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An Invitation to Second-Order

Stochastic Differential Geometry

Michel Émery

IRMA
7 rue René Descartes
67084 Strasbourg Cedex
France
emery@math.u-strasbg.fr

Iusques icy i’ay tasché de me rendre
intelligible a tout le monde, mais pour ce
traité ie crains, qu’il ne pourra estre leu
que par ceux, qui sçauent desia ce qui est
dans les liures de Geometrie.

René Descartes. La Geometrie.

These notes are an expanded version of a set of lectures given at the 2005
Dimitsana Summer School; the added material consists of a few remarks or
exercises, and of the proofs of some statements. Many proofs are not com-
plete: the localization of manifold-valued semimartingales, and many other
technicalities, have been omitted. Anyway, all proofs can be skipped; con-
trary to a general rule in mathematics, all important ideas in these notes are
better expressed in the statements of the propositions and theorems than in
their proofs. Another deviation from the oral lectures is a change in the or-
der of the material: all sections having to do with Stratonovich integrals and
Stratonovich stochastic differential equations have been grouped; intrinsic Itô
integrals and Itô stochastic differential equations, which are far less useful and
important, are put at the end.

I thank the organizers of the summer school for this opportunity to propa-
gandize Schwartz’ view of stochastic differential geometry; I hope these notes
will contribute to popularize ideas which deserve to be more broadly known,
not only for their intrinsic beauty, but also for the interesting light they shed
on stochastic calculus in manifolds. I also thank the participants for their
remarks and questions.
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Introduction

Differential geometry deals with (local or global) properties of many differ-
entiable structures, and among them with the behaviour of manifold-valued
differentiable curves; its most basic tools are general theorems such as the
chain-rule (how to differentiate a compound function between manifolds),
uniqueness and local existence of the flow of a locally Lipschitz vector field,
parallel transport and more general lifts of curves in a bundle via a connection,
and so on.

Similarly, stochastic calculus also has its basic toolkit: chain rule with Itô’s
second-order terms, consistency of Stratonovich stochastic calculus, existence
and uniqueness for stochastic differential equations with Lipschitz coefficients,
and much more.

These geometric and stochastic tools are made powerful by their very
generality; like a Swiss card-knife, one can resort to them in quite a few
different situations.

Combining both theories, stochastic differential geometry mostly deals
with continuous, but non-smooth random curves taking their values in mani-
folds. It is also grounded on very general, powerful tools; the most popular one
is the Stratonovich transfer principle: “geometric constructions performed on
differential curves extend intrinsically to random curves by replacing ordinary
differentials with Stratonovich stochastic differentials”. This universal recipe
is a cornerstone of stochastic differential geometry, and one of the aims of these
lectures is to present it; but I could not resist seizing this opportunity to lec-
ture on a more general, albeit less popular, stochastic calculus in manifolds
devised by Schwartz around 1980. Whereas Stratonovich calculus works by
killing the second-order Itô correction terms of stochastic calculus, Schwartz’
second-order stochastic calculus in manifolds takes the opposite view by in-
corporating these second-order terms into a more complete formalism which
gives a broader picture. In my opinion, it also provides a better understanding
on the nature (and limitations) of the Stratonovich transfer principle, which
is included in this more general setting as its most important application.

It should be clear that second-order stochastic calculus in differentiable
manifolds, as presented in these lectures, is a convenient language, a useful
set of tools, but by no means a theory. One usually considers that true differ-
ential geometry starts only after curvature has been introduced (see Chapters
??? and ???); similarly, stochastic differential geometry really begins with the
relationship between Brownian motion and Ricci curvature (see Chapter ???).
But we shall stop short of reaching that level: only at the very end will Brow-
nian motion in manifolds show up, and, although affine connections play a
significant rôle, curvature will not even be defined.
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Tangent and cotangent spaces and bundles

By a manifold, we mean a finite-dimensional, real differentiable manifold with-
out boundary, having a countable atlas. The examples one can have in mind
are any open subset of R

d, or any submanifold of R
n (for instance, a curve or

a surface in R
3). The latter is in fact the most general manifold: Whitney’s

embedding theorem says that any manifold is always diffeomorphic to some
closed submanifold of R

n for a suitable n (for instance, a Klein bottle can be
embedded into R

4).
Given a d-dimensional manifold M , a local chart is a system of d real func-

tions x1, . . . , xd (the local coordinates) defined in some open subset D ⊂M
(called the domain of the chart), realizing a diffeomorphism between D and
some open subset of R

d. Every point of M has a neighbourhood which is
the domain of some local chart; indeed, the definition of a manifold consists
in demanding that M is coverable with countably many such domains, any
two local charts being compatible (that is, they induce the same differentiable
structure) on the intersection of their domains.

If (x1, . . . , xd) is a local chart and f a function on M , we shall call Dkf the
function defined on the domain of the chart and equal to the partial derivative
of f with respect to the coordinate xk when the other coordinates are kept
constant. (Rigorously, Dkf(x) = ∂g

∂ξk

(
x1(x), . . . , xd(x)

)
, where g is defined on

the range of the chart and g ◦ (x1, . . . , xd) = f on the domain of the chart.)
Higher derivatives are similarly denoted: Dijf = DiDjf , etc.

If x is a point in a manifold M , a tangent vector to M at x can be defined
in two equivalent ways: as an equivalence class of curves, or as a differential
operator on functions. The former definition considers two C1-curves γ1 and
γ2 : R → M such that γ1(t0) = γ2(t0) = x to be equivalent if, for each
C1 function f : M → R, the derivative of f ◦ γ1(t) − f ◦ γ2(t) vanishes at
t = t0. Both curves are then said to have the same velocity at t = t0, and this
velocity (which can abstractly be defined as the equivalence class) is denoted
by γ̇(t0) and is the most general tangent vector to M at point x. The other
point of view, that of operators, defines the tangent vector γ̇(t0) as the map
f 7→ (f ◦ γ)

′
(t0). This map is a differential operator at point γ(t0) = x, of

order 1 and with no constant term, acting on C1 functions f : M → R.
Conversely, it is easily seen that such an operator is always of the form γ̇(t0)
for some curve γ such that γ(t0) = x; so the (linear) space TxM of all tangent
vectors to M at x can conveniently be defined as the space of all first-order
differential operators at x with no constant term.

Exercise. a) When M is a d-dimensional vector space, verify that both defi-
nitions of TxM agree, and that TxM is canonically isomorphic to M .

b) For a general manifold M with dimension d, using a local chart in a
neighbourhood of x, show that both definitions of TxM agree and that the d
maps f 7→ Dif(x) form a basis of the vector space TxM .
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The disjoint union TM =
⋃

x∈M TxM is called the tangent bundle ; each of
its subsets TxM is a fibre of the bundle. A point y ∈ TM is said to be above x
if y belongs to the fibre TxM . The tangent bundle TM is itself a manifold (of
class Cp−1 if M is Cp); more precisely, it has the structure of a vector bundle
over M , as explained in Chapter ???.

Like tangent vectors, which can be defined in two different ways, vector
fields, too, admit equivalent definitions, which are recalled in the next propo-
sition.

Proposition 1. Let M be a manifold of class Cp with 1 6 p 6 ∞, and V be
a real-valued function on M ×Cp(M); denote by V (x) the map V (x, . ) and
by Vf the function V ( . , f). The following three statements are equivalent:

(i) for each x ∈ M , V (x) is a vector in the fibre TxM and x 7→ V (x) is of
class Cp−1;

(ii) for every local chart (x1, . . . , xd) with domain D, there exist d functions
V 1, . . . , V d in Cp−1(D), such that, for each x ∈ D and each f ∈ Cp(M),

V (x, f) =
d∑

k=1

V k(x) Dkf(x) ;

(iii) f 7→ Vf is a linear map from Cp(M) to Cp−1(M) and, for all n, all
f1, . . . , fn ∈ Cp(M) and all φ ∈ Cp(Rn,R),

V
(
φ ◦ (f1, . . . , fn)

)
=

n∑

q=1

Dqφ ◦ (f1, . . . , fn)Vfq .

If furthermore p = ∞, the next two statements are equivalent to each other
and to the preceding three ones:

(iv) V : C∞(M) → C∞(M) is linear, and satisfies V (f2) = 2f Vf for all
f ∈ C∞(M);

(v) V : C∞(M) → C∞(M) is linear, V 1 = 0, and V (f2)(x) = 0 for all
f ∈ C∞(M) and all x ∈M such that f(x) = 0.

The proof is left an an exercise. (Hint: If f ∈ Cp(M) vanishes on a neigh-
bourhood of some point x, there exists g ∈ Cp(M) such that g = 1 on a
neighbourhood of x and fg = 0. Use this property to show that any V sat-
isfying (iii), (iv) or (v) is local: if f1 = f2 in a neighbourhood of x, then
Vf1(x) = Vf2(x).) Property (i) says that V is a section of the tangent bun-
dle, (iii) says that V is a differential operator of order 1 with no constant
term, and (iv) that V is a derivation.

Exactly like when M = R
d, the flow of a (locally Lipschitz) vector field

can be defined, locally in time and space: some integral curves of the vector
field may explode (i.e., exit from all compact sets) in finite time.
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Another important vector bundle is the cotangent bundle, called T∗M . It is
defined as T∗M =

⋃
x∈M T∗

xM , where T∗
xM is the cotangent space at x, that

is, the dual to the tangent space TxM . The elements of T∗M (resp. T∗
xM)

are called cotangent vectors (resp. cotangent vectors at x). If f ∈ C1(M), the
cotangent vector df(x) ∈ T∗

xM is defined by its action on tangent vectors:

<df(x), V > = Vf(x) .

(Here and in the sequel, we use the sharp brackets < , > to denote the duality
bilinear form pairing a vector space and its dual.)

If (x1, . . . , xd) is a local chart in a domain containing x, the d cotangent
vectors dxi(x) form a basis of the cotangent space T∗

xM ; every σ ∈ T∗
xM

can be written σ =
∑d

k=1 σk dxk(x), where the d real numbers σk are the
coefficients of σ in the local chart. The duality with a tangent vector V ∈ TxM
given by Vf =

∑
k V

kDkf(x) is expressed by <σ, V > =
∑

k σkV
k.

When x varies, the cotangent vectors df(x) form the cotangent vector field
df such that <V,df> = Vf for all vector fields V . Cotangent vector fields
are usually called 1-forms; this stands for ‘forms of degree 1’. (In view of the
second order geometry about to be introduced, they could be more precisely
called forms of degree 1 and order 1.)

Exercise. Given x ∈M and σ ∈ T∗
xM , there always exists a function f on M

such that σ = df(x). This holds for individual covectors, but not for covector
fields (= 1-forms): there may exist 1-forms which can not be written df for
any f . (In fact, the only exception is when all connected components of M
are diffeomorphic to R.).

Exercise. Let M and N be two manifolds, φ : M → N a map of class C1 at
least, and x a point in M . Define the tangent map φ∗x : TxM → Tφ(x)N , also
denoted by Txφ, and the cotangent map φ∗x : T∗

φ(x)N → T∗
xM , also written

T∗
xφ. They are adjoint to each other; φ∗x is also called the push-forward of

vectors, and φ∗x the pull-back of forms. If σ is a 1-form on N , define its pull-
back φ∗σ, a 1-form on M . Explain why, in general, the push-forward φ∗V of
a vector field V on M cannot be defined as a vector field on N .

Second order tangent and cotangent spaces and bundles

From now on, all manifolds are of class Cp with p > 2.

Definition. Let M be a manifold and x a point in M . The second-order
tangent space to M at x is the vector space TxM consisting of all second-
order differential operators at x with no constant term. The elements of TxM
will be called diffusors (the names second-order tangent vectors and tangent
vectors of order 2 are more frequent in the literature).
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Given a local chart (x1, . . . , xd) in a neighbourhood of x, every diffusor
L ∈ TxM is given by an expression of the form

Lf =
d∑

i=1

d∑

j=1

LijDijf(x) +
d∑

k=1

LkDkf(x) ,

where f ∈ C2(M) and Lij and Lk are real coefficients. Observe that, because
Dijf(x) = Djif(x), the vector space TxM has dimension 1

2d(d+1) + d, and
not d2 + d: there is some arbitrariness in the choice of the coefficients Lij .
One can for instance demand that Lij = Lji; in that case, all coefficients are
uniquely defined by L.

Exercise. The expression of L in another local chart (yα, α ∈ {1, . . . , d})
whose domain also contains x is Lf =

∑
αβ

LαβDαβf(x) +
∑
γ

LγDγf(x), with

Lαβ =
∑

ij

Lij Diy
α(x) Djy

β(x)

Lγ = Lyγ =
∑

ij

LijDijy
γ(x) +

∑

k

LkDky
γ(x) .

Deduce therefrom that the decomposition of L into its “first-order part”∑
LkDk and “purely second-order” part

∑
LijDij depends upon the choice

of the chart: it has no intrinsic meaning, even though the vector space TxM
has a non-trivial intrinsic structure (this will be seen in Proposition 5).

The first example of diffusor is a vector. Clearly, TxM ⊂ TxM (but the
first-order part of an L ∈ TxM does not exist, as seen in the preceding exercise;
in other words, there exists in TxM no canonical subspace supplementary
to TxM).

Another important example of a diffusor is the acceleration of a curve. If
γ : R → M is a C2 curve, its acceleration at t = t0 is the diffusor γ̈(t0) ∈
Tγ(t0)M equal to the second-order differential operator f 7→ (f ◦ γ)

′′
(t0).

Exercise. a) In a local chart around γ(t0), denoting by γi(t) the coordinates

of the point γ(t), the acceleration L = γ̈(t0) is given by Lij = (γi)
′
(t0) (γj)

′
(t0)

and Lk = (γk)
′′
(t0). (It may come as a surprise that the second derivatives

appear only in the coefficients Lk, which one could be tempted to consider as
“first order”.)

b) Fix x ∈M . When γ ranges over all C2 curves such that γ(t0) = x, the
vectors γ̇(t0) range over all the tangent space TxM and the diffusors γ̈(t0)
linearly span the second-order tangent space TxM .

c) Still for fixed x, when γ ranges over all C2 curves such that γ(t0) = x
and γ̇(t0) = 0, the diffusors γ̈(t0) are vectors, and they range over the whole
tangent space TxM . Conversely, for a curve γ such that γ(t0) = x, the diffusor
γ̈(t0) is a vector if and only if γ̇(t0) = 0.
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The push-forward of diffusors is similar to that of vectors: if φ : M → N
is at least C2, the linear map φ∗x : TxM → Tφ(x)N (also denoted by Txφ) is

defined by
(
φ∗xL

)
f = L(f◦φ). For instance, the acceleration γ̈(t0) of a curve γ

is equal to the push-forward by γ∗t0 of the diffusor f 7→ f ′′(t0), which is an
element of Tt0R.

Using the same notation φ∗x for the push-forward Txφ of vectors and Txφ
of diffusors is harmless, because Txφ is equal to Txφ on the tangent space
TxM . In particular, the push-forward of diffusors respects vectors (that is,
φ∗x(TxM) ⊂ Tφ(x)M). This implies that not every linear map from TxM to
Tφ(x)N is of the form φ∗x. (Besides stability of first-order vectors, another
condition must be satisfied; this is postponed until Proposition 5.)

The disjoint union TM =
⋃

x∈M TxM is the second-order tangent bundle;
it is a vector bundle over M , to which the figurative language of fibre bundles
applies (TxM is a fibre, its elements are above x). Its sections are the diffusor
fields (or second-order vector fields); the next proposition extends to second
order the characterizations we saw earlier for vector fields.

Proposition 2. Let M be a Cp-manifold with 2 6 p 6 ∞, and L a real
function on M × Cp(M); call L(x) the map L(x, . ) and Lf the function
L( . , f). The following three statements are equivalent:

(i) for each x ∈M , L(x) belongs to TxM and x 7→ L(x) is of class Cp−2;

(ii) for every local chart (x1, . . . , xd) with domain D, there exist functions
L1, . . . , Ld, L11, L12, . . . , Ldd in Cp−2(D), such that, for each x ∈ D and
each f ∈ Cp(M),

L(x, f) =
∑

ij

Lij(x) Dijf(x) +
∑

k

Lk(x) Dkf(x) ;

(iii) f 7→ Lf is a linear map from Cp(M) to Cp−2(M) and, putting

Γ (f, g) = L(fg) − fLg − gLf ,

one has for all n, all f1, . . . , fn ∈ Cp(M) and all φ ∈ Cp(Rn,R),

L
(
φ ◦ (f1, . . . , fn)

)
=

n∑

q=1

Dqφ ◦ (f1, . . . , fn) Lfq

+ 1
2

n∑

r,s=1

Drsφ ◦ (f1, . . . , fn) Γ (fr, fs) .

If moreover p = ∞, the further two statements below are also equivalent
to the preceding three ones:

(iv) L : C∞(M) → C∞(M) is linear, and satisfies L(f3) = 3fL(f2) − 3f2Lf
for all f ∈ C∞(M);
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(v) L : C∞(M) → C∞(M) is linear, L1 = 0, and L(f3)(x) = 0 for all
f ∈ C∞(M) and x ∈M such that f(x) = 0.

The operator Γ featuring in (iii) is called the squared gradient (or ‘carré
du champ’) associated to L; see § 1.3 of Chapter ???. The reason for this
name is, when L is the Laplacian (in R

d or more generally in a Riemannian

manifold M), Γ (f, f) is equal to 2 ‖∇f‖
2
.

If V and W are vector fields, their product VW , obtained by composing
two first-order differential operators, is a second-order one, that is, a diffusor
field. Its squared gradient is given by Γ (f, g) = Vf Wg +Wf Vg.

Definitions. The second-order cotangent space to M at x is the dual T
∗
xM

of the second-order tangent space TxM . Its elements will be called codiffusors
Another name in the literature is ‘second-order forms’ or ‘forms of order 2’;
we shall not use this name for individual codiffusors, but we reserve it for
codiffusor fields (to be introduced later).

A fundamental example of a codiffusor is d2f(x), where f : M → R is at
least C2; by definition, d2f(x) is the linear form on TxM given by L 7→ Lf .
It is characterized by its action on the accelerations of curves:

<d2f
(
γ(t0)

)
, γ̈(t0)> = (f ◦ γ)

′′
(t0) .

All codiffusors at x have the form d2f(x) for a suitable f . The notation d2f
will be justified after Proposition 6.

Since TxM is a linear subspace of TxM , to every codiffusor θ ∈ T
∗
xM one

can associate its restriction to first order Rθ ∈ T∗
xM , defined as the restriction

to TxM of the map θ : TxM → R. Thus, R is a canonical map from T
∗
xM to

T∗
xM . (It is the adjoint map to the canonical injection TxM →֒ TxM .) As for

an example, one has R
(
d2f(x)

)
= df(x).

Exercise. Show that a codiffusor θ ∈ T
∗
xM verifies Rθ = 0 if and only if

<θ, γ̈(t0)> = 0 for all C2 curves γ such that γ(t0) = x and γ̇(t0) = 0.

Proposition 3 and definition. Given two covectors σ and ρ in T∗
xM , there

exists a unique codiffusor in T
∗
xM , denoted by σ·ρ and called the product of

σ and ρ, such that for every C2 curve γ with γ(t0) = x, one has

<σ·ρ, γ̈(t0)> = <σ, γ̇(t0)><ρ, γ̇(t0)> .

This product : T∗
xM × T∗

xM → T
∗
xM is symmetric, bilinear, and verifies

R(σ·ρ) = 0. Moreover, for all f and g in C2(M),

df(x) · dg(x) = 1
2

[
d2(fg)(x) − f(x) d2g(x) − g(x) d2f(x)

]
.

Proof. Choose a local chart whose domain contains X; an arbitrary L ∈ TxM
operates on functions via the formula Lf =

∑
ij L

ijDijf(x) +
∑

k L
kDkf(x),

where the coefficients Lij are chosen symmetric in i and j. Call σi and ρi the
coefficients of σ and ρ in the same local chart, and define σ·ρ ∈ T

∗
xM by
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<σ·ρ, L> =
∑

ij

Lijσiρj .

It is easy to verify that σ·ρ has all the claimed properties; uniqueness stems
from the fact that the diffusors γ̈(t0) linearly span T

∗
xM . Naturally, σ·ρ does

not depend upon the choice of the local chart, because it is characterized by
an intrinsic property. ⊓⊔

The product of covectors has nothing to do with an inner product (as given
for instance by a Riemannian structure); it is not scalar, but valued in TxM .
It is used to express codiffusors in local coordinates:

Exercise. Fix a local chart around x. Every θ ∈ T
∗
xM can be written

∑

ij

θij dxi(x) · dxj(x) +
∑

k

θk d2xk(x) ,

where θij and θk are real coefficients. One can always choose them such that
θij = θji; in that case, they are uniquely determined by θ. The duality between
codiffusors and diffusors is expressed by

<θ,L> =
∑

ij

θijL
ij +

∑

k

θkL
k ,

provided at least one of the systems of coefficients (Lij) and (θij) is symmetric.
When θ = d2f(x), the coefficients are θij = Dijf(x) and θk = Dkf(x). Non-
symmetric coefficients for θ = σ · ρ are θij = σiρj and θk = 0.

Exercise. A codiffusor θ ∈ T
∗
xM is said to be positive if <θ, γ̈(t0)> > 0

for all C2 curves γ such that γ(t0) = x. How is positivity expressed in local
coordinates? Show that if θ is positive, Rθ = 0, and that σ · σ is positive for
any covector σ ∈ T∗

xM . Conversely, every positive codiffusor is a sum of at
most d such “squares”.

The second-order cotangent bundle T
∗M is the disjoint union

⋃
x∈M T

∗
xM

of all second-order cotangent spaces, which are its fibres. The sections of this
bundle, that is, codiffusor fields, are also called second-order forms. They
should not be confused with the 2-forms (which are forms of degree 2),
ubiquitous in the geometric literature, and which we shall never encounter
in these lectures. In local coordinates, a codiffusor field is expressed as∑

ij θij dxi·dxj +
∑

k θk d2xk, where θij and θk are functions defined on the
domain of the chart.

The pull-back of codiffusors and of codiffusor fields is similar to that of
covectors and of covector fields: given φ : M → N which is at least C2, the
pull-back φ∗x : T

∗
φ(x)N → T

∗
xM is defined as the adjoint of the push-forward

φ∗x : TxM → Tφ(x)N ; it is also denoted by T
∗
xφ. If θ is a codiffusor field on N ,

its pull-back φ∗θ is the codiffusor field on M whose value at x is φ∗x θ
(
φ(x)

)
.
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(But diffusor fields cannot be pushed forward.) The pull-back of codiffusors
and of codiffusor fields has functorial properties:

φ∗(d2f) = d2(f◦φ) ;

φ∗(Rθ) = R(φ∗θ) ;

φ∗(σ·ρ) = (φ∗σ) · (φ∗ρ) .

Complementing these formulae with the exact signification of each symbol is
left as an exercise (for instance, both R are not defined on the same space).
Their proofs are sketched below; we give only the skeleton of the arguments,
the flesh is to be supplied by the reader.

<φ∗(d2f), L> = <d2f, φ∗L> = (φ∗L)f = L(f◦φ) = <d2(f◦φ), L> ;

<φ∗(Rθ), V > = <Rθ, φ∗V > = <θ, φ∗V > = <φ∗θ, V > = <Rφ∗θ, V > ;

<φ∗(σ·ρ), γ̈>= <σ·ρ, φ∗γ̈> = <σ·ρ, (φ◦γ)̈>

= <σ, (φ◦γ)̇><ρ, (φ◦γ)̇> = <σ, φ∗γ̇><ρ, φ∗γ̇>

= <φ∗σ, γ̇><φ∗ρ, γ̇> = <φ∗σ · φ∗ρ , γ̈> .

Conversely, the pull-back maps are characterized by the first of these three
properties (this is easy), but also by the other two, as we shall see in Proposi-
tion 4. Skipping the rest of this section, Propositions 4 and 5, is harmless; what
will be needed later is only the definition of Schwartz morphisms (property (i)
in Proposition 5).

Proposition 4. Let M and N be two Cp-manifolds (with 2 6 p 6 ∞),
x (resp. y) a point in M (resp. N), and B : T

∗
yN → T

∗
xM a linear map. The

following two conditions are equivalent:

(i) there exists a Cp map φ : M → N such that φ(x) = y and T
∗
xφ = B;

(ii) there exists b : T∗
yN → T∗

xM such that

∀ θ ∈ T
∗
yN b(Rθ) = R(Bθ) ;

∀ σ ∈ T∗
yN ∀ ρ ∈ T∗

yN B(σ·ρ) = (bσ) · (bρ) .

When these conditions are met, b = T∗
xφ.

Proof (sketchy). We already saw (i) ⇒ (ii).

For the converse, suppose first that M = R
d, N = R

e, x = 0 and y = 0;
call xi and yα the coordinates in M and N . Define real coefficients Bα

ij and
Bα

k by

Bα
ij = <B

(
d2yα(0)

)
, Dij(0)>

Bα
k = <B

(
d2yα(0)

)
, Dk(0)>

and e functions ψ1, . . . , ψe on M by
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ψα = 1
2

∑

ij

Bα
ij x

ixj +
∑

k

Bα
k x

k ;

last, define ψ : M → N by yα ◦ψ = ψα. It is not difficult to verify that b must
be equal to T∗

xψ and that ψ satisfies (i).
Suppose now that M (resp. N) is an open neighbourhood of x = 0 ∈ R

d

(resp. y = 0 ∈ R
e). Define ψ : R

d → R
e as above. Let g : M → [0, 1] be Cp,

equal to 1 in a neighbourhood of x, and supported in a compact K ⊂M small
enough for φ = gψ to take its values in N ; this map φ satisfies (i).

Last, if M and N are general manifolds, choose a local chart (x1, . . . , xd)
whose domain D contains x and such that xi(x) = 0 for all i, and a local chart
(y1, . . . , ye) whose domain E contains y and such that yα(y) = 0 for all α. By
the preceding step, there exists φ : D → E satisfying (i) and such that φ ≡ y
outside a compact subset K ⊂ D; it now suffices to extend φ to the whole of
M by setting φ ≡ y on M \K. This proves that (ii) ⇒ (i).

We now suppose (i) and (ii) to be satisfied. Since R : T
∗
yN → T∗

yN is onto,
b is uniquely defined by the identity bR = RB; since T∗

xφ also satisfies this
identity, b = T∗

xφ. ⊓⊔

Proposition 5 and definition. Let M and N be two Cp-manifolds (where
2 6 p 6 ∞), x (resp. y) a point in M (resp. N), and F : TxM → TyN
a linear map. The following are equivalent:

(i) there exists a Cp map φ : M → N such that φ(x) = y and φ∗x = F ;

(ii) there exists a linear map f : TxM → TyN such that the restriction of F
to TxM is equal to f , and that, for all σ and ρ in T∗

yN ,

F ∗(σ·ρ) = f∗σ·f∗ρ ,

where F ∗ : T
∗
yN → T

∗
xM denotes the adjoint of F : TxM → TyN and

f∗ : T∗
yN → T∗

xM the adjoint of f : TxM → TyN .

When these conditions are met, F is called a Schwartz morphism.
A Schwartz morphism is a bijection between TxM and TyN if and only if

its restriction f to TxM is a bijection between TxM and TyN . In that case,
its inverse is a Schwartz morphism too.

Proof. Equivalence between (i) and (ii) is straightforward from Proposition 4
by duality.

If a Schwartz morphism F = Txφ : TxM → TyN is a bijection, TxM and
TyN have the same dimension, so 1

2d(d+1) + d = 1
2e(e+1) + e, giving d = e,

and TxM and TyN have the same dimension. But F restricted to TxM is into,
and valued in TyN ; so it is a bijection too.

Conversely, if f = Txφ is a bijection, the inverse mapping theorem says
that φ is locally invertible, which implies that Txφ is invertible, with inverse
the Schwartz morphism Ty(φ−1). ⊓⊔

By the preceding proposition, the bijective Schwartz morphisms from T0R
d

to itself form a group. This group is the structure group needed to make TM
a principal bundle (see Chapter ???).
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Real and manifold-valued semimartingales

Conventions. In these lectures, the words ‘semimartingale’, ‘martingale’,
‘local martingale’ always implicitly mean ‘continuous semimartingale’, ‘con-
tinuous martingale’ or ‘continuous local martingale’.

Whenever a stochastic process is involved, we always suppose given a fixed
probability space (Ω,A,P) endowed with a filtration (Ft)t>0.

Definitions (see Chapter ???). Recall that a semimartingale is a real process
X = (Xt)t>0 having a decomposition Xt = X0 +Mt +At, where M is a local
martingale started from 0 (called the ‘martingale part’ of X, even when it is
not a martingale), and A a process with finite variation (i.e., the difference of
two adapted, continuous, increasing processes started from 0).

The bracket (or covariation) of two semimartingales X and Y is the pro-
cess 〈X,Y 〉 with finite variation such that

〈X,Y 〉t = lim
|σ|→0

n∑

i=1

(Xti
−Xti−1

)(Yti
− Yti−1

) ,

where the limit is taken (in a suitable sense) along a refining sequence of
subdivisions σ = (0 = t0 < t1 < . . . < tn = t) of the interval [0, t]. (Notice the
typographical difference between this bracket and the pairing bracket <x∗, x>
we use for duality in vector spaces.) The bracket 〈X,Y 〉 does not change when
processes with finite variation are added to X and Y . The covariation can also
be defined using stochastic integrals:

〈X,Y 〉 = XY −X0Y0 −

∫
X dY −

∫
Y dX .

If H (resp. K) is a locally bounded predictable process,

〈∫
H dX,

∫
K dY

〉
=

∫
HK d〈X,Y 〉 .

(We use the notation
∫
X dY to denote the process whose value at time t

is
∫ t

0
Xs dYs; by convention, all brackets and stochastic integrals are null at

time 0.) The bracket is involved in the second-order terms of the change of
variable formula: if X1, . . . , Xd are semimartingales, and if f : R

d → R is of
class C2, f(X1, . . . , Xd) is a semimartingale too, and, more precisely,

f(X1, . . . , Xd) = f(X1
0 , . . . , X

d
0 ) +

d∑

k=1

∫
Dkf(X1, . . . , Xd) dXk

+ 1
2

d∑

i,j=1

∫
Dijf(X1, . . . , Xd) d〈Xi, Xj〉 .

Exercise. If Y and Z are two semimartingales, the Stratonovich stochastic
integral

∫
Y ◦dZ, defined by

∫
Y ◦dZ =

∫
Y dZ + 1

2 〈Y,Z〉, has the following
property: the change of variable formula can be rewritten as
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f(X1, . . . , Xd) = f(X1
0 , . . . , X

d
0 ) +

d∑

k=1

∫
Dkf(X1, . . . , Xd) ◦dXk .

See § 1.7 of Chapter ???. (In my opinion, the name ‘integral’ is not proper:
since some regularity is required from Y , it is not an integral, but an integro-
differential operator.)

Definition. A process X with values in a manifold M is called a semimartin-
gale in M (or, shortly, a semimartingale if there is no ambiguity) if f ◦X is
a (real) semimartingale for every f ∈ C2(M).

This implies in particular that X is continuous, and adapted to the filtra-
tion.

Exercise. When M = R, there is no ambiguity: X is a semimartingale in M
if and only if X is an ordinary semimartingale.

When M = R
d, X is a semimartingale in M if and only if each component

Xi of X is an ordinary semimartingale.

Exercise. If X is a semimartingale in M and N a submanifold of M such
that X takes its values in N , then X is a semimartingale in N . (In particular,
if M is embedded in R

n, a process X with values in M is a semimartingale if
and only if it is a semimartingale in R

n.)

Many interesting manifold-valued processes are diffusions, a particular in-
stance of semimartingales. We shall focus on semimartingales, instead of mere
diffusions, because semimartingales lend themselves to general theorems due
to their many stability properties (stability by C2 functions, by stochastic
integration, change of time or of probability; whereas, for instance, the image
of a diffusion by a map is generally not a diffusion). These general theorems
are quite useful, even if one is only interested in applying them to diffusions.

Schwartz’ principle

Schwartz’ most important contribution to stochastic differential geometry is
his second order intrinsic interpretation of the change of variable formula.
Let X denote a semimartingale in R

d, or in a manifold with a global chart;
call X1, . . . , Xd the coordinates of X. For an infinitesimal time-increment dt,
Schwartz writes

f(Xt+dt) − f(Xt) =
∑

k

Dkf(Xt) dXk
t + 1

2

∑

i,j

Dijf(Xt) d〈Xi, Xj〉t ,

and interprets the right-hand side as the duality pairing of the codiffusor
d2f

(
Xt(ω)

)
with the diffusor DXt =

∑
k dXk

t Dk + 1
2

∑
i,j d〈Xi, Xj〉t Dij .

The former is a bona fide element of T
∗
Xt(ω)R

d, but the latter is an element
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of TXt(ω)R
d whose coefficients dXk

t (ω) and d〈Xi, Xj〉t(ω) have no rigorous
meaning, because there is no

∫
sign. The key observation is that, informal as

it may be, this diffusor is intrinsic: in a global change of coordinates, that is,
after a diffeomorphism, the left-hand side f

(
Xt+dt(ω)

)
− f

(
Xt(ω)

)
and the

codiffusor d2f
(
Xt(ω)

)
are invariant, hence this informal diffusor must also be

invariant.
The same observation can be made for a semimartingale in a general mani-

fold, with local coordinates instead of global ones. This idea will be made rigor-
ous in Theorem 1, not by giving a precise meaning to dXk

t (ω), d〈Xi, Xj〉t(ω),
and DXt(ω), but by supplying the missing

∫
sign. Indeed, the fact that the

intrinsic nature of DXt is that of a diffusor, is mathematically expressed by
first pairing DXt with a codiffusor Θt ∈ T

∗
Xt
M , then integrating along the

random (but not smooth) curve X. (Similarly, the fact that the velocity of a
smooth curve is a tangent vector, is expressed by the possibility of integrating
cotangent vectors, or a 1-form, along the curve.)

In fact, codiffusors are the most general objects that can be integrated
along manifold-valued semimartingales. This sentence cannot be given a pre-
cise mathematical meaning; it is only a metamathematical statement, but it
permeates these lectures from now on. Schwartz has called it the fundamental
principle; and Meyer has rightly renamed it Schwartz’ principle.

Definition. Let M be a manifold, X a semimartingale in M , Θ a process with
values in T

∗M , above X (that is, Θt(ω) belongs to the fibre T
∗
Xt(ω)M for all t

and ω). The process Θ is said to be locally bounded1 if there exist a sequence
of compact sets Kn ⊂ T

∗M and a sequence of stopping times Tn ր ∞ such
that on the stochastic interval [[0, Tn[[, Θ takes its values in Kn.

Theorem 1 and definition. If X is a semimartingale in a manifold M ,
and Θ a T

∗M -valued process above X, locally bounded and predictable, the
stochastic integral of Θ along X can be defined. It is a real semimartingale,
null at time 0, denoted by

∫
<Θ,DX>, linear in Θ, and characterized by the

following two properties:

(i) for every f ∈ C2(M),

∫
<d2f,DX> = f ◦X − f ◦X0 ;

(ii) for every real, locally bounded, predictable process H,

∫
<HΘ,DX> =

∫
H d

(∫
<Θ,DX>

)
.

1 The usual definition of local boundedness involves closed stochastic intervals
[[0, Tn]]; the property defined here should rather be called ‘pre-local’. But we shall
apply it to predictable processes only, and it turns out that a predictable process
is locally bounded if and only if it is pre-locally bounded.
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(In (i), and in the sequel, we use the following notation: if θ is a Borel, locally
bounded codiffusor field on M ,

∫
<θ,DX> stands for

∫
<θ(X),DX>.)

This stochastic integral also has the following further properties:

(iii) If Ξ satisfies the same requirements as Θ,

1
2

〈∫
<Θ,DX> ,

∫
<Ξ,DX>

〉
=

∫
<RΘ·RΞ,DX> ;

and in particular, for f and g in C2(M),

1
2 〈f◦X, g ◦X〉 =

∫
<df ·dg,DX> .

(iv) If T is a stopping time, the stopped stochastic integral is given by

(∫
<Θ,DX>

)T

=

∫
<ΘT ,DXT> .

(v) If X has finite variation, so has also
∫
<Θ,DX>; moreover, this stochas-

tic integral is equal to the pathwise Stieltjes integral
∫
<RΘ,dX> of the

covectors RΘ along X.

(vi) If RΘ = 0,
∫
<Θ,DX> has finite variation; if furthermore Θ is positive,∫

<Θ,DX> is an increasing process.

(vii) If RΘ = RΞ, the semimartingales
∫
<Θ,DX> and

∫
<Ξ,DX> have the

same martingale part.

Proving the theorem is easy when M is diffeomorphic to an open subset
of R

d, that is, when there exist global coordinates. It suffices to introduce the
d real semimartingales Xi = xi ◦X and the d2 +d predictable processes Θij(t)
and Θk(t) such that Θij(t) = Θji(t) and

Θt =
∑

ij

Θij(t) dxi(Xt)·dx
j(Xt) +

∑

k

Θk(t) d2xk(Xt) .

Uniqueness is then established by replacing dxi(Xt)·dx
j(Xt) with

1
2

[
d2(xixj)(Xt) − xi(Xt) d2xj(Xt) − xj(Xt) d2xi(Xt)

]
,

so as to express Θt as a finite sum of processes of the form Ht d2f(Xt), and by
using linearity. Existence and properties (iii)–(vii) are obtained by verifying
that ∑

k

∫
Θk dXk + 1

2

∑

ij

∫
Θij d〈Xi, Xj〉

has all the claimed properties of
∫
<Θ,DX>.

The general case, when there is no global chart, is less straightforward, but
the difficulty is only technical. One can for instance use localization methods;
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another possibility is to embed M into some R
n as a closed submanifold; one

can alternatively resort to the theory of semimartingales in open sets. These
technical matters are important, but may be ignored in a first approach to
the subject; we shall consider this extension as plausible enough and simply
admit it.

Exercise. Let X be a semimartingale in a manifold M , and φ : M → N a C2

map; let Θ be a predictable, locally bounded, codiffusor-valued process above
the semimartingale φ ◦X. Show that φ∗Θ is a locally bounded process above
X, and that

∫
<Θ,D(φ◦X)> =

∫
<φ∗Θ,DX>.

Exercise. The statement below complements (vii) in Theorem 1, by saying

that the geometric nature of the “martingale part dX
m

of DX” is that of a
tangent vector. Prove it in the particular case that M has global coordinates.

If Σ is a locally bounded, predictable, covector-valued process above X,

one can define the integral
∫
<Σ,dX

m

>, which is the martingale part of∫
<Θ,DX> for any Θ such that RΘ = Σ.

Stratonovich stochastic integrals

As explained in Proposition 1.6 of Chapter ???, if X is a semimartingale in
R

d, the integral of a closed 1-form σ along the (random, non smooth) curve
X can be defined, using Stratonovich stochastic integration. This procedure
is intrinsic, and extends to non closed 1-forms and semimartingales in mani-
folds. It is one of the most popular and useful tools in stochastic differential
geometry. We shall present it here as a particular instance of the Schwartz
principle: every 1-form (= covector field) σ can canonically be transformed
into a second-order form (= codiffusor field) dσ, which in turn can be inte-
grated along X to yield the Stratonovich integral of σ along X.

Proposition 6 and definition (symmetric differential of a 1-form).
On a manifold M , let σ be a covector field of class C1 at least. There exists
on M a unique codiffusor field dσ, called the symmetric differential of σ,
such that, for all C2 curves γ,

<dσ, γ̈(t)> =
d

dt
<σ, γ̇(t)> .

The symmetric differential has the following properties: for all C1 covector
fields σ, all C2 functions f and all C1 functions g,

R(dσ) = σ ; d(df) = d2f ; d(gσ) = dg · σ + g dσ .

The notation d2f is justified by the formula d2f = d(df). Symmetric dif-
ferentiation of 1-forms is something completely different from exterior dif-
ferentiation, which makes 1-forms into skew-symmetric 2-forms (instead of
symmetric second-order forms), and which kills df .
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Proof. Uniqueness stems easily from the fact that, for each x ∈M , the diffusors
γ̈(0) linearly span TxM when γ ranges over all C2 curves such that γ(0) = x.

Existence is proved in local coordinates: on the domain D(C) of any local
chart C = (x1, . . . , xd), every covector field σ can be written as

∑
i σi dxi,

where σ1, . . . , σd are C1 functions on D(C). Define a codiffusor field (dσ)C

on D(C) by the formula
∑

ij Diσj dxi·dxj +
∑

k σk d2xk. It is easy to verify
that (dσ)C satisfies on D(C) the definition of dσ, as well as the other three
properties; this is left to the reader.

It only remains to show that there exists a global codiffusor field dσ whose
restriction to D(C) is (dσ)C for any local chart C; it suffices to check that if
C and C ′ are two local charts, one has (dσ)C = (dσ)C′ on the intersection of
their domains; and this is a consequence of uniqueness applied to the manifold
D(C) ∩D(C ′). ⊓⊔

Exercise. Show that the codiffusor field dσ is characterized by the following
two properties: if V and W are vector fields,

<dσ, V > = <σ, V > ;

<dσ, V W+WV> = <d<σ, V >,W> + <d<σ,W>, V> .

Exercise. Symmetric differentiation has the following tensorial property: if
φ : M → N is C2 and if σ is a 1-form on N , then d(φ∗σ) = φ∗(dσ).

Theorem 2 and definition. Let M be a manifold of class C3 at least,
X a semimartingale in M , and Σ a semimartingale in TM , above X.
The Stratonovich stochastic integral of Σ along X is the semimartingale∫
<Σ, ◦dX>, depending linearly on Σ, and such that:

(i) if σ is a covector field, C2 at least,
∫
<σ◦X, ◦dX> =

∫
<dσ,DX> ;

(ii) if Z is a real semimartingale,
∫
Z ◦d

(∫
<Σ, ◦dX>

)
=

∫
<ZΣ, ◦dX> .

This integral also has the following further properties:

(iii) If P satisfies the same requirements as Σ,

1
2

〈∫
<Σ, ◦dX> ,

∫
<P, ◦dX>

〉
=

∫
<Σ·P,DX> .

(iv) If T is a stopping time, one has

(∫
<Σ, ◦dX>

)T

=

∫
<ΣT , ◦dXT> .
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For f ∈ C3(M), taking σ = df in (i) gives the important Stratonovich
change of variable of variable formula

f ◦X = f(X0) +

∫
<df, ◦dX> .

Conversely, this formula and property (ii) fully characterize Stratonovich
stochastic integrals, giving a convenient definition with no reference to second-
order language (this is the definition usually found in the literature).

Exercise. Assuming the existence of a global chart, prove Theorem 2. (Hint:
write Σt as

∑
k Σk(t) dxk(Xt), where Σk(t) are real semimartingales, and

define
∫
<Σ, ◦dX> as

∑
k

∫
Σk ◦d(xk◦X).)

Exercise. The martingale part of the semimartingale
∫
<Σ, ◦dX> is equal to

∫
<Σ,dX

m

>.

Exercise. Complete and prove the following statement (functoriality of
Stratonovich integrals). Let X be a semimartingale in a manifold M , and
φ : M → N a C3 map; let Σ be a semimartingale in T∗N above the semi-
martingale φ ◦X. Then . . .

Second-order stochastic differential equations

Given two manifolds M and N , it is convenient to call an ordinary differential
equation (ODE) from M to N any family e =

(
e(x, y)

)
x∈M, y∈N

such that

each e(x, y) is a linear mapping from TxM to TyN . Suppose given an ODE
e, a differentiable curve γ : I →M , where I is an open interval containing 0,
and a point y0 in N . A solution to the differential equation

ċ = e(γ, c) γ̇ ; c(0) = y0

is any differentiable curve c : J → N , with J an open interval such that
0 ∈ J ⊂ I, verifying c(0) = y0 and ċ(t) = e

(
γ(t), c(t)

)
γ̇(t) for all t ∈ J .

In all useful examples of this situation, the map (x, y) 7→ e(x, y) is locally
Lipschitz; this implies existence and uniqueness of the solution (more precisely:
of the maximal solution, that which is defined on a maximal interval J ; all
other solutions are restrictions of the maximal one to sub-intervals of the
maximal interval).

This scheme of ODEs is general enough to include many examples of con-
structions of curves in geometry. Here are some examples.

Take any vector field V on N ; the integral curves of V are the N -valued
curves c such that ċ(t) = V

(
c(t)

)
for each t. The problem of constructing the

integral curve of V with initial condition c(0) = y0 can be considered as an
ODE where M = R, the curve γ : R → M is the identity, and e(t, y) maps
d/dt (every vector of TtR is a multiple of that one) to V (y) ∈ TyN . The case
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of a time-dependent vector field V (t, y) reduces just as easily to an ODE,
simply by letting e(t, y) map d/dt to V (t, y).

Another example is integration of 1-forms along curves. If σ is a 1-form
onM , define an ODE e fromM to N = R by taking e(x, y) : TxM → TyR ≈ R

equal to the covector σ(x) ∈ T∗
xM . If γ is any curve in M , the solution to the

ODE e applied to γ with initial condition y0 is the real function

t 7→

∫ t

y0

<σ
(
γ(s)

)
,dγ(s)> =

∫ t

y0

<σ
(
γ(s)

)
, γ̇(s)> ds ,

that is, the integral of σ along γ.
The horizontal lift of curves to a fibre bundle by a non-linear connection

(see Chapter ???) gives a third example of an ODE, but with a little snag: in
that case M is the base manifold and N the bundle, and e(x, y) should be the
horizontal map from TxM to TyN . This does not exactly fit our definition of an
ODE, because the horizontal map h(x, y) is not defined for all (x, y) ∈M×N ,
only for those (x, y) such that y belongs to the fibre above x. One way to deal
with such situations is to extend h to an e defined on the whole of M×N , such
that e(x, y) = h(x, y) if y is above x. If e is regular enough (e can always be
chosen as smooth as h; Lipschitz continuity suffices), the solution of the ODE
will always remain in the set {(x, y) : y is above x}, provided it is started in
this set; and it is equal to the horizontal lift of the given curve, regardless of
the choice of the extension e of h.

To define stochastic differential equations (SDEs) between manifolds, the
first thing that comes to mind is to mimic ODEs, by choosing a family(
F (x, y)

)
x∈M, y∈N

such that each F (x, y) is a linear map from TxM to TyN .

An SDE driven by an M -valued semimartingale X would then have the form
DY = F (X,Y )DX, yielding the infinitesimal increment DYt as a function of
Xt, Yt and DXt, linear in DXt. But this is too general to make sense, as shown
by the following simple computation when M and N have global coordinates.
Such a general SDE would be given by





dY γ
t =

∑
k

F γ
k (Xt, Yt) dXk

t + 1
2

∑
ij

F γ
ij(Xt, Yt) d〈Xi, Xj〉t

1
2 d〈Y α, Y β〉t =

∑
k

Fαβ
k (Xt, Yt) dXk

t + 1
2

∑
ij

Fαβ
ij (Xt, Yt) d〈Xi, Xj〉t ,

where the various coefficients F ···
··· (Xt, Yt) represent the linear map F (Xt, Yt).

But the rules of stochastic calculus applied to the first line yield

d〈Y α, Y β〉t =
∑
i

Fα
i (Xt, Yt)

∑
j

F β
j (Xt, Yt) d〈Xi, Xj〉t ;

so the compatibility conditions Fαβ
k = 0 and Fαβ

ij = 1
2 [Fα

i F
β
j + Fα

j F
β
i ] (if the

coefficients are chosen to be symmetric) must be satisfied. These relations turn
out to exactly express the fact that F (Xt, Yt) is a Schwartz morphism from
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TXt
M to TYt

N (recall that Schwartz morphisms are defined by property (i)
in Proposition 5); this statement is left as an exercise. (Hint: F γ

k = Dk(yγ◦φ);
F γ

ij = Dij(y
γ◦φ).) So the true nature of SDEs between manifolds involves

Schwartz morphisms.

Definitions. A second-order stochastic differential equation between two
manifolds M and N is a family

(
F (x, y)

)
x∈M y∈N

, where each F (x, y) is a

Schwartz morphism from TxM to TyN .
Given a second-order SDE F , a semimartingale X in M and an F0-

measurable random variable y0 in N , a solution to the second-order SDE

DY = F (X,Y )DX ; Y0 = y0

is a semimartingale Y in N (possibly defined only on some stochastic interval
[[0, ζ[[ where ζ is a predictable stopping time), such that Y0 = y0 and, for all
codiffusor fields θ on N ,

∫
<θ,DY > =

∫
<F (X,Y )

∗
θ,DX>

on the interval [[0, ζ[[ where Y is defined.

Observe that it suffices to require the above equality only for the codiffusor
fields θ of the form d2f for f ∈ C2(N); that is, Y is characterized by

f ◦ Yt = f(y0) +

∫ t

0

<F (Xs, Ys)
∗(

d2f(Ys)
)
,DXs> .

And on the other hand, if Y is a solution (and if F is locally bounded), one has
more generally

∫
<Θ,DY > =

∫
<F (X,Y )

∗
Θ,DX> for every locally bounded,

predictable, T
∗N -valued process Θ above Y .

Theorem 3 (Existence and uniqueness for second-order SDEs. Let F
be a second-order SDE between two manifolds M and N , X a semimartingale
in M and y0 an N -valued, F0-measurable r.v. Suppose the map (x, y) 7→
F (x, y) to be locally Lipschitz. There exist a predictable stopping time ζ > 0
and a semimartingale Y in N defined on [[0, ζ[[ such that

(i) on the event {ζ < ∞}, the limit limt↑ζ Yt exists in the one-point com-
pactification N ∪ {∞N} of N and is equal to the point at infinity ∞N ;

(ii) on [[0, ζ[[, Y is a solution to the second-order SDE

DY = F (X,Y )DX ; Y0 = y0 .

Moreover, if Y ′ is any other solution to this SDE, defined on some pre-
dictable interval [[0, ζ ′[[, then ζ ′ 6 ζ and Y ′ is the restriction of Y to [[0, ζ ′[[.
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This theorem extends to manifolds the existence and uniqueness statement
for SDEs driven by vector-valued semimartingales; indeed, one possible proof
of the theorem consists in embedding M and N into vector spaces to be
brought back to the vector case. Other possible methods are localization, or
using the theory of semimartingales in predictable open intervals. A full proof
with all technical details is beyond the scope of this “invitation”.

Observe that a consequence of (i) is that ζ = ∞ if N is compact. (More
generally, ζ = ∞ on the event that the connected component of N contain-
ing y0 is compact.)

What makes Theorem 3 useful is its generality. Yet, in some applications,
one sometimes needs a still more general version (not to be found in the
present notes), where F is allowed to depend, not only upon x and y, but also
upon t and ω (the dependence on (t, ω) must then be predictable). In that
case, DYt is not only a function of Xt, Yt and DXt, but may also take into
account the past behaviour of X and Y , and also possibly of other processes
adapted to the filtration.

Stratonovich stochastic differential equations

Definition. Let M and N be two manifolds (at least C3) and e an ODE from
M toN ; suppose the map (x, y) 7→ e(x, y) to be C2. Given a semimartingaleX
in M and an F0-measurable, N -valued r.v. Y0, a semimartingale Y (possibly
with finite lifetime) in N is called a solution to the Stratonovich SDE

◦dY = e(X,Y ) ◦dX ; Y0 = y0

if Y0 = y0 and, for each 1-form σ on N , one has

∫
<σ(Y ), ◦dY > =

∫
<e(X,Y )

∗(
σ(Y )

)
, ◦dX> .

There are two main reason why Stratonovich SDEs are very useful. First,
most intrinsic geometric constructions which yield a curve from another one
can be seen as ODEs; substituting Stratonovich SDEs to these ODEs gives
similar intrinsic constructions of semimartingales from other ones, no extra
geometric tool or structure being needed. Second, the semimartingales solving
the Stratonovich SDEs associated to these ODEs have properties similar to
the properties of the curves solving the ODEs.

These vague assertions, known as the Stratonovich transfer principle, are
made more precise in the next statement.

Theorem 4 (Stratonovich transfer principle). Given a C2 ODE e be-
tween two C3 manifolds M and N , there exists a unique second-order SDE
F from M to N such that, for every curve t 7→

(
γ(t), c(t)

)
in M×N verifying
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ċ(t) = e
(
γ(t), c(t)

)
γ̇(t), one also has c̈(t) = F

(
γ(t), c(t)

)
γ̈(t). The restriction

of F (x, y) to TxM is e(x, y).
Moreover, if X (resp. Y ) is a semimartingale in M (resp. N), the

Stratonovich SDE
◦dY = e(X,Y ) ◦dX

is satisfied if and only if so is also the second-order SDE

DY = F (X,Y )DX .

If σ is a C2 1-form on the product manifold M×N such that <σ, ż> = 0
for every curve z(t) =

(
x(t), y(t)

)
in M×N verifying the ODE ẏ = e(x, y) ẋ,

then
∫
<σ, ◦dZ> = 0 for every semimartingale Zt = (Xt, Yt) in M ×N

satisfying the associated Stratonovich SDE ◦dY = e(X,Y ) ◦dX.

The last part of Theorem 4 says that integral invariants (for instance
conservation laws) are passed on from ODEs to Stratonovich SDEs. It says in
particular that if f is a C3 function on M ×N , and if f

(
x(t), y(t)

)
is constant

for any solution
(
x(t), y(t)

)
of the ODE, then f(Xt, Yt) is constant for any

solution (Xt, Yt) of the Stratonovich SDE. See also Proposition 7 for another
conservation property of the Stratonovich transfer principle.

Powerful as it is, the Stratonovich transfer principle has its limitations. In
the case when the ODE e depends not only on (x, y), but also on t, one must
be careful and replace M with the product R ×M , so as to work with the
pair (t, x) in lieu of x (instead of first applying the transfer principle, and only
then allowing time-dependence: this does not work). This replacement of M
with R×M can be performed only when time-dependence is smooth enough:
if e = e(t, x, y) is not C2 in (t, x, y) (or at least C1 with locally Lipschitz
first derivatives), the ODE is not liable to Stratonovich transfer. Similarly,
the case of an ODE which depends on ω (for instance, to take into account
the past behaviour of some intervening processes) is outside the scope of the
Stratonovich transfer principle.

When applying the Stratonovich transfer principle, never compute F
from e. The basic idea is to work with first-order vectors and forms, using
only ordinary calculus and the Stratonovich chain rule. Second-order objects
remain hidden in the background; they are needed only to establish general
facts such as the following existence and uniqueness statement. (If you attempt
to show by hand existence and uniqueness for a given particular Stratonovich
SDE, you will eventually end up with replacing Stratonovich integrals by Itô
ones to obtain estimates and perform, for instance, some Picard iteration.
This is exactly what F does here once and for all in a general setting.)

Combining Theorems 3 and 4 immediately gives the following corollary:
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Corollary (Existence and uniqueness for Stratonovich SDEs). Given
a C2 ODE e between two C3 manifolds M and N , a semimartingale X
in M and an F0-measurable initial condition y0 in N , the Stratonovich SDE

◦dY = e(X,Y ) ◦dX ; Y0 = y0

has a unique solution Y (possibly with finite explosion time).

Proof of Theorem 4. The proof of existence and uniqueness of F follows the
same general scheme as that of dσ in Proposition 6: F is unique because ac-
celerations of curves span the second-order tangent space, and existence is
shown locally, in local coordinates. If (xi)16i6d (resp. (yα)16α6d′) is a lo-
cal chart with domain D ⊂ M (resp. D′ ⊂ N), for (x, y) ∈ M × N the
map e(x, y) : TxM → TyN is given by its coefficients eγ

k(x, y) such that
e(x, y)Dk =

∑
γ e

γ
k(x, y)Dγ ; define the map F (x, y) : TxM → TyN by

F (x, y) Dij =
∑

αβ

Fαβ
ij (x, y)Dαβ +

∑

γ

F γ
ij(x, y) Dγ

F (x, y) Dk =
∑

αβ

Fαβ
k (x, y)Dαβ +

∑

γ

F γ
k (x, y) Dγ ,

where

Fαβ
k (x, y) = 0 ; F γ

k (x, y) = eγ
k(x, y) ; Fαβ

ij (x, y) = eα
i (x, y)eβ

j (x, y) ;

F γ
ij(x, y) = 1

2

[
Die

γ
j (x, y) + Dje

γ
i (x, y)

+
∑

α

(
eα
i (x, y)Dαe

γ
j (x, y) + eα

j (x, y)Dαe
γ
i (x, y)

)]
.

All this is defined only for (x, y) ∈ D × D′ and depends upon the choice of
the charts; but a direct computation shows that c̈(t) = F

(
γ(t), c(t)

)
γ̈(t) for

every curve t 7→
(
γ(t), c(t)

)
in D×D′ such that ċ(t) = e

(
γ(t), c(t)

)
γ̇(t). This

intrinsic characterization implies that F (x, y) thus defined remains the same
when computed with any other local charts whose domains contain x and y,
so all these F can be patched up together to yield a globally defined family
F (x, y), of class C1, meeting the requirement on curves. It only remains to

see that each F (x, y) is a Schwartz morphism; this is due to Fαβ
k = 0 and

Fαβ
ij = Fα

i F
β
j .

The second part of the theorem, equivalence between ◦dY = e(X,Y ) ◦dX
and DY = F (X,Y )DX, will now be established assuming there exist global
coordinates (xi) and (yα) on the manifolds. Given any semimartingale (X,Y )
in M ×N , writing Xi for xi ◦X and Y α for yα ◦ Y , it suffices to show that

for all indices γ, Y γ − Y γ
0 =

∫
<e(X,Y )

∗(
(dyγ)(Y )

)
, ◦dX>

holds if and only if
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for all indices γ, Y γ − Y γ
0 =

∫
<F (X,Y )

∗(
(d2yγ)(Y )

)
,DX> ;

so it suffices to establish the identity

(∗)

∫
<e(X,Y )

∗(
(dyγ)(Y )

)
, ◦dX> =

∫
<F (X,Y )

∗(
(d2yγ)(Y )

)
,DX> .

The left-hand side of (∗) is the real semimartingale
∑

k

∫
eγ
k(X,Y ) ◦dXk;

using the definition of Stratonovich integrals for real semimartingales, it ex-
pands as

∑

k

[∫
eγ
k(X,Y ) dXk + 1

2

〈
eγ
k(X,Y ), Xk

〉]

=
∑

k

[∫
eγ
k(X,Y ) dXk + 1

2

∑
i

∫
Die

γ
k(X,Y ) d〈Xi, Xk〉

+ 1
2

∑
α

∫
Dαe

γ
k(X,Y ) d〈Y α, Xk〉

]
.

Since this implies Y γ = Y γ
0 +

∑
k e

γ
k(X,Y ) dXk + terms with finite variation,

the bracket d〈Y α, Xk〉 is also equal to
∑

i e
α
i (X,Y ) d〈Xi, Xk〉; so the left-

hand side of (∗) is
∑

k

∫
eγ
k(X,Y ) dXk +

∑
ij

∫
eγ
ij(X,Y ) 1

2 d〈Xi, Xj〉, where

eγ
ij(x, y) = Die

γ
j (x, y) +

∑
α e

α
i (x, y)Dαe

γ
j (x, y).

We now compute the right-hand side of (∗). First, observe that

F (X,Y )
∗(

(d2yγ)(Y )
)

=
∑

k

F γ
k (X,Y )

(
(d2xk)(X)

)
+

∑

ij

F γ
ij(X,Y )

(
(dxi · dxj)(X)

)
,

wherefrom
∫
<F (X,Y )

∗(
(d2yγ)(Y )

)
,DX> =

∑

k

∫
F γ

k (X,Y ) dXk +
∑

ij

∫
F γ

ij(X,Y ) 1
2 d〈Xi, Xj〉 .

The coefficients F γ
k and F γ

ij were given earlier; they are F γ
k (x, y) = eγ

k(x, y) and

F γ
ij(x, y) = 1

2

(
eγ
ij(x, y) + eγ

ji(x, y)
)
. Consequently, one has

∫
F γ

k (X,Y ) dXk =∫
eγ
k(X,Y ) dXk and

∫
F γ

ij(X,Y ) d〈Xi, Xj〉 =
∫
eγ
ij(X,Y ) d〈Xi, Xj〉; so both

sides of (∗) are equal.

We now prove the last part of Theorem 4. Let σ be a 1-form on M ×N ,
such that <σ, ż> = 0 whenever z is a solution to the ODE. For each point
(x, y) in M ×N , σ(x, y) is a linear form on the product TxM ×TyN , that is,
an element of T∗

xM ⊕ T∗
yN ; in other words, σ(x, y) = π(x, y) + ρ(x, y) with

π(x, y) ∈ T∗
xM and ρ(x, y) ∈ T∗

yN . For z(t) =
(
x(t), y(t)

)
any solution of the

ODE, write
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0 = <σ(z), ż> = <π(x, y), ẋ>+<ρ(x, y), ẏ>

= <π(x, y), ẋ>+<ρ(x, y), e(x, y)ẋ>

= <π(x, y), ẋ>+<e(x, y)∗ρ(x, y), ẋ> = <τ(x, y), ẋ> ,

where τ(x, y) is defined as π(x, y) + e(x, y)∗ρ(x, y) ∈ T∗
xM . This implies

τ(x, y) = 0 for all (x, y) ∈ M ×N ; therefore, if Zt = (Xt, Yt) is a solution of
the Stratonovich SDE,

∫
<σ(Z), ◦dZ> =

∫
<π(X,Y ), ◦dX>+

∫
<ρ(X,Y ), ◦dY >

=

∫
<π(X,Y ), ◦dX>+

∫
<e(X,Y )∗ρ(X,Y ), ◦dX>

=

∫
<τ(X,Y ), ◦dX> = 0 . ⊓⊔

Examples. Three examples of ODEs were given at the beginning of the pre-
vious section.

The first one was a time-dependent vector field V (x, t) on M ; we saw that
e(t, x) : TtR → TxM given by e(t, x) d

dt
= V (x, t) is an ODE from R to M .

From the viewpoint of stochastic differential geometry, the Stratonovich SDE
associated to this e is not interesting at all. The solutions to the ODE are the
integral curves γ(t) of the vector field, and the corresponding Stratonovich
SDE is ◦dX = V (T,X) ◦dT , driven by a real semimartingale T , and where the
unknown is a semimartingale X in M ; its solutions are simply the processes
Xt = γ ◦ Tt, whose paths remain on the smooth integral curves γ of V . (The
simplest proof of this fact is by identification: just check that γ ◦ Tt is indeed
a solution to the SDE.)

As an exercise, you may compute the second-order SDE F (t, x) : TtR →
TxM equivalent to the Stratonovich SDE; but remember that this calculation
is never needed, the Stratonovich SDE can be written directly from the ODE.
The answer to this exercise is

F (t, x)
( d

dt

)
= V (x, t) , F (t, x)

( d2

dt2

)
= V 2(x, t) +

∂

∂t
V (t, x) .

Here, V 2(t, x) stands for the second-order differential operator equal to the
square of the first-order differential operator V (t, x) when t is kept fixed, and
∂
∂t
V (t, x) means the derivative with respect to t of the vector V (t, x) ∈ TxM

for fixed x. This expression of F makes it plain that solving the Stratonovich
SDE requires from V more smoothness than solving the ODE.

The second example of an ODE consisted in integrating a 1-form σ
along curves. Not surprisingly, the corresponding Stratonovich SDE is just
Stratonovich integration of 1-forms along semimartingales. We shall not elab-
orate further on this; if you are curious enough to compute the corresponding
second-order SDE F (let us repeat that this is not necessary!), you will find
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∀L ∈ TxM F (x, y)L = <σ·σ, L>D2 +<dσ, L>D ∈ TyR .

The third example, horizontal lifts of curves, is of everyday use in stochas-
tic differential geometry: the Stratonovich transfer principle is instrumental in
the definition of parallel transport of vectors along paths of semimartingales
in manifolds, and, more generally, of transport of all kinds of tensors and other
geometric objects. Because of the difficulty due to the fact that horizontal lifts
are not defined for all pairs (x, y), but only when y is above x, the discussion
of these transports is postponed till after Proposition 7.

As a forth example, we shall now revisit the Stratonovich SDE used in
Chapter ??? to construct a manifold-valued diffusion with a given infinitesimal
generator.

Suppose given n+1 smooth vector fields V0, . . . , Vn on a manifold N (they
are called X0, . . . , Xn in Chapter ???). Set M = R

n+1, and define an ODE
e(x, y) : TxR

n+1 → TyN by identifying TxR
n+1 with R

n+1 itself, and putting,
for r = (r0, . . . , rn) ∈ R

n+1 ≈ TxR
n+1,

e(x, y)(r) = r0V0(y) + . . .+ rnVn(y) .

Given a smooth curve x(t) in R
n+1, a curve y(t) in N is a solution to the

ODE if ẏ(t) = (x0)′(t)V0

(
y(t)

)
+ . . . + (xn)

′
(t)Vn

(
y(t)

)
. The corresponding

Stratonovich SDE is ◦dY = V0(Y ) ◦dX0 + . . . + Vn(Y ) ◦dXn, driven by an
R

n+1-valued semimartingale (X0, . . . , Xn). This equation means that for ev-
ery smooth function f on N ,

f ◦ Y = f(Y0) +

∫
(V0f)(Y ) ◦dX0 + . . .+

∫
(Vnf)(Y ) ◦dXn .

These Stratonovich integrals of real semimartingales will now be converted
into Itô ones. It is an easy computation:

∫
(Vif)(Y ) ◦dXi =

∫
(Vif)(Y ) dXi + 1

2 〈(Vif)(Y ), Xi〉

=

∫
(Vif)(Y ) dXi + 1

2

〈∫ ∑
j

(VjVif)(Y ) dXj , Xi
〉

=

∫
(Vif)(Y ) dXi + 1

2

∑

j

∫
(VjVif)(Y ) d〈Xj , Xi〉 ,

which implies

f ◦ Y = f(Y0) +
∑

k

∫
(Vkf)(Y ) dXk + 1

2

∑

ij

∫
(ViVjf)(Y ) d〈Xi, Xj〉 .

[This formula is also a straightforward consequence of the expression of the
Schwartz morphisms F (x, y) that make up the second-order SDE associated
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to e; in turn, these F (x, y) are easily obtained from the accelerations of the
curves solving the ODE:

<d2f, ÿ(t)> =
∑

k

(Vkf)
(
y(t)

)
(xk)

′′
(t) +

∑

ij

(ViVjf)
(
y(t)

)
(xi)

′
(t) (xj)

′
(t) . ]

The link with diffusions arises when one takes the driving semimartin-
gale (X0

t , X
1
t , . . . , X

n
t ) equal to (t, B1

t , . . . , B
n
t ), where (B1, . . . , Bn) is an

n-dimensional Brownian motion. Then all brackets 〈Xi, Xj〉 vanish except
〈Xi, Xi〉t = t for i 6= 0. So one ends up with f ◦ Y = f(Y0) + M + A, with
the martingale part given by M =

∑n
k=1

∫
(Vkf)(Y ) dBk, and, more impor-

tant, the finite variation part A equal to
∫

(Lf)(Y ) dt, where L is the diffusor
field defined by Lf = V0f + 1

2

∑n
i=1 ViVif . In other words, all solutions to the

Stratonovich SDE are diffusions on N with infinitesimal generator L. As every
smooth diffusor field admits a decomposition as a sum V0 + 1

2

∑n
i=1 ViVi for a

suitable choice of n and of the vector fields V0, V1, . . . , Vn, this Stratonovich
SDE is a convenient tool to construct general diffusions. (But one must be
aware that, given L, there exists no canonical way of choosing the vector
fields Vi, and the structure of the stochastic flow associated to the SDE is
strongly influenced these choices.)

Time discretization in Stratonovich integrals and SDEs

Definition. Let M be a manifold of class C3 (at least). An interpolation rule
on M is a measurable map I : M ×M × [0, 1] →M such that

(i) for all x and y in M , I(x, y, 0) = x and I(x, y, 1) = y;
(ii) for all x ∈M and t ∈ [0, 1], I(x, x, t) = x;
(iii) for x and y close enough (i.e., for (x, y) in some neighbourhood G of the

diagonal in M), t 7→ I(x, y, t) is a C3 curve;
(iv) uniformly for (x, y) ∈ (K×K)∩G, where K is any compact subset of M ,

∂m

∂tm
I(x, y, t) ∈ O

(
‖x− y‖

m)
for m ∈ {1, 2, 3}.

Interpolation rules are only required to be measurable because topological
obstructions may prevent continuous interpolation rules to exist: think of the
case that M is not connected, or not simply connected.

At first sight, (iv) looks meaningless; but it can be understood using local
coordinates, or using a global embedding of M into a vector space, and it then
turns out to be intrinsic. For instance, choosing K included in the domain of
some local chart gives a meaning to (iv) by (locally) replacing M with an open
subset of R

d; and it is not difficult to verify that the so-obtained condition is
invariant under C3 diffeomorphisms of R

d.
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On any given manifold, there always exist many interpolation rules. To
construct one of them, one may for instance embed M into a Euclidean vector
space E by Whitney’s theorem, and then define I(x, y, t) as the point of M
closest (in E) to the affine interpolation (1−t)x+ ty ∈ E. This point is unique
when x and y are close enough; when it is not unique, any measurable choice
of I(x, y, t) can be used.

Other interpolation rules, the geodesic interpolations, are often used. They
are defined in such a way that the curve t 7→ I(x, y, t) is a geodesic when
x and y are close enough; they require M to be endowed with an extra struc-
ture (a Riemannian metric, or, more generally, a linear connection). We shall
come back to this later, when discussing Itô integrals and SDEs.

Definition. By a subdivision, we mean a sequence Υ = (Tn)n>0 of stopping
times such that T0 = 0, Tn+1 > Tn, and limn→∞ Tn = ∞ a.s. The mesh-size of
the subdivision Υ on the interval [0, t] is the r.v. |Υ |[0,t] = supn[Tn+1∧t−Tn∧t].

Theorem 5 (Approximating Stratonovich integrals and SDEs). Let
M and N be two C3 manifolds, I an interpolation rule on M , and e a C2

ODE from M to N . Let X be a semimartingale in M and Y a semimartin-
gale in N (with a possibly finite explosion time ζ) such that

◦dY = e(X,Y ) ◦dX .

For each subdivision Υ = (Tn)n>0, define a (non adapted) process XΥ in M
by

XΥ
t = I

(
XTn

, XTn+1
, t−Tn

Tn+1−Tn

)
for Tn 6 t 6 Tn+1,

and a (non adapted) process Y Υ in N as the solution of the ODE

Ẏ Υ = e(XΥ , Y Υ ) ẊΥ ; Y Υ
0 = Y0

(Y Υ is defined on a random interval [[0, ζΥ [[, where ζΥ is the first time when
XΥ is no longer piecewise C3 or when Y Υ tends to ∞N ).

Let (Υk)k∈N
be a sequence of subdivisions whose mesh-sizes |Υk|[0,t] tend

to 0 in probability for each t > 0. Then lim infk→∞ ζΥk > ζ, where the lim inf
is understood in probability, and Y Υk converges to Y on the time interval
[[0, ζ[[, uniformly on compact time intervals in probability.

The statement of Theorem 5 is obscured by the possibility that Y or Y Υ is
not defined at all times. If you suppose further that ζ ≡ ∞ and that I(x, y, t)
is C3 in t for all x and y (and not only when they are close enough to each
other), and that the solutions to the ODE e cannot explode in finite time,
then Y Υ

t is defined for all t, and the piecewise C2 process Y Υk tends to the
semimartingale Y uniformly on any time interval [0, t] in probability.

A useful particular case of Theorem 5 is when N = R and e is the ODE
given by e(x, y) = σ(x), where σ is a 1-form on M :
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Corollary. Let σ be a C2 1-form on M and (Υk)k∈N
a sequence of subdivi-

sions whose mesh-sizes |Υk|[0,t] tend to 0 in probability for each t > 0. The

real-valued, non adapted process
∫
<σ, ẊΥk>dt converges to the Stratonovich

integral
∫
<σ, ◦dX> uniformly on compact time-intervals in probability when

k → ∞.

The hypothesis that σ is C2 is too strong: the corollary remains true when
M is C2 and σ is C1. The need for more regularity is an artifact due to
our itinerary via differential equations, which require more care than mere
integrals.

An important consequence of Theorem 5 is a further conservation property
of the Stratonovich transfer principle, which complements the one we already
saw at the end of Theorem 4.

Proposition 7. Let e be a C2 ODE between two C3 manifolds M and N ,
and P a closed subset of M×N with the property that every C1 curve z(t) =(
x(t), y(t)

)
in M × N verifying ẏ = e(x, y) ẋ and z(0) ∈ P , is completely

included in P .
If Z = (X,Y ) is any semimartingale in M × N (with a possibly finite

lifetime) such that ◦dY = e(X,Y ) ◦dX and Z0 ∈ P , then Z is valued in P .

This applies for instance to the ODEs transforming a curve x(t) in M into
its horizontal lift y(t) in some fibre bundle N over M . We saw earlier that such
an ODE e is usually not everywhere defined on M×N , but only on the subset
P ⊂M×N consisting of all points (x, y) such that y is above x. Proposition 7
legitimates the use of Stratonovich transfer in this situation: extend e to the
whole product M × N , apply Theorem 4, and use Proposition 7 to ensure
that the Stratonovich horizontal lift of any semimartingale X in M remains
above X and therefore does not depend upon the choice of the extension of e.

For instance, the parallel transport of vectors or tensors along smooth
curves gives rise by Stratonovich transfer to the Stratonovich parallel transport
of vectors or tensors along paths of semimartingales. This is a most important
tool in stochastic differential geometry.

Itô stochastic integrals

We now turn to intrinsic Itô stochastic calculus on manifolds endowed with
connections. This topic is less important than Stratonovich stochastic cal-
culus, and can be skipped (or skimmed through) in a first encounter with
stochastic differential geometry. But the last section, on lifts of semimartin-
gales, introduces some of the most basic tools in this field and should not be
omitted; it is postponed to the end only because it uses connections.
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Besides Stratonovich stochastic integration, there is another way to inte-
grate 1-forms along semimartingales, also by converting 1-forms into second-
order forms. It consists in a geometric device transforming individual covectors
into codiffusors, or, dually, diffusors into tangent vectors. It is pointwise, so it
needs less regularity than symmetric differentiation; but its drawback is that
it is not canonically associated to the differentiable structure of the manifold:
it has to be superimposed as an additional structure.

It turns out that this extra datum is equivalent to a torsion-free linear
connection on the tangent bundle (see Chapter ???). We shall just call it a
connection, for short, but you should remember that this term has a much
broader meaning in other contexts.

Definition. Given a point x in a manifold M , a connection at x is a linear
map Γx : TxM → TxM whose restriction to the subspace TxM ⊂ TxM is
identity.

So Γx is a projector onto TxM , characterized by the linear subspace
KerΓx ⊂ TxM , supplementary to TxM in TxM .

Given a local chart around x, a connection at x is characterized by its
coefficients Γ k

ij (called the Christoffel symbols), such that Γ k
ij = Γ k

ji and that

∀ L =
∑

ij

LijDij +
∑

k

LkDk ∈ TxM , ΓL =
∑

k

(∑
ij

Γ k
ijL

ij + Lk
)
Dk .

Dually, the adjoint Γ ∗
x : T∗

xM → T
∗
xM makes covectors into codiffusors. If

σ ∈ T∗
xM has coefficients σk in the local chart, that is, if σ =

∑
k

σk dxk(x),

Γ ∗σ =
∑

k

σk Γ
∗
(
dxk(x)

)
=

∑

k

σk

(
d2xk(x) +

∑
ij

Γ k
ij dxi(x)·dxj(x)

)
.

Definition. A connection Γ on a Cp manifold M is a family (Γx)x∈M of
connections at each point of M , such that the map x 7→ Γx is of class Cp−2.

A connection Γ transforms diffusor fields into vector fields, by acting sep-
arately at each x ∈ M . In particular, if V and W are vector fields, VW is a
diffusor field and Γ (VW ) is a vector field. Given Γ , there exists a (unique)
linear connection ∇ on the tangent bundle of M (in the sense of Chapter ???)
such that ∇V W = Γ (VW ) for all vector fields V and W ; and ∇ is torsion-free.
Conversely, if ∇ is any torsion-free linear connection on the tangent bundle,
there exists a unique connection Γ such that Γ (VW ) = ∇V W for all vector
fields V and W . Moreover, ∇ and Γ have the same Christoffel symbols Γ k

ij .

An important example is the flat connection. If M is a vector space (or an
affine space), every differential operator L ∈ TxM can be canonically written
as the sum of its first order part V ∈ TxM and its purely second-order part: use
global, linear (or affine) coordinates on M and check that the decomposition
is invariant under linear (or affine) changes of coordinates. The flat connection
on M (also called the canonical connection) is the projection L 7→ V .
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Another important example is the connection Γ constructed as follows
on a manifold M embedded (or immersed) in a Euclidean vector space E.
Denote by i : M →֒ E the immersion. The push-forward i∗L of any L ∈ TxM
is an element of TixE; the flat connection ΓE on E transforms i∗L into the
vector ΓEi∗L ∈ TixE; then this vector can be orthogonally projected onto the
subspace Tix(iM) ⊂ TixE using the Euclidean structure on TixE ≈ E; last,
this element of Tix(iM) ⊂ TixE can be pulled back to a vector V ∈ TxM
because the linear map i∗ : TxM → TixE is one-to-one with range Tix(iM).
The connection Γ is defined by ΓL = V ; we shall call it the connection
associated to the immersion.

It is a particular instance of the Levi-Civita connection defined on a Rie-
mannian manifold; this will be defined later.

Using Whitney’s embedding theorem and the above construction one sees
that every manifold can be endowed with a connection.

On a manifold M endowed with a connection Γ , a particular set of curves,
the geodesics, can be defined. The traditional definition, ∇γ̇ γ̇ = 0, is in terms
of covariant derivatives (see Chapter ???); in the present second-order frame-
work, a curve t 7→ γ(t) in (M,Γ ) is a geodesic if and only if Γ γ̈(t) = 0 for
all t.

If M is an affine space with the flat connection, the geodesics are the
uniforms motions in M (straight lines run at constant speed).

If M is a submanifold of a Euclidean vector space E, endowed with the
connection Γ associated to the immersion M →֒ E, an M -valued curve γ is a
geodesic of (M,Γ ) if and only if for each t the second derivative γ′′(t) (this
is a vector in E) is orthogonal to the tangent space Tγ(t)M , considered as a
subspace of E.

Exercise. Let M be endowed with a connection Γ . If γi(t) denote the coor-
dinates of a curve γ in a local chart, γ is a geodesic if and only if

(γk)
′′
(t) = −

∑

ij

Γ k
ij

(
γ(t)

)
(γi)

′
(t) (γj)

′
(t) ,

where Γ k
ij are the Christoffel symbols of Γ .

Given any tangent vector V ∈ TxM , there exists a unique maximal
geodesic γ such that γ(0) = x and γ̇(0) = V .

If Γ is a connection, Γ ∗ dually transforms 1-forms into second-order forms.
One has <Γ ∗σ, L> = <σ, ΓL> for all diffusor fields L and 1-forms σ (by
definition of the adjoint); and RΓ ∗σ = σ because Γ preserves each tangent
vector.

Definition. Let M be a manifold endowed with a connection Γ , X a semi-
martingale in M , and Σ a T∗M -valued, locally bounded, predictable process
above X. The stochastic integral

∫
<Γ ∗Σ,DX> is called the Itô integral of Σ

along X, and denoted by
∫
<Σ,ΓDX>.
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Some properties of this integral are summarized in the following theorem.
We shall not prove it; the case when M admits global coordinates is left as
an exercise to the reader. (Hint: formally, ΓDXt is the infinitesimal tangent
vector

∑
k

(∑
ij Γ

k
ij(Xt)

1
2 d〈Xi, Xj〉t + dXk

t

)
Dk, which “belongs” to TXt

M .)

Theorem 6. The Itô integral is characterized by the following properties: it
depends linearly upon Σ, and

(i) for every f ∈ C2(M), one has the intrinsic Itô formula

f ◦X = f(X0) +

∫
<df, ΓDX>+

∫
<Hess f,DX> ,

where Hess f denotes the second-order form d2f − Γ ∗df (which verifies
R Hess f = df − df = 0, so

∫
<Hess f,DX> has finite variation);

(ii) if H is any predictable, locally bounded, real-valued process,
∫
<HΣ,ΓDX> =

∫
H d

(∫
<Σ,ΓDX>

)
.

Furthermore, one also has:

(iii) if P verifies the same hypothesis as Σ,

1
2

〈∫
<Σ,ΓDX> ,

∫
<P,ΓDX>

〉
=

∫
<Σ·P,DX> ;

(iv) if T is a stopping time,

(∫
<Σ,ΓDX>

)T

=

∫
<ΣT , ΓDXT> ;

(v) if Σ is a T∗M -valued semimartingale above X, both the Stratonovich and
Itô integrals of Σ along X are defined, and their difference has finite vari-
ation. (Equivalently: both integrals have the same martingale part, namely,

the local martingale
∫
<Σ,dX

m

>.)

Definition. Let M be endowed with a connection Γ . A semimartingale X
in M is a Γ -martingale if for each function f ∈ C2(M), the Itô integral∫
<df, ΓDX> is a (real) local martingale.

When X is a Γ -martingale,
∫
<Σ,ΓDX> is also a local martingale for

any T∗M -valued, locally bounded, predictable processes Σ above X.

If M is an affine space and Γ the flat connection, X is a Γ -martingale if
and only if it is a local martingale (in the usual sense).

If i is an immersion of M in a Euclidean space E and if Γ is the connection
associated to this immersion, a semimartingale X in M is a Γ -martingale if
and only if in the canonical decomposition iX = iX0 +M +A of iX in E, the
part with finite variation dAt remains orthogonal to TiXt

M in the following
sense: A has the form

∫
H dB, where B is a real-valued, increasing process,

and the E-valued process H verifies Ht(ω) ⊥ TiXt(ω)M for all (t, ω).
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Exercise. Let M be endowed with a connection Γ ; suppose M admits global
coordinates. An M -valued process X is a Γ -martingale if and only if its co-
ordinates Xi verify

Xk = Xk
0 +Mk − 1

2

∑

ij

∫
Γ k

ij (X) d〈M i,M j〉 ,

where M1, . . . ,Md are local martingales and Γ k
ij are the Christoffel symbols

of Γ .

Exercise (Convex functions on M). Let f ∈ C2(M) and M be endowed
with a connection Γ . Show that the codiffusor Hess f(x) is positive for all
x ∈M if and only if, for every geodesic γ, the function f ◦γ is convex (on the
interval where γ is defined). When these conditions are met, f ◦X is a local
submartingale for every Γ -martingale X.

Itô stochastic differential equations

Definition. Let X (resp. Y ) be a semimartingale in a C2 manifold M
(resp. N) endowed with a connection ΓM (resp. ΓN ). Let E be a locally
bounded, predictable process such that E(t, ω) is a linear map from TXt(ω)M
to TYt(ω)N . One says that Y is a solution to the Itô stochastic differential
equation

ΓNDY = E ΓMDX

if for every locally bounded, predictable, T∗N -valued process Σ above Y , the
Itô stochastic integral

∫
<Σ,ΓNDY > of Σ along Y equals the Itô stochastic

integral
∫
<E∗Σ,ΓMDX> of E∗Σ along X. In fact, it suffices to have it for

Σ = (df)(Y ), where f ranges over C2(N).

Comparing this definition with that of Γ -martingales, one immediately
obtains the following preservation property:

Proposition 8 (Itô SDEs preserve martingales). With the same nota-
tions as in the preceding definition, suppose Y to be a solution to the Itô SDE
ΓNDY = E ΓMDX. If X is a ΓM -martingale, Y is a ΓN -martingale.

Exactly like Stratonovich SDEs, Itô ones can be considered a particular
instance of second-order SDEs owing to a general transfer principle:

Theorem 7 (Itô transfer principle). a) Let x (resp. y) be a point in a C2

manifold M (resp. N) endowed with a connection ΓM (resp. ΓN ); let e be
a linear map from TxM to TyN . There exists a unique Schwartz morphism
f : TxM → TyN such that

• the restriction of f to TxM is e;
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• the following diagram commutes:

TxM
f

−→ TyNyΓM

yΓN

TxM
e

−→ TyN .

b) Let e(x, y) be an ODE from M to N ; for each (x, y) ∈M ×N , denote
by f(x, y) the Schwartz morphism associated to e(x, y) by a). The Itô SDE

ΓNDY = e(X,Y )ΓMDX

is equivalent to the second-order SDE

DY = f(X,Y )DX .

The Itô transfer principle is far less used (and much less known) than the
Stratonovich one. Its main weakness is that it does not enjoy the same pow-
erful conservation properties as the Stratonovich transfer principle. But one
encounters it from times to times; as for an example, the so-called ‘damped
stochastic parallel transport’ is an instance of an Itô SDE. Another draw-
back of the Itô transfer is that it needs both M and N to be endowed with
connections.

On the other hand, it necessitates less regularity than the Stratonovich
transfer, and it extends to equations where e (and f) depend not only upon
the current position (X,Y ) of the driving process and the solution, but also
on their past, and, more generally, upon (t, ω) in a predictable way.

The proof of Theorem 7 is left to the reader. Part a) can be established in
local coordinates: if e is given by its coefficients eα

i , the Schwartz morphism
f can be obtained by

fγ
k = eγ

k ; fγ
ij =

∑

k

eγ
kΓ

k
ij −

∑

αβ

eα
i e

β
j Γ

γ
αβ ;

fαβ
k = 0 ; fαβ

ij = eα
i e

β
j .

Part b) is esentially the following formal computation

ΓNDY − e ΓMDX = ΓNDY − ΓNf DX = ΓN (DY − f DX) ,

which must be made rigorous by integrating 1-forms on the left.

Corollary (Existence and uniqueness in Itô SDEs). Suppose e to be an
ODE from M to N such that the map (x, y) 7→ e(x, y) is locally Lipschitz.
Given a driving semimartingale X in M and an initial r.v. y0 in N , the
Itô SDE

ΓNDY = e(X,Y )ΓMDX ; Y0 = y0

has a unique solution Y (up to a possibly finite explosion time).
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This is an immediate consequence of Theorems 7 and 3, provided the
second-order SDE f obtained from e by the Itô transfer principle is shown to
be locally Lipschitz. This can be seen on the explicit formulae giving f from e
in the sketched proof of Theorem 7.

Time discretization in Itô integrals and SDEs

Definition. Let M be endowed with a connection Γ . A geodesic interpolation
rule is an interpolation rule I such that, for all (x, y) in some neighbourhood
of the diagonal in M ×M , the curve t 7→ I(x, y, t) is a geodesic.

On any given (M,Γ ), a geodesic interpolation rule always exists; moreover
it is essentially unique, in the sense that any two agree on some neighbourhood
of the diagonal. (When x and y are close to each other, there may exist
many geodesics linking them, but there exists only one “small” one; and the
definition of an interpolation rule forces t 7→ I(x, y, t) to be that one.)

Theorem 8 (Approximating Itô integrals and SDEs). Let e be a locally
Lipschitz ODE between two manifolds M and N respectively endowed with
connections ΓM and ΓN ; let I be a geodesic interpolation rule on M . Suppose
given a semimartingale X in M and a semimartingale Y in N (with a
possibly finite life time ζ), verifying the Itô SDE

ΓNDY = e(X,Y )ΓMDX .

For each subdivision Υ = (Tn)n>0, define a (non adapted) process XΥ in M
by

XΥ
t = I

(
XTn

, XTn+1
, t−Tn

Tn+1−Tn

)
for Tn 6 t 6 Tn+1,

and a (non adapted) process Y Υ in N as follows: on the interval [Tn, Tn+1],
Y Υ

t is the geodesic curve with initial position Y Υ
Tn

given by the preceding step

(given by Y Υ
0 = Y0 for n = 0), and with initial velocity

Ẏ Υ
Tn

= e(XΥ
Tn
, Y Υ

Tn
) ẊΥ

Tn
,

where the dots denotes time-derivatives on the right, that is, at time Tn+.
The process Y Υ is defined on a random interval [[0, ζΥ [[, where ζΥ is the first
time when XΥ is no longer piecewise geodesic or when Y Υ no longer exists.

Let (Υk)k∈N
be a sequence of subdivisions whose mesh-sizes |Υk|[0,t] tend

to 0 in probability for each t > 0. Then lim infk→∞ ζΥk > ζ, where the lim inf
is taken in probability, and Y Υk converges to Y on the time interval [[0, ζ[[,
uniformly on compact time intervals in probability.

Exactly as with the Stratonovich approximation procedure, Theorem 8 is
instrumental in establishing conservation properties for Itô SDEs:
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Corollary. Let e be an ODE between two manifolds M and N endowed with
connections, and P a closed subset of M × N with the following property:
for all (x0, y0) ∈ P and all V ∈ Tx0

M , the curve z(t) =
(
x(t), y(t)

)
in

M × N is completely included in P , where x(t) is the geodesic in M with
initial conditions x(0) = x0 and ẋ(0) = V , and y(t) is the geodesic in N
with initial conditions y(0) = y0 and ẏ(0) = e(x0, y0)V .

If Z = (X,Y ) is any semimartingale in M × N (possibly with finite
lifetime) such that ΓNDY = e(X,Y )ΓMDX and Z0 ∈ P , then Z lives in P .

Indeed, for each Υ , the process (XΥ , Y Υ ) constructed in Theorem 8 takes
its values in P ; in the limit, so does also (X,Y ). (This proof by time discretiza-
tion requires M and N to be C3; a direct proof which needs less regularity is
also possible.)

An example where this corollary applies is the horizontal lift of a curve
from the base M to a fibre bundle N over M , given a non-linear connection
in the sense of Chapter ???. We already saw after Proposition 7 how this kind
of conservation property can be used to apply the theory of ODEs and their
Stratonovich transfer to situations where e(x, y) is not defined everywhere,
but only on a good subset P (in the present case, (x, y) ∈ P if and only if
y is above x). The same arguments apply to the Itô transfer; all we need is a
connection ΓM on M and one ΓN on the bundle N , such that the projection
on M of any ΓN -geodesic of N is a ΓM -geodesic of M .

Such connections exist and are well known to geometers; for instance, if
M is endowed with a connection, if N = TM and if the ODE is the parallel
transport of vectors along curves (see Chapter ???), two connections on N are
particularly interesting.

The first one is called the horizontal connection on TM ; the parallel trans-
port of tangent vectors to M along geodesics of M yields geodesics for this
horizontal connection, and the Itô transfer principle gives in this case the
same result (the stochastic parallel transport along semimartingales) as the
Stratonovich transfer principle.

The second interesting connection on TM is called the complete connec-
tion. All Jacobi fields along geodesics of M are geodesics for this connection,
and the Itô transfer gives in that case a different result, called the damped
stochastic parallel transport along semimartingales.

Another corollary of Theorem 8 compares the Stratonovich and Itô SDEs
associated to a given ODE. We just saw that, with a suitable choice of the
connection of TM , the Itô stochastic parallel transport is the same as the
Stratonovich one. The argument is quite general; comparing Theorems 5 and 8
immediately gives:

Corollary. Let e be an ODE between two manifolds M and N , each of which
is endowed with a connection. Suppose that for any geodesic x(t) in M and
any point y0 of N , the solution y(t) to the ODE

ẏ = e(x, y) ẋ ; y(0) = y0
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is a geodesic in N . The Stratonovich and Itô SDEs

◦dY = e(X,Y ) ◦dX and ΓNDY = e(X,Y )ΓMDX

are equivalent.

Lift of a semimartingale to the tangent space

Let M be endowed with a connection Γ . Recall from Chapter ??? that the
(ordinary) parallel transport of a vector along a smooth curve γ in M is the
solution above γ to the ODE from M to N = TM

v̇(t) = h
(
γ(t), v(t)

)
; v(0) = v0 ∈ Tγ(0)M ,

where h(x, y) : TxM → TyN , defined for y above x, is the horizontal lift
associated to Γ . (In other words, Γ

(
v′(t)

)
= 0, where v′(t) ∈ Tγ(t)M is the

diffusor such that <d2f, v′(t)> = d
dt
<df, v(t)> for all f .)

The stochastic parallel transport of vectors is obtained from the ordinary
one by Stratonovich transfer (or, as mentioned in the preceding section, also by
Itô transfer). Given a semimartingaleX inM , any solution to the Stratonovich
SDE associated by transfer to the above ODE is a semimartingale in TM
above X. Given an initial condition u ∈ TX0(ω)M , the value at time t of the
solution started from u will be denoted by //tu; this defines a family of maps
//t(ω) : TX0(ω)M → TXt(ω)M . These maps are defined for all t, and they are
linear bijections; in particular, given any F0-measurable basis (u1, . . . , ud) of
the vector space TX0

M , the image of this basis by //t is an Ft-measurable
basis U(t) =

(
U1(t), . . . , Ud(t)

)
of TXt

M . (This is called the parallel transport

of frames.) Call
(
ρ1(t), . . . , ρd(t)

)
the dual frame to U(t), that is, ρi(t) ∈ T∗

Xt
M

assigns to each vector of TXt
M its i-th coordinate relative to the basis U(t).

Since the semimartingale ρi is above X in T∗M , the Stratonovich integral

Y i =

∫
<ρi, ◦dX>

can be defined. (As explained in the preceding section, it can also be computed

as an Itô integral: Y i =
∫
<ρi, ΓDX>.) The process X̃, taking values in the

(random) vector space TX0
M and defined by

X̃ =
∑

i

Y iui ,

is easily seen not to depend upon the initial choice of the frame U(0) =
(u1, . . . , ud); it is called the lift of X to the tangent space TX0

M . (This is
the stochastic analogue of the rolling without slipping procedure: when X is
a smooth curve, X̃t can be interpreted as the contact point of the flat space
TX0

M with M when the latter “moves” without slipping so as to remain
tangent at Xt to the former.)
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Proposition 9. Let M be endowed with a connection Γ .

(i) A smooth curve γ in M is a geodesic if and only if its lift to Tγ(0)M is
a uniform motion.

(ii) A semimartingale X in M is a Γ -martingale if and only if its lift to the
vector space TX0

M is a local martingale.

The proof of (i) is an exercise in (ordinary) differential geometry; it uses
only the definitions of geodesics and lifts. (ii) can be derived from Proposi-

tion 8, because X̃ is also obtained from X by an Itô procedure; one can also
get (ii) as a consequence of (i) and of the corollary of Theorem 8, because in
a vector space with its flat connection, the geodesics are the uniform motions.

The most basic objects in stochastic differential geometry are Brownian
motions with values in Riemannian manifolds. This is where the theory really
begins, where the vocabulary and the basic tools introduced in the present
notes are put into use—and also where this Invitation ends, just after defining
these objects.

A manifold is called Riemannian if

1) each tangent space TxM is endowed with a Euclidean structure (which
depends smoothly upon x);

2) M is endowed with a connection, which is metric: the parallel transport
//t : Tγ(0)M → Tγ(t)M along any smooth curve γ (and also, by the transfer
principle, along any semimartingale) is an isometry for those Euclidean
structures.

The first theorem in any book of Riemannian geometry says that 2) is a
consequence of 1): given a Euclidean structure on each tangent space TxM ,
depending smoothly upon x, there exists a unique connection (in our sense,
that is, a linear, torsion-free connection in the sense of Chapter ???) which is
metric.

A most important object in Riemannian geometry (whether stochastic or
not) is the Laplacian. This diffusor field ∆ on M has many equivalent defini-
tions; one of them considers ∆f(x) as the trace (for the Euclidean structure
on TxM) of the bilinear form on TxM

(V,W ) 7→ (∇df)(V,W ) = <d2f, V W>−<df, Γ (VW )>

(Another characterization of ∆, known to probabilists only, is the equivalence
between (i) and (iii) in Proposition 10!)

The vector space TxM can be identified with its own dual space using its
Euclidean structure; this yields a scalar product on covectors which we denote
by T∗

xM × T∗
xM ∋ (σ, τ) 7→ <σ|τ> ∈ R.
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Proposition 10 and definition. Let X be a semimartingale in a Rieman-
nian manifold M . The following three statements are equivalent; when they
hold, X is called a Brownian motion in M :

(i) X is a diffusion with generator 1
2∆, that is,

∀f ∈ C2(M) f ◦Xt − f ◦X0 −
1
2

∫ t

0

∆f(Xs) ds is a local martingale;

(ii) X is a Γ -martingale, and, for all f and g,

〈f◦X, g ◦X〉t =

∫ t

0

<df |dg> (Xs) ds

(more generally, for all 1-forms σ and τ ,

∫ t

0

<σ·τ,DXs> =

∫ t

0

<σ|τ> (Xs) ds );

(iii) the lift of X to the Euclidean space TX0
M is a Brownian motion.
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M. Arnaudon. Semi-martingales dans les espaces homogènes. Ann. Inst. Henri
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les variétés à bord continu. Séminaire de Probabilités XXVII, LNM 1557,
Springer, 1993.

M. Arnaudon. Differentiable and analytic families of continuous martingales
in manifolds with connection. Probability Theory and Related Fields 108,
219–257, 1997.

M. Arnaudon and A. Thalmaier. Stability of stochastic differential equations
in manifolds. Séminaire de Probabilités XXXII, LNM 1686, Springer, 1998.

M. Arnaudon and A. Thalmaier. Complete lifts of connections and stochastic
Jacobi fields. J. Math. Pures et Appliquées 77, 283–315, 1998.

M. Arnaudon, X.-M. Li and A. Thalmaier. Manifold-valued martingales,
change of probabilities, and smoothness of finely harmonic maps. Ann. Inst.
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applications. Contributions en l’honneur de Jacques-Louis Lions. Gauthier-
Villars, 1988.

A. Thalmaier. Martingales on Riemannian manifolds and the nonlinear heat
equation. Stochastic Analysis and Applications. Proceedings of the Fifth Gr-
egynog Symposium. World Scientific, 1996.

A. Thalmaier. Brownian motion and the formation of singularities in the heat
flow for harmonic maps. Probability Theory and Related Fields 105, 335–367,
1996.


