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Abstract - This paper describes a new parallel kinematichitecture for machining applications,
namely, theorthoglide This machine features three fixed parallel linggints which are mounted
orthogonally and a mobile platform which movesha Cartesian x-y-z space with fixed orientatione Th
main interest of the orthoglide is that it takesdf@ from the advantages of the popular PPP serial
machines (regular Cartesian workspace shape aridrmnperformances) as well as from the parallel
kinematic arrangement of the links (less inertia &etter dynamic performances), which makes the
orthoglide well suited to high-speed machining agglons. Possible extension of the orthoglide to0 5
axis machining is also investigated

1 Introduction

Parallel kinematic machines (PKM) are commonlyrok to offer several advantages over their serial
counterpart, like high structural rigidity, high mmic capacities and high accuracy. On the othed,ha
they generally suffer from a reduced operationatkapace due to the presence of internal singidariti
or self-collisions.

PKM were first introduced by Gough in 1956 and haeen used for many years as flight simulators,
because of their higher load carrying capacityW@te 1965), (Gosselin and Wang 1998). Parallel ticbo
manipulators appeared later with the first indastapplication proposed by Clavel (Clavel 1988).
Parallel kinematic machine tools attract the irded more and more researchers and companies Sinc
the first prototype presented in 1994 during thd 8vin Chicago by Gidding&Lewis (the Variax), many
other prototypes have appeared as could be seérgdbe last World Exhibition EMO’99 which was
held in Paris in May 1999. A recent comparativedgtuconducted on the basis of simple planar
mechanisms, shows that certain parallel kinemdtiecaires do have potential advantages over their
serial counterparts (Wenger et al 1999). Despitg this worth noting that many users of machioels$

are still not convinced by the potential benefit®&M. Most industrial 3-axis machine tools havEeRP
kinematic architecture with orthogonal joint ax&hus, the motion of the tool in the space is quite
simply related to the motion of the three actuadgds. Also, the performances (e.g. maximum speeds,
forces, accuracy and rigidity) are constant in thest part of the Cartesian workspace, which is a
parallelepiped. In contrast, the common featurenobt existing PKM is that the Cartesian workspace
shape is of complex geometry and the motion ofttie and the motion of the actuated axes are not
simply connected. More precisely, the Jacobian imatthich relates the joint rates and the output
velocities is not constant and not isotropic. Consatly, the performances may vary considerably for
different points in the Cartesian workspace anddiffierent directions at one given point, whichais
serious drawback for machining applications. Thiaglide studied in this paper is designed in order



keep the regularity of the Cartesian workspace slapwell as the uniformity of performances of the
PPP machine tools, while taking benefit from theafi@l kinematic arrangement of the links.

The organisation of this paper is as follows. Needtion is devoted to the presentation of exisBKd/
and of the orthoglide. Section 3 investigates kiatenperformances of the orthoglide, especially
manipulability and Cartesian workspace. Possibleeresions to 5-axis PKM of the orthoglide are
discussed in section 4. Last section concludetper.

2 Presentation of theorthoglide

21 Existing PKM

There are many possible types of PKM architectwgch find applications in motion simulators,
robotic manipulators and more recently in macho@s (Merlet 1997). In the context of machine tool
applications, most existing prototypes or comméreleM can be classified into two general familié:
PKM with fixed foot points and variable strut lehgtand (ii) PKM with fixed length struts and movkab
foot points.

The first family comprises the so-called hexapocchit@es which, in fact, feature a Gough-Stewart
platform architecture. Numerous examples of hexapd®KM exist: the VARIAX-Hexacenter
(Gidding&Lewis), the CMW300 (Compagnie Mécanique #osges), the TORNADO 2000 (Hexel), the
MIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA (Okua), the hexapod G500 (GEODETIC).
In this first family, we find also hybrid architeces with a 2-axis wrist mounted in series with-B@F
parallel structure (e.g the TRICEPT 805, Neos Riabpt

The second family (ii) of PKM has been more regeiiestigated. The most famous PKM of this
category is the HEXAGLIDE (ETH Zirich) which feadsr six parallel (also in the geometrical sense)
and coplanar linear joints. The HexaM (Toyota)nsther example with non coplanar linear joints.-A 3
axis translational version of the hexaglide is TRIGLIDE (Mikron), which has three coplanar and
parallel linear joints. Another 3-axis translatio®&M is proposed by the ISW Uni Stuttgart with the
LINAPOD. This PKM has with three vertical (non caphr) linear joints. The URANE SX (Renault
Automation) and the QUICKSTEP (Krause & Mauser) &axis PKM with three non coplanar
horizontal linear joints. A hybrid parallel/serleKM with three parallel inclined linear joints andwo-
axis wrist is the GEORGE V (IFW Uni Hannover).

To be complete, one should add the ECLIPSE madhirdanter which does not fall in the
aforementioned two PKM families. This is a 6-DOFepwactuated machine with three vertical struts
which can move independently on an horizontal ¢ncprismatic joint.

More detailed information about all these PKM care Hound at http://www.ifw.uni-
hannover.de/robotool, http://www.renault-automaom, http://www.krause-mauser.com.

2.2 Theorthoglide

The orthoglide presented in this paper belonghéofamily of 3-axis translational PKM with variable
foot points and fixed length struts (figure 1). §machine has three identical legs which are PRRRR
chains (figure 2). The actuated joints are thealoghogonal linear joints. These joints can beated

by means of linear motors or by conventional rotargtors with ball screws. The output body is
connected to the prismatic joints through a sethofe parallelograms, so that it can moves only in
translation (note that two parallelograms woulddp®ugh). An important feature of this PKM is the
symmetry of the design (the three chains are idahtin particular, the lengtiB,C, are equal) and the
simplicity of the kinematic chains (all joints asémple one-DOF joints), which should contribute to



lower the manufacturing cost of such a design. Athe orthoglide is free of singularities and self-
collisions.

The design process which led us to this kinematicgire is a similar to the one we applied for-ax
machine (Chablat et al 2000). The main idea igéalpce a parallel kinematic machine which be aseclo
as possible to a serial PPP machine. Serial PPRimescare nice since their kinematics is quite #mp
and the displacements of the tool are intuitivati@rmore, the Cartesian workspace is very simplees

it is a parallelepiped defined by the limits of thetuated joints. Another interesting feature oPPP
machines is the uniformity of the performances otrex Cartesian workspace. However, the main
drawback is due to the serial kinematic arrangeroéie links: one link has to support and move the
following link in the chain, which increases thealomoving masses, and thus limit the dynamic
performances of such machines. In the context pifirenachining, the parallel kinematic layout of the
links is an interesting feature. The orthoglide Ha®e orthogonal linear joints like convention&HP
machines but they have been put in parallel. Tisggdds such that the Jacobian matrix which relttes
joint rates and the Cartesian velocities is isdtr@p the center point of the Cartesian workspadehis
point, the orthoglide is kinematically equivalentd serial PPP machine. Furthermore, the design has
been optimised such that, in the rest of the Caresorkspace, the conditioning of the aforemergdbn
Jacobian matrix remains under a reasonable limipalrticular, the singularities are sufficiently tavay
from the Cartesian workspace limits.
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Figure 1: orthoglide manipulator
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Figure 2: one leg of the orthoglide mechanism



2.3  Kinematic equationsand singularity analysis
Let p be defined as the vector of actuated joint ratelgdaas the vector of velocity of poift
Py X
p=| p, |andp=| y
Ps z

The velocityp of the pointP can be written in three different ways. By trauggshe closed-loopB,C,P
in the three possible directions, we obtain:

. b-a S
P=1p, —aiPr* Cris*Biin) x (e -by (1a)
. b,-a, | L.
P=Tb,-aiP2* Cola* o) X (&-D) (1b)
. by-a; | L.
P=Tb,-a,iPat Cala*Pald X (G- (1c)

wherea,, b; andc; represent the position vector of the poiAtsB, andC,, respectively, foi=1, 2, 3 A
andB; cannot coincide).

We want to eliminate the two idle joint ratéisand Bi from equations (1a), (1b) and (1c), which we do
upon dot-multiplying eq. (1i) by, - b;, thus obtaining:

. b, -3
c,-b)Tp=(c- bl)T||I01 Y p, (2a)
. b,-a,
(c,-b) P =1(c,- b2)T||bz i (2b)
T (DP3-a
(c3-by)Tp=1(c;-by) b, -al [oR (2¢)

Equations (2a), (2b) and (2c) can now be cast atovdorm, namely,

Ap=Bp
whereA andB are the parallel and serial Jacobian matricepectively:
b,-a,
- T-
(cy-byT Cobdpagi O N 0
A=| (c-b)" |andB= 0 (cz-bz)T”bZ 0 (3)
T 7l b.-
(c3-by) 0 0 by 3%
0 b

When A andB are not singular, we can also study the Jacobia@matic matrixJ (Merlet 1997) to
optimise the manipulator,

p=JpwithJ=A1B (4a)



or the inverse Jacobian kinematic math¥ such that

p=J1pwithJ1=B1A (4b)
The parallel singularities (Chablat and Wenger 3988cur when the determinant of the matAx
vanishes, i.e. when dét]=0. In such configurations, it is possible to mdeeally the mobile platform
whereas the actuated joints are locked. These lanitiegs are particularly undesirable, because the
structure cannot resist any force and control &.lérom eq. (3), it is apparent that the parallel
singularities occur whenever the poiiisandB, are coplanar:

(c;-by) =a(c,-by) +A (c3-by) (5)
or when the link$,C; are parallel:
(c,-b) /I (c,-b,)and €,-b,) // (c;-by) and €, -b,) // (c, -b)). (6)

These configurations cannot be reached with thggyded the manipulator studied.

Serial singularities arise when the serial Jacohiatrix, B, is no longer invertible, i.e., when d8j€0.
At a serial singularity, a direction exists alongi@h any cartesian velocity cannot be producedmFro
equation (3), it is apparent that d&&0 when, for one leg ib(-a) O (c - b). It is possible to avoid
such singularities by adjusting the joint limitstbé linear actuated joints.

3 Performance analysis of the orthoglide

3.1 Notion of Condition number

The condition numbenf an mx n matrixM with m< n, k(M) can be defined in various ways; for our
purposes, we defing(M) as the ratio of the largest, , to the smallestgg singular values oM

(Golub 89),
o
K(M) :\/;LS 7)

The singular valuesc4<}rln of matrixM are defined as the square roots of the nonnegaitignvalues of

the positive semi-definite mm matrixM MT.

For the purpose of design and performances anals&isneed to define the condition number of the
Jacobian matrix. The condition number of the Jamolphatrix is an interesting performance index sihce
characterises the distortion of a unit ball undher transformation represented by the Jacobian x eitri
hand (Angeles 1997). The Jacobian matrix is saildetasotropic when its condition number attains its
minimum value of one (there is no distortion). WeWw that the Jacobian matrix of a manipulator idus

to relate (i) the joint rates and the Cartesiameites, and (ii) the static load on the outpukland the
joint torques or forces. Thus, the condition numbkthe Jacobian matrix can be used to measure the
uniformity of the distribution of the tool veloaits and forces in the Cartesian workspace.

3.2  Condition number of theinverse Kinematic Jacobian M atrix

For parallel manipulators, it is more convenienstody the conditioning of the Jacobian matrix tisat
related to the inverse transformation, which weehaalled inverse kinematic Jacobian matiik in
equation (4b). In our case, matric@sndJ1 can be derived easily as follows:



1 —_
o (C1 - bl)T

ﬂi 00 Ny
Bl= oL o withn. = (¢-b)T DA ndrt=| = (e-by)T (5)
e AR ATIEY e P
0 0— 1
N3 n_ (Cg - bg)T
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The matrixJ1 is isotropic when:
1 1 1
n liey - byl N, lic; - byl N lics - bl (6a)
(c;-b)T(c,-b,) =0, €,-b)" (c3-by) =0, C;-by)T (c;-b)) =0 (6b)

Equation (6a) states that the orientation betwherakis of the prismatic joint and the liB|C; must be
the same for each leg i. Equation (6b) means kiealiiksB,C, must be orthogonal to one another.

We note that there is no condition on the lengtte link B,C,. We set them to be equal to one another,
in order to have a symmetric design. On the ottardh the orthogonal orientation of the relative
prismatic joints cannot be deduced from the isatr@pndition. It can be defined by the manipulapili
analysis, as shown in the following section.

3.3  Manipulability analysis

In the case of serial PPP machine tool, a motioanoactuated joint yields the same motion of tha. to
For a parallel machine, these motions are not aipit. When the machine is close to a parallel
singularity, a small joint rate can generate adavglocity of the tool. This means that the ponitig
accuracy of the tool is lower in certain directionsar parallel singularities because the encoder
resolution is amplified. In addition, a velocity plification in one direction is equivalent to a &moof
rigidity in this direction. The manipulability efisoids of the Jacobian matrix of robotic maniputatoas
defined several years ago by (Salisbury and Craé82) and (Yoshikawa 1985). This concept has then
been applied as a performance index to parallelipuators (Kim et al 1997). Note that, although the
concept of manipulability is close to the conceptcondition number, they do not provide the same
information. The condition number quantifies theximity to an isotropic configuration, i.e. wheiget
ellipsoid is a sphere, or, in other words, wheee\tblocity amplification is equal in any directidmyt it
does not provide information as to the magnitudethef velocity amplification. The manipulability
ellipsoid of J-1 will be used here for (i) justifying the orthogdmaientation of the prismatic joints and
(i) defining the joint limits of the orthoglide sh that the maximal velocity amplification remaunsder

a reasonable limit. We want that the velocity afigdtion factor and the force amplification factoe
equal to one at the isotropic configuration. Thimdition implies that the three terms of equati6a)(
must be equal to one:

1 1 1
n_lllcl-blll =r]_2||Cz-b2|| =r]_3||03-b3|| =1 (@)

which implies thatlf, - a) and € - b,) must be collinear for each i. Since, at the tgaitr configuration,
links B,C, are orthogonal to one another, (7) implies thatlihks AB; are orthogonal, i.e. the prismatic
joints are orthogonal.

By using equation (4b), we can write a relationnmstn the velocity) of point P and the joint rate9.
For joint rates belonging to a unit ball, namefy< 1, the Cartesian velocities belong to an ellipsnidh
that:



prEJtps1 (8)
The eigenvectors of matrix) JT) define the direction of its principal axes and sygiare rootg,, &,
and&; of the eigenvalues o8 (7)* are the lengths of the aforementioned principalsaXhe factors of
velocity amplification in the directions of the pcipal axes are defined hy, =1 /¢, ¢,=1/¢&, and
W3=1/¢
To limit the variations of this factor in the Casian workspace, we impose K3, < 3 all over the
workspace. This condition leads to the definitidnjant limits for the prismatic joints (Chablat et
2000).

34  Cartesan Workspace analysis

The Cartesian workspace is one of the most impbp@riormance evaluation criteria of PKM. However,
the Cartesian workspace definition commonly conside(set of the reachable configurations of the
output link) is insufficient to asses the real periances of a PKM since this definition does nké tiato
account the possibility to execute motions instike €artesian workspace. This is of primary impartan
for parallel mechanisms which generally featurerimal singularities which should not be crossedf. Se
collisions may also arise. To cope with the moviggbdof a manipulator, the connected regions of the
Cartesian workspace were defined for serial maatptd (Wenger and Chedmail 1991) and, more
recently, for parallel manipulators (Chablat andngkr 1998). The Cartesian workspace connectivity
can be further analysed according to which typamotions should be studied: the n-connectivity is
intended to point-to-point motions and the t-cornivéy is suitable for continuous trajectory traogi

like in arc-welding or machining. In the context ofachine tool, the t-connected regions must be
considered. More precisely, the t-connected regadrssPKM are the regions of the Cartesian workspac
which are free of singularity (and collisions) awtiere any continuous path is feasible. The size and
shape of the maximal t-connected region is of pryjnim@portance for the global geometric performances
evaluation of a machine tool. The orthoglide hasnbgesigned such that its Cartesian workspaceés fr
of singularities and self-collisions. Thus, the ma& t-connected region of the orthoglide is itgt€sian
workspace. Figure 3 shows the Cartesian workspédheo orthoglide, and figure 4 depicts a cross
section. The Cartesian workspace has a fairly egghiape which is close to a cube. We have used her
our general octree-based algorithm for the calmnabf the workspace (Chablat 1998). If there is no
obstacle to take into account, the workspace obthieoglide can be easily calculated analyticalyits
boundaries.
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Figure 3: Cartesian workspace of Orthoglide manipgatausing an octree model
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Figure 4: Cross section of the Cartesian workspace guFe 5: Extension to 5-axis machining

4 Extension to 5-axis machines

The orthoglide described above is dedicated to i8-axachining applications. The machining of
geometrically complex parts like moulds requireaxts machines. The orthoglide can be extended to a
5-axis machine by adding a 2-axis orienting bratacthe initial positioning structure. This can bend

in two ways. The first approach consists in mountinis branch serially at the moving body. We get a
hybrid kinematic structure, like the Tricept 80%ddErreur ! Source du renvoi introuvable.).
However, this solution increases the moving massese the orienting device must be carried by the
positioning structure. Another solution is to motimt orienting branch on the base of the orthoglde
shown in figure 5.



5 Conclusions

Presented in this paper is new kinematic strucair®KM dedicated to machining applications: the
Orthoglide. The main feature of this PKM is its qmomised design between the popular serial PPP
architecture and the parallel kinematic arrangenaénihe links. The workspace is simple and regular
and features no singularity nor self-collisionseTdrthoglide has been designed such that its Jatobi
matrix is isotropic in the centre of its workspabtast existing PKM suffer from high variations qfeed

and rigidity performances in their workspace (Wengieal 1999). The velocity amplification factor of
the orthoglide is one at the isotropic point andrimted by reasonable values in the rest of the ades
Further stiffness and sensitivity analyses will denducted by the authors, taking into account the
kinematics of the parallelograms.
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