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Abstract. In order to explore the social organization of a medieval peas-

ant community before the Hundred Years’ War, we propose the use of an

adaptation of the well-known Kohonen Self Organizing Map to dissimilar-

ity data. In this paper, the algorithm is used with a distance based on

a kernel which allows the choice of a smoothing parameter to control the

importance of local or global proximities.

1 Introduction

Social networks have been intensively studied through graphs during the past
years: examples of such studies are given in [1] for World Wide Web, scientific
networks or P2P networks. Most of these graphs come from modern social net-
works whereas we propose here to analyse the social organization of a medieval
peasant community before the Hundred Years’ War. A first study ([2]) inves-
tigates this problem by the use of the algebraic properties of a non-weighted
graph. We propose here a new approach, using an automatic neuronal method
and, more precisely, one of the numerous adaptations of the Kohonen Self Or-
ganizing Map (SOM). The SOM algorithm, first introduced by Kohonen ([3]),
is an unsupervised method which allows both clustering and visualization. The
original data, usually living in a high dimensional space, are projected non lin-
early in a low dimensional space (generally, the projection dimension is set to
1 or 2) called a map; they are partionned into several clusters while preserving
their initial topology. The need for adaptations of classical data analysis meth-
ods to non vectorial data is important: [4], for example, described neural based
unsupervised classification methods for structured data such as text and trees.
But SOM has also recently been adapted to a more general type of data, only
described by a dissimilarity measure: this Dissimilarity SOM (or median SOM)
has been first described in [5]; a variant of it has been introduced and used for
Web Usage Mining in [6] and a faster version is then described in [7]. As the
data set has to be described by its dissimilarity measure, the choice of a good
dissimilarity is critical: we propose here to investigate the combination of the
algorithm described in [6], using a distance defined on a weighted graph by the
diffusion kernel ([8]).
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The paper is organized as follows. In section 2, we recall the Dissimilarity
SOM algorithm (section 2.1) and describe how distances based on a kernel can
be used to produce an unsupervised classification algorithm for weighted graphs
(section 2.2). In section 3, we focus on the medieval data set: after describing
it, we explain how we apply our method (section 3.1) and we compare this
classification with algebraic or historical prior knowledge (section 3.2): some
similarities prove that the results are consistent with previous work.

2 Relevant theory

2.1 SOM for dissimilarity data

Following [6], let us consider n input data, (xi)i=1,...,n, from an arbitrary input
space, G (here G is a weighted graph and the xi are the vertices of the graph).
Suppose that we are given a dissimilarity between those data; we will note
δ(xi, xj) the value of this measure between data xi and xj : δ is symmetric,
positive and for all i = 1, . . . , n, δ(xi, xi) = 0. As the standard SOM, input
data are mapped into a low dimensional space of M neurons, called a map.
The neurons {1, . . . , M} are arranged via a prior structure (like a grid) which
provides a neighborhood relationship between them; we will note h(i, j) the
distance between neurons i and j on the grid. Finally, we are given a decreasing
function, R, from R

+ to R
+ with R(0) = 1 and lims→+∞ R(s) = 0. By the

calculation of R(h(i, j)), this function defines how the neighborhood relationship
has to be taken into account during the training. R is adapted during the training
in order to favour the closest neurons more and more.

At the begining of the algorithm, each neuron i is randomly associated with
an element of the data set, its prototype, denoted by mi. The Dissimilarity SOM
is then divided into two steps:

1. the Affectation step: ∀ i = 1, . . . , n, xi is affected to the neuron f(xi) ∈
{1, . . . , M} such that: f(xi) = argminj=1,...,M δ(xi, mj) ;

2. the Representation step: ∀ j = 1, . . . , M , the prototypes are re-computed:
mj = argmink=1,...,n

∑n

i=1
R(h(f(xi), j))δ(xi, xk).

These two steps are repeated iteratively until a stabilization is observed. As this
iterative algorithm uses, at each step, the whole data set for the optimization
procedure, it is closely related to the batch version of the classical SOM algorithm
(see [3]).

In [6], the authors use the affinity similarity or the Jacard coefficient to
compute a dissimilarity measure on the usage of a web site. In the next section,
we propose to use a distance computed from a kernel which is able to take into
account both the local and global structures of a graph.

2.2 Using a kernel

We will now precise how a dissimilarity measure, based on a kernel, can be
constructed and applied with the previous algorithm. First of all, let us describe



more precisely the data set: as we have already said, G is a graph with a set
of vertices V = {x1, . . . , xn} and a set of edges, E, having positive weights,
(wi,j)i,j=1,...,n such that for all i, j = 1, . . . , n, wi,j = wj,i and for all i = 1, . . . , n,
∑n

j=1
wi,j = di where di is the degree of the vertex xi (wi,j = 0 is then equivalent

to the fact that (xi, xj) /∈ E).
In [9], the authors investigate a family of kernels on graphs based on the

notion of regularization operators. These kernels generalize the Green function
(which is of common use for real valued functions in machine learning commu-
nity) and are all based on the Laplacian of a graph which is the positive matrix

L = (Li,j)i,j=1,...,n such that Li,j =

{

−wi,j if i 6= j
di if i = j

(see [10] for an entire

review of the properties of this operator).
Applying regularization functions to the discrete Laplacian, we obtain a fam-

ily of matrices that are also kernels on V × V : these kernels are operators that
strongly penalize the functions defined on V that vary a lot on close neigh-
borhood. Some of them have became famous: the regularized Laplacian, the
diffusion kernel, the von Neumann diffusion kernel (see [9] for further details).
All these kernels are symmetric and positive definite and can then be interpreted
as inner products of an unknown feature space. It is then easy to define a dis-
similarity measure on the graph as the distance in this feature space: for all
x, x′ ∈ V , δ(x, x′) =

√

k(x, x) + k(x′, x′) − 2k(x, x′) where k denotes the kernel.
In [11], the authors compare several such distances in order to rank the nodes
of a weighted graph. They show the good performances of these methods in
comparison with standard ones.

In this paper, we use the dissimilarity measure built from the diffusion kernel:
Kβ = e−βL is the diffusion matrix and for all i, j = 1 . . . , n, kβ(xi, xj) = Kβ

i,j

defines the diffusion kernel. First studied by [8], the diffusion kernel is the
discrete version of the solution of heat equation. It can also be interpreted as
the discrete version of the gaussian kernel or as the continuous time limit of
a lazy random walk on graph G. It is easy to compute for graphs having less
than a few hundred vertices thanks to standard eigenvectors decompositions (see
[12], chapter 8). This makes it an attractive tool that becomes very popular in
the computational biology area where it has been used with success to extract
pathway activity from gene expression data through a graph of gene (see [12],
[13]). Here, we propose to use the dissimilarity measure endoved by the diffusion
kernel with Dissimilarity SOM: this approach is tested on the medieval social
network for a clustering purpose.

3 Application

The graph on which we tested our approach has been obtained from a data
base of approximately 10 000 agrarian contracts from four seignories of the Lot
and the Tarn-et-Garonne (South West of France), established between 1240 and
1520. In this paper, we focus on a part of the data base, based at the Castelnau-
Montratier seignory (Lot) between 1240 and 1350 (before the Hundred Years’



War). Based on this data base, we constructed a weighted graph having 226
vertices (the peasants) which are linked together if they appeared in the same
contract. The weights were simply the number of common contracts in which
two peasants appeared together. We cleaned the graph by deleting the nobilities
because they were mentionned in almost every contract (as the legal authorities).
Historians are mainly concerned with the analysis of country sociability during
the Middle-Ages; for example, they want to know if geographical links or family
links are the most important, if we can find central people having a main social
role and who are these people, . . . In our case, the data base is too large for an
exhaustive study so that data mining tools are required.

3.1 Methodology and results

We used the methodology described in the previous section to extract social
tendencies in the medieval graph. More precisely, we computed a Dissimilarity
SOM with an hexagonal grid which is close to the star structure of the non-
weighted graph found by [2]. The dimension of the grid was set to 3 × 3 as
the number of vertices to be clustered is not very high (226); moreover, the
non-weighted graph diameter is only 5 and 90 % of the vertices couples have
a distance which is smaller than 3 (see [2]), so that a bigger grid would be
inappropriate. We used for R a gaussian kernel which was weighted by a linearly
decreasing function of the number of steps. Finally, the algorithm was run until
the stabilization of the classification was obtained.

One of the main points of the methodology is that a flexibility is allowed, in
the classification, by the choice of the kernel parameter, β. The smaller β is, the
more prefered the local proximities are. We chose to explore three different values
of this kernel: 0.05, 0.1 and 0.2. Larger parameters lead to numerical instability
and smaller ones failed to provide an interesting classification: a large class
gathered almost every vertices whereas the other classes were really tiny (less
than 5 vertices each). In order to minimize the influence of the initialization step,
we perform the algorithm 50 times for each parameter β; the best classification is
the one which minimizes the map energy E =

∑M

j=1

∑n

i=1
R(h(f(xi), j))δ(xi, mj)

obtained at the end of the algorithm. The map energies of the classifications
constructed by two different dissimilarities are, of course, not comparable so that
we finally obtained three classifications, one for each selected parameter β.

We observed many common points between these three classifications, es-
pecially with the ones obtained by the two smallest parameters: 5 prototypes
were similar and 7 classes were easily recognizable between the 3 classifications.
We provide in Figure 1, a synthesis map, quoting the 7 classes with vertices
(peasants which are denoted by a number) appearing in two or sometimes all
of the three classifications. Common prototypes are emphasized by bold type
and positions in the map are determined by a kind of “majority vote” law (the
4 black classes are the easiest to place as they have common positions in two
classifications on three).



Class 6 Class 7

Class 4 Class 3 Class 2

Class 5 Class 1

31, 35, 69, 70, 79, 118, 155, 156, 159

161, 175, 176, 198, 246, 249, 278

281, 284, 285, 291, 316, 352, 354

384, 389, 405, 432, 433, 434, 435

442, 447, 449

3, 61, 64, 74, 191, 204, 220, 228, 230

232, 233, 236, 247, 255, 257, 259

272, 283, 376, 378, 412

8, 10, 119, 127, 128, 131, 134, 135

153, 181, 193, 200, 237, 258, 264

276, 377, 386, 390, 416, 420

133,139, 150, 262 9, 67, 129, 130, 136, 137, 140, 141

146, 148, 151, 152, 217, 260, 263

413

6, 30, 37, 72, 120, 197, 226, 269, 274

282, 357, 379, 399, 421

2, 22, 23, 29, 34, 36, 51, 52, 71, 73

147, 192, 199, 202, 203, 207, 216

218, 219, 221, 223, 224, 225, 229

231, 238, 248, 250, 252, 265, 275

279, 315, 356, 358, 366, 367, 369

371, 383, 395, 401, 403, 410, 417

440, 443, 444

Fig. 1: Synthesis map of three classifications

3.2 Comparison with previous works

In this section, we give some elements of comparison with previous work: on one
hand, the historical knowledge ([14]) and on the other hand, an algebraic study
of the non-weighted graph which is partially exposed in [2]. This comparison
emphasizes some interesting common points.

For example, historians can easily explain some of the classes: Class 1 and
2 have homogeneous geographical settings. A majority of the peasants of class
1 comes from “Castrum de Flaugnac” and a majority of the peasants of class 2
comes from “Castrum de la Graulière”. Some exceptions interest the historians:
“Combelcau family”, for example, is not in the class 1 although some of them live
in “Castrum de Flaugnac” but “Combelcau family” is also present in “Castrum
de la Graulière” and constitutes a large part of class 2. This emphasizes the fact
that family links are more important than geographical ones. Moreover, class 3
is also a “Combelcau family” class which shows, by the central situation of this
class on the map, that this family played a great social role at this time.

The comparison with algebraic study is also interesting: this method divides
the graph into several communities which are (not maximal) cliques having the
same neighbors. Every class found by the dissimilarity SOM corresponds to
one or several connected communities. Moreover, the central class (class 3) is a
part of a “rich club” (see [15]) which is a small number of vertices having large
numbers of links and being very well connected to each other. The algebraic
study of the non-weighted graph leads to a star-shaped structure around this
rich club in which the “Combelcau family” plays a very important role; the
dissimilarity SOM provides an organization of the weighted graph which is close
to the social relations found by the algebraic study.



4 Conclusion

We demonstrate that a kernel based distance can provide a coherent clustering
of a weighted graph by the use of Dissimilarity SOM. Moreover, the choice of
parameter provides more flexibility and allows to extract the most important
tendencies in the graph structure. The differences between this approach and
algebraic or historical ones have now to be further investigated on the whole
data set to explore the social organization of this medieval peasant community
deeply.
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