Ai, Bi and Ci, respectively, for i=1, 2, 3 (Ai 
and Bi cannot coincide).  
We want to eliminate the two idle joint rates 

.
θi and 

.
βi from equations (1a), (1b) and (1c), which we do 

upon dot-multiplying eq. (1i) by ci - bi, thus obtaining: 
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Equations (2a), (2b) and (2c) can now be cast in vector form, namely, 

 A 
.
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.ρρρρ 

where A and B are the parallel and serial Jacobian matrices, respectively: 
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When A and B are not singular, we can also study the Jacobian kinematic matrix J (Merlet 1997) to 
optimise the manipulator, 

 
.
p = J 

.ρρρρ with J= A-1 B (4a) 



 

5 

or the inverse Jacobian kinematic matrix J-1, such that 

 
.ρρρρ = J-1 

.
p with J-1= B-1 A (4b) 

The parallel singularities (Chablat and Wenger 1998) occur when the determinant of the matrix A 
vanishes, i.e. when det(A)=0. In such configurations, it is possible to move locally the mobile platform 
whereas the actuated joints are locked. These singularities are particularly undesirable, because the 
structure cannot resist any force and control is lost. From eq. (3), it is apparent that the parallel 
singularities occur whenever the points Ci and Bi are coplanar: 

 (c1 - b1) = α (c2 - b2) + λ (c3 - b3) (5) 

or when the links BiCi are parallel: 
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These configurations cannot be reached with the design of the manipulator studied. 
Serial singularities arise when the serial Jacobian matrix, B, is no longer invertible, i.e., when det(B)=0. 
At a serial singularity, a direction exists along which any cartesian velocity cannot be produced. From 
equation (3), it is apparent that det(B)=0 when, for one leg i, (b

i
 - a

i
) ⊥ (c

i
 - b

i
). It is possible to avoid 

such singularities by adjusting the joint limits of the linear actuated joints. 

3 Performance analysis of the orthoglide 

3.1 Notion of Condition number  

The condition number of an m × n matrix M with m ≤ n, κ(M) can be defined in various ways; for our 
purposes, we define κ(M) as the ratio of the largest, σL, to the smallest, σS singular values of M 
(Golub 89),  

 κ(M) = 
σL

 σS
 (7) 

The singular values {σk}
m
1  of matrix M are defined as the square roots of the nonnegative eigenvalues of 

the positive semi-definite m × m matrix M MT. 
For the purpose of design and performances analysis, we need to define the condition number of the 
Jacobian matrix. The condition number of the Jacobian matrix is an interesting performance index since it 
characterises the distortion of a unit ball under the transformation represented by the Jacobian matrix at 
hand (Angeles 1997). The Jacobian matrix is said to be isotropic when its condition number attains its 
minimum value of one (there is no distortion). We know that the Jacobian matrix of a manipulator is used 
to relate (i) the joint rates and the Cartesian velocities, and (ii) the static load on the output link and the 
joint torques or forces. Thus, the condition number of the Jacobian matrix can be used to measure the 
uniformity of the distribution of the tool velocities and forces in the Cartesian workspace.  
 

3.2 Condition number of the inverse Kinematic Jacobian Matrix 

For parallel manipulators, it is more convenient to study the conditioning of the Jacobian matrix that is 
related to the inverse transformation, which we have called inverse kinematic Jacobian matrix J-1 in 
equation (4b). In our case, matrices B and J-1 can be derived easily as follows: 
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The matrix J-1 is isotropic when: 

 
1
η1

 ||c1 - b1|| = 
1
η2

 ||c2 - b2|| = 
1
η3

 ||c3 - b3|| (6a) 

 (c1 - b1)
T (c2 - b2) = 0, (c2 - b2)

T (c3 - b3) = 0, (c3 - b3)
T (c1 - b1) = 0 (6b) 

Equation (6a) states that the orientation between the axis of the prismatic joint and the link BiCi must be 
the same for each leg i. Equation (6b) means that the links BiCi must be orthogonal to one another.  
We note that there is no condition on the lengths of the link BiCi. We set them to be equal to one another, 
in order to have a symmetric design. On the other hand, the orthogonal orientation of the relative 
prismatic joints cannot be deduced from the isotropic condition. It can be defined by the manipulability 
analysis, as shown in the following section.  
 

3.3 Manipulability analysis 

In the case of serial PPP machine tool, a motion of an actuated joint yields the same motion of the tool. 
For a parallel machine, these motions are not equivalent. When the machine is close to a parallel 
singularity, a small joint rate can generate a large velocity of the tool. This means that the positioning 
accuracy of the tool is lower in certain directions near parallel singularities because the encoder 
resolution is amplified. In addition, a velocity amplification in one direction is equivalent to a loose of 
rigidity in this direction. The manipulability ellipsoids of the Jacobian matrix of robotic manipulators was 
defined several years ago by (Salisbury and Craig 1982) and (Yoshikawa 1985). This concept has then 
been applied as a performance index to parallel manipulators (Kim et al 1997). Note that, although the 
concept of manipulability is close to the concept of condition number, they do not provide the same 
information. The condition number quantifies the proximity to an isotropic configuration, i.e. where the 
ellipsoid is a sphere, or, in other words, where the velocity amplification is equal in any direction, but it 
does not provide information as to the magnitude of the velocity amplification. The manipulability 
ellipsoid of J-1 will be used here for (i) justifying the orthogonal orientation of the prismatic joints and 
(ii) defining the joint limits of the orthoglide such that the maximal velocity amplification remains under 
a reasonable limit. We want that the velocity amplification factor and the force amplification factor be 
equal to one at the isotropic configuration. This condition implies that the three terms of equation (6a) 
must be equal to one: 

 
1
η1

 ||c1 - b1|| = 
1
η2

 ||c2 - b2|| = 
1
η3

 ||c3 - b3|| = 1 (7) 

which implies that (b
i
 - a

i
) and  (c

i
 - b

i
) must be collinear for each i. Since, at the isotropic configuration, 

links BiCi are orthogonal to one another, (7) implies that the links AiBi are orthogonal, i.e. the prismatic 
joints are orthogonal. 
By using equation (4b), we can write a relation between the velocity 

.
p of point P and the joint rates 

.    ρρρρ. 
For joint rates belonging to a unit ball, namely, 

.    ρρρρ ≤ 1, the Cartesian velocities belong to an ellipsoid such 
that: 
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.
pT (J JT)-1 

.
p ≤ 1 (8) 

The eigenvectors of matrix (J JT)-1 define the direction of its principal axes and the square roots ξ1, ξ2 
and ξ3 of the eigenvalues of (J JT)-1 are the lengths of the aforementioned principal axes. The factors of 
velocity amplification in the directions of the principal axes are defined by ψ1 = 1 / ξ1, ψ2 = 1 / ξ2 and 
ψ3 = 1 / ξ3 
To limit the variations of this factor in the Cartesian workspace, we impose 1/3 ≤ ψi ≤ 3 all over the 
workspace. This condition leads to the definition of joint limits for the prismatic joints (Chablat et al 
2000). 
 

3.4 Cartesian Workspace analysis 

The Cartesian workspace is one of the most important performance evaluation criteria of PKM. However, 
the Cartesian workspace definition commonly considered (set of the reachable configurations of the 
output link) is insufficient to asses the real performances of a PKM since this definition does not take into 
account the possibility to execute motions inside the Cartesian workspace. This is of primary importance 
for parallel mechanisms which generally feature internal singularities which should not be crossed. Self 
collisions may also arise. To cope with the moveability of a manipulator, the connected regions of the 
Cartesian workspace were defined for serial manipulators (Wenger and Chedmail 1991) and, more 
recently, for parallel manipulators (Chablat and Wenger 1998). The Cartesian workspace connectivity 
can be further analysed according to which type of motions should be studied: the n-connectivity is 
intended to point-to-point motions and the t-connectivity is suitable for continuous trajectory tracking, 
like in arc-welding or machining. In the context of machine tool, the t-connected regions must be 
considered. More precisely, the t-connected regions of a PKM are the regions of the Cartesian workspace 
which are free of singularity (and collisions) and where any continuous path is feasible. The size and 
shape of the maximal t-connected region is of primary importance for the global geometric performances 
evaluation of a machine tool. The orthoglide has been designed such that its Cartesian workspace is free 
of singularities and self-collisions. Thus, the maximal t-connected region of the orthoglide is its Cartesian 
workspace. Figure 3 shows the Cartesian workspace of the orthoglide, and figure 4 depicts a cross 
section. The Cartesian workspace has a fairly regular shape which is close to a cube. We have used here 
our general octree-based algorithm for the calculation of the workspace (Chablat 1998). If there is no 
obstacle to take into account, the workspace of the orthoglide can be easily calculated analytically by its 
boundaries. 



 

8 

 

Figure 3: Cartesian workspace of Orthoglide manipulator using an octree model 

 

 
 

Figure 4: Cross section of the Cartesian workspace Figure 5: Extension to 5-axis machining  

4 Extension to 5-axis machines 

The orthoglide described above is dedicated to 3-axis machining applications. The machining of 
geometrically complex parts like moulds requires 5-axis machines. The orthoglide can be extended to a 
5-axis machine by adding a 2-axis orienting branch to the initial positioning structure. This can be done 
in two ways. The first approach consists in mounting this branch serially at the moving body. We get a 
hybrid kinematic structure, like the Tricept 805 (see §Erreur ! Source du renvoi introuvable.). 
However, this solution increases the moving masses since the orienting device must be carried by the 
positioning structure. Another solution is to mount the orienting branch on the base of the orthoglide, as 
shown in figure 5. 
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5 Conclusions 

Presented in this paper is new kinematic structure of PKM dedicated to machining applications: the 
Orthoglide. The main feature of this PKM is its compromised design between the popular serial PPP 
architecture and the parallel kinematic arrangement of the links.  The workspace is simple and regular 
and features no singularity nor self-collisions. The orthoglide has been designed such that its Jacobian 
matrix is isotropic in the centre of its workspace. Most existing PKM suffer from high variations of speed 
and rigidity performances in their workspace (Wenger et al 1999). The velocity amplification factor of 
the orthoglide is one at the isotropic point and bounded by reasonable values in the rest of the workspace. 
Further stiffness and sensitivity analyses will be conducted by the authors, taking into account the 
kinematics of the parallelograms. 

 

References 

 

Stewart D., 1965, "A Platform with 6 Degrees of Freedom", Proc. of the Institution of Mechanical 
Engineers, 180(Part 1, 15), pp. 371-386. 

Gosselin C. and Wang J., 1998, "On the Design of Gravity-Compensated Six-Degree-of-Freedom 
Parallel Mechanisms", Int. IEEE Int. Conf. on Robotics and Automation, pp. 2287-2294. 

Clavel, 1988, "DELTA, a Fast Robot with Parallel Geometry", Pro. Of the 18th Int. Symp. of Robotic 
Manipulators, IFR Publication, pp. 91-100. 

Wenger P., Gosselin C. and Maille B., 1999, "A Comparative Study of Serial and Parallel Mechanism 
Topologies for Machine Tools", Proc. PKM’99, Milano, 1999, pp 23-32. 

Merlet J-P., 1997, Les robots parallèles, 2nd édition, Hermes, Paris, 1997. 
Chablat D., Wenger P. and Angeles J., 2000, "Conception Isotropique d'une morphologie parallèle: 

Application à l'usinage", 3th Int. Conf. On Integrated Design and Manufacturing in Mechanical 
Engineering, Montreal, May 2000. 

Chablat D. and Wenger P., 1998, "Working Modes and Aspects in Fully-Parallel Manipulator", Pro. 
IEEE Int. Conf. On Robotics and Automation, pp. 1964-1969. 

Golub, G-H. and Van Loan, C-F., 1989, Matrix Computations, The John Hopkins University Press, 
Baltimore. 

Angeles J., 1997, Fundamentals of Robotic Mechanical Systems, Springer-Verlag, New York. 
Salisbury J-K. and Craig J-J., 1982, "Articulated Hands: Force Control and Kinematic Issues'', The Int. J. 

Robotics Res., Vol. 1, No. 1, pp. 4-17. 
Yoshikawa T., 1985, "Manipulability of Robotic Mechanisms'', The Int. J. Robotics Res., Vol. 4, No. 2, 

pp. 3-9. 
Kim J., Park C., Kim J. and Park F.C., 1997,”Performance Analysis of Parallel Manipulator Architectures 

for CNC Machining Applications”, Proc. IMECE Symp. On Machine Tools, Dallas. 
Wenger P. an Chedmail P., 1991, "Ability of a Robot to Travel through its Free Workspace", The Int. J. 

of Robotic Research, Vol. 3, No 10, pp. 214-227. 


