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1 Introduction

Formal matrix integrals can be regarded as an efficient toy model to explore the link
between algebraic geometry and integrable systems [31, B]. The theory of quantum
gravity [12, ), 27] is based on the idea that matrix models provide a generating
function to measure “volumes” of moduli spaces of Riemann surfaces, and random
matrix models were introduced in the 80’s [0] as a discretized version of 2d quantum
gravity, i.e. conformal field theory coupled to gravity.

The formal matrix integral is at the same time a tau-function of some integrable
hierarchy [12], and it has a 't Hoof topological expansion [33, 12, []:

In / dMe NTVIM) =N " 220 p(9) (1-1)
formal

g=0

which is related to algebraic geometry (see [3, B, 29, [14]).

In a recent work [I3] [7, 19, 8, 2], we have developped a method to compute the
F’s for various formal hermitian matrix models (1-matrix model, 2-matrix model,
matrix model with an external field, double scaling limits of 2-matrix model) out of

the data of an algebraic equation (called the classical spectral curve):
E(x,y)=0 : & = polynomial. (1-2)

The construction of [21] extends beyond matrix models, and the F9)’s can be computed
for any algebraic equation of the type £(x,y) = 0.

However the construction of [21] assumes an embedding of the curve into C?, i.e.
the choice of 2 meromorphic functions x and y on the curve. It was claimed in [21]
that F9) is invariant under the exchange = < y, and the proof was announced to be
published separately.

This is what we do in the present paper, together with additional results.

Mixed correlations

In order to prove this claim, we first explore the case where the F(9)’s come from a
formal 2-matrix model (the symmetry x < y holds almost by definition in that case,
see [§]). We write the loop equation relations (W-algebra) [32, [I8], which we solve, and
we are led to define new mixed correlation functions (W, and Hj,; below), which did
not appear in [21].

In the application of the 2-matrix model to quantum gravity and conformal field
theory, those mixed correlation functions were known to play an important role in
the understanding of boundary operators. But their explicit computation has been

a challenge until recently. The main reason is that they don’t reduce to eigenvalues



of the matrices, and could not be computed by standard methods. The first explicit
computations were obtained in [4] and [I7]. Here in this paper, we show how to compute
the topological expansion of a family of mixed correlation functions of the 2-matrix
model. In a coming work [23], we shall show how to compute all mixed correlations,

and introduce a link with group theory and Bethe ansatz (this is a generalization of

[22)).

Then, for the general case (i.e. if & was not obtained from a matrix model), we

mimic those mixed correlation functions and that allows to prove the z < y symmetry
of F9).

2 Mixed traces of matrix models
Consider the formal 2-matrix integral®:

7 — /dM1 dM, e—Ntr (Vi (M1)+Va(M2)—M; Mz) (2_1)

where we assume in this section that V; is a polynomial of degree d; + 1 and V5 is a
polynomial of degree ds + 1.

Our goal is to compute the following connected expectation values:

Wk,l(xla cee >$k|yla s >yl)

<t L t L t L t L t L t L >

= r r Lo tr r r oot

T — M, x9— M x — My y1— My yo — My Yy — My ¢

= ZNz_zg_k_lWl(gl)(xlv'"7xk|y17"'7yl)' (2_2)
g=0

and

Fk,l(x,y;xl, e TRY, )

<t 1 1 ¢ 1 ; 1 i 1 ¢ 1 >

= r r .o tr r oot ——

r— Myy— M, x1 — M, x — M, y1 — M, Yy — My c

= Z N2_2g_k_l_1 Flgg,l) ([L’, Y; L1y - >$k|y1> s ayl) (2_3)
g=0

W,(fgl) is the generating function which counts connected genus g bi-colored discrete
surfaces with & boundaries of the first color, and [ boundaries of the second color.

H,(fl) is the generating function which counts genus ¢ bi-colored discrete surfaces with

3A formal integral is defined as a formal power series in some expansion parameter ¢, as explained
in [20] or [21]. Formal matrix integrals always have a 1/N? expansion order by order in ¢, called the
topological expansion.



k boundaries of the first color, and [ boundaries of the second color, and one additional
boundary which carries the 2 colors. The power of N in both cases is the Euler
characteristic of such surfaces. The 2-matrix model was introduced in [2§] as a discrete
version of the Ising model on a random surface.

Notice that in F,(f), the first trace contains both matrices M; and M,, we call it a
mixed trace because it cannot be expressed in terms of eigenvalues of M; and M. In
applications of matrix models to conformal field theories, such objects correspond to
the insertion of a pair of boundary operators, and are thus very interesting. Fé?()) was
computed in many works [I8, 0], and in the context of convergent integrals (instead of

formal integrals), Hoo was computed in [, [I7, 2].

The Wg()]’s were already computed in [I3, 19, §], and are given by the algebraic

invariants defined in [21], they are the non mixed traces.

It is known (see for instance [§]) that all those functions are multivalued functions
of their x or y variables, and they are in fact functions living on a Riemann surface

called the spectral curve of equation:
E(x,y) = 0. (2-4)

On this curve, we chose a canonical basis of cycles* A;NB; = d,,, 1,5 =1,...G, where
G denotes the genus of the curve £. We will note by p’ (resp. p’) the different points
of £ whose projection in the complex plane by the meromorphic function x (resp. y)

are equal:
Vi=1...dy, z(p") =2(p®) , Vi=1...d, y(@") =z, (2-5)

where the superscript 0 refers to the z- and y-physical sheets.
It is thus more convenient to redefine W,(j]l) and F,(fl) in terms of meromorphic forms

on the curve:

Wil (o1, pelass )

= W @), 2o y(@), - y(@)) delpy) . delp)dy(a) - dy(a)

+0g,00k,1010(y(p1) — Vi (2(p1)))d2(p1) + 0g,00k,0001 (2(q1) — Vi (y(q1)))dy(q1)
+5g,05k,251,0 d:c(pl)dx(pz)

(2(p1) — z(p2))?
5g,05k,051,2 dy(Ql)dy(Q2)

(y(q1) — y(g2))?

(2-6)

4All required definitions relative to algebraic geometry can be found in [Z1] or more generally in
25, 24]. We will use all along these notes the notations of [2I]. The A and B-cycles may be the
modified cycles of [21].




where the p;’s and ¢;’s are now points on the curve £, instead of points in the complex
plane. We have also "renormalized the unstable functions” with 2 —2g — k — 1 > 0.
With those notations we have [8, B:

W =w =0, (2-7)

Wil (0, q) = =W (p, q) = W3 (p,q) = B(p,q) (2-8)

where B is the Bergmann kernel, i.e. the unique bilinear form on £ with a double pole

at p = ¢ and no other pole, with vanishing residue, and normalized on A-cycles:

dz(p)dz(q) . o 3 ]
B(p,q)p:qm—i—ﬁmte , Vz—l...g,%‘lB—O. (2-9)

We also define the differentials corresponding to the mixed correlation functions:

ngf]l)(p7Qap1> cee apk|Q1, C. an)

T (2(0), (@) (1), 2 )|y(@)s - y(@) de(pr) - de(pe)dy(qr) . - dy(a)
+6g706k,051,0 (2-10)

and we normalize them by the leading order of the simplest mixed correlation function:

ng?l)(p7q7pla s ypk|q1, .. ~>Ql)
0
HY (. q)

It is well known [14} 18, ] (and it can be rederived from Eq. (=I8) and Eq. (2=21))
below) that:

W) (. a;pr. - pela @) = : (2-11)

E(x(p),y(q))

H (p,q) = . (2-12)
00 (z(p) — =(q))(y(p) — y(q))
We also need to introduce:
Uei(p, yi01, - ka1, - - -, @)
_ <tr 1 Vo(y) — Vo (My) tr dz(p1) ir dx(py.)
wc(lp)( _)Ml Y _éwf ) z(p1) — M x(pr) — My
Y\q1 Y\q
tr—4— ... tr ———
y(q) — Mz/ y(a) — M2>c
+04,00%,000,0(Va (y) — 2(p))
= Z N2_2g_k_l_l U/if]z) (pv Y,P1, .- >pk|Q1> cee aq1)> (2_13)
g=0
which is a polynomial of y of degree at most dy — 1,
Upa(z, @01, - Del @, -+, @)
_ <tr Vile) -Vi(My) 1 g ) o du(pr)
r— M oyl — My  x(p1) — M x(pe) — My

bt



dy(q1) dy(q)
tr oL tr
y(q) — My y(q) — M2>c
+04,00k,001,0(V1 (x) — y(p))
= Z N2—2g—k—l—1 ﬁ]gf][) (IL’, q; P15 - - - 7]%‘(]17 SR ql)7 (2_14)
g=0

which is a polynomial of z of degree at most d; — 1 and

_Ek,l(x>y;pla s 7pk|Ql> .. '7ql)

_ (MO V0N V) V0 | _drlp) | dste
(:c )— M, y(—)Ma x(p1) — M x(pk) — M
dy(q dy(q
tr ———— . tr ————
y(q) — Mo / y(q) — Mz >c
+04,00k,0000((V1 (z) — y(p))(Va(y) — z(p)) — 1)
= _ZNz—Qg—k—l—l E](g?l)($7y;p17'"7pk|q17"'7cﬂ)7 (2‘15)
g=0
which is a polynomial of = of degree d; — 1 and of y of degree dy — 1.
We have:
E(x(p).y) ~(0 E(x,y(q))
E(O) z,y :ngy ) U(O) b,Yy)= 7 ) ()[L’, : )
() = Elay) o) = STEY e = 2D
(2-16)
and
P(](f)())(x,y) = —&(z,vy). (2-17)

2.1 Loop equations

In order to obtain a closed set of equations computing these mixed correlation func-
tions, we consider 4 families of loop equations [32, [I8, [16] corresponding to different

infinitesimal changes of Variables M; — M; + ed M; in the matrix integral.

l
oM, = m(p i 7 MQHtr H M gives:

~ U2 (p,y(@);pxlar) = (x(p) — <>>H£% (p, ¢: Px|av)

+ZZ b (prlas, ) HE (0, ¢ prerlanys)
dy(q)
H;ﬁf]m (p. ¢; Px|aL, q)
dy(q)
B Z q ngf]l)—l(pa n; PK|AL/{n}) (2.18)
" y(q) — y(qn)

n



k !
oM, = x(p) M y(q —M> H br :c(pL H S i, Sives:

=1

~ U9 (x(p), ¢;pxlan) = (y(g) — <>>H,§%><p,q7pK|qL>

+ZZ H—l] P, p1|qJ)Hkgzl)j(p>Q7pK/I|qL/J)
dz(p)

H1g+1,z) (P, ¢;p, P|qL)

dz(p)

H( my 9 m
de k—1,1\Pm, 45 PK/{ }|QL) (2_19)

D
z(p) — z(pm)

k !
_ VE@)-V(M1) 1
oM, = = :c(p)—lv}1 - y(q)—Mzntr : H 7, gives:
i=1 =1

EQ) (@), y(q)ipxlar) = (z(p) — (g >>U,§%< (p), q7pK|qL>
”+1 (p1las, q)ngzl y( z(p), q; pK/I|qL/J)
+ZZ dy(q)

Ulgf]l-',-ll (z(p), ¢; Pxlar, )
_l_
dy(q)
Uigf]z)q(x(P), Om; PK|QL/{m})
B Z da,,
y(q) — y(gm)

- Z dp,, ng{)u(pma q; pK/{m}“lL) (2-20)

I
- 1 Vi(y(@)—Vy(Mz) 1 1 .
and 0My = Sogm =20 0 Nz 2) | | tr s | | tr S5 gives:

EY) (2(p), y(q); pxlar) = (y(q) — <>>U,§% (p,y <>pK|qL>

W, prlan) U (0, v(a); Pl s)
+ZZ )

U;§+1,z) (p,y(q); p, Pxlar)
dx( )
Zd U2, 1 (s 9(0); P mylar)
" z(p) — x(Pm)

- Z dy HE (D, G P AL, o)) - (2-21)

m

Those loop equations can be seen to be equivalent to W-algebra constraints [10, 12],
or to a generalization of Tutte’s equations for the combinatorics of discrete surfaces
[34, 35].



2.2 Solution of loop equations

Theorem 2.1 The solution of loop equations is such that:

) (p, ¢; Px|a)
1

= €S (g—l)r - prlaL
T o (x(p)—x(r))(y(r)_y(q)) (hk+u( 1¢;7 Pxar)

~h
+ZZZ ,+1j 7p1|qJ)h](gg_i’l)_j(/r7Q; pK/I|qL/J))a

h ICK JCL
(2 —22)
ng:ql)-i-l(pK|qL> q)
dy(q) (g-1)
= Res 0 (W g pcla)
g (y(r) —y(g)) \
h _
+3 D) W (rpran)h (g pK/I|QL/J)>-
h ICK JCL
(2 —23)
where Res means that one takes the residues around all the points ¢ # q such that
r—)q]
y(@) =y(q).

Given the initial conditions:
0
h((),()] =1 ) Wk(())(pl77pk) = W]g(g)(pbapk) P (2'24)

where W,ig ) (p1y- -+, Dk) . is the function defined in [21], the above system is triangular

and computes univocally any h,(jfl) and W,ﬁf}’ in at most k4 [ + % steps.

One easily proves by recursion on 2g + k + [ that:

inp=a,q,qg

i =b,p, Pk
H(g) ¢ has poles ?n q o 2-25
k|l (p, ¢; Px|ar) p m p; = a,q,qL ( )

in ¢; = b,p, px

and

in p; = a,
W& (pklav) has poles { o ‘Z Ty 3; (2-26)
J )

proof:
Since U,gf]l) (x(p), ¢; Px|ar) is a polynomial in z(p) of degree at most d; — 2, it is
given by the Lagrange interpolation formula:

~ } 4 U9 (x(¢), ¢; pxar)
09 ), apxlar) = 050 (x(p), -
) (x(p), ¢; prclai) 0 (x(p) q>2( ®) - 2@) T (@), )




ds r7(9) ~j
. U (@(@), ¢; plaw) dx(r)
= 0 (z(p), ) > Res

=1 (2(p) — (1) Ugy (x(r),q)
(2 —27)

Then we replace (j,gf'l) (x(¢), ¢; px|qr) by its value from the loop equation P=T%:

7(9) . _ Ué?o) (@(p),9)
kol ((p), ¢ Pxlar) = Z Res T_)qj (z(p (r))U(gO) (z(r),q)
Z ZWZ( 1,j 7PI|<lJ) k— zl) J(T 4; PK/1|qL/J)
h I,J
-1 . (Pm@GPK /{m}ldL) dz(r)
+ng£-]|-1,l) (Tv q,7, PK|QL dem k 1l z(r) _I;(pm)

(2-28)
Notice that the same residue computed at » — p gives the terms in the RHS of the
loop equation P=T9, and therefore:

(y(q) — y(P) H) (p. ¢; Pxlar)

Res T6d ((p), q)

r=pd (x(p) — x(r)) Usg (x ( ),q)
ZZW(E 7pI‘qJ) k— Zl)j(r Q7pK/I|QL/J)

Zd H/g )1l(pm>Q7pK/{m}|qL) dx(r)

-1
+H1§il,z)(7"a ¢;7, Px|AL) 2(r) — 2 (o)

(2 —29)

H(Q) mod; m d L.
Moreover the last term d,,,, o2 w(i)pi/(;m})‘qw ™) can be computed explicitely:

U(g?g (z(p),q) H(g 1 l(pm GPK/{m}laL) dz(r)
(@(p)—2(r) U5 (2(r),q) Hr)=een) (2-30)

_ y E(@(p),y() (=(r)—=(q)) H?, (P @:PK /(3 ) dr(r)
= dp, RS 1 p 31 Gior=2(r) (o) —o(@)) £ 0@ 2 —2(pm)

dy,, Res,_,, g

Under this form, one can see that the integrant is a rational function of x(r). Thus, the
residue can be computed on the complex plane obtained by the projection z and we
can move the integration contours on the complex plane instead of the curve & itself.

This term is then equal to:

d Res E(x(p),y(@)(x — x(q)) ngg—)l,l(pmu ¢; PK/{m}|dL) dz
e—a(p)a(@) (x(p) — x)(x(p) — x(q)) E(z,y(q)) 7 — 2(pm)
= —d Res E(z(p), y(@)(z — z(q)) nggi)l,l(pmuq; PK/{m}|qL) dv
; y(q)) z — 2(pm)

@) ngg—)l,l(pma ¢; PK/{m}|dL)



789 (x(p), q)
= — Res 0o HY (r, ¢ PR gy L) WA D (7, i)
=re (2(p) — (1) Uy (x(r),q) ’

Res P (Z W prlas) 0 (g el o)
sl 0 41,5\ k—i,l— » 4 /TIYL/J
pe (2(p) — x(r) US9 (x(r), q) N 15 !

+H ) (g pxlan)). (2-31)

where the last equality holds thanks to the loop equation Eq. (2=T9). Therefore:

R oo (2(p).4)
o =0) (

ror@ e (2(p) — x(r)) Upo (2(r), )
ZZWZ(—I}—lIJ 7p1|qJ)HIgg—_z,}ll)_](T7Q7 pK/I|‘lL/J)

(y(q) — y(@) H (p. ¢ Pxlar) =

+H1§‘11,z (r,q;m, pK\qL)> : (2-32)

If we divide by ~é?()) (z(p), q) we obtain:

1
- hi(fz) (r,¢;pxla) =  Res (

rop@px (2(p) = (1) (y(r) = y(q))

Z Z Wi(ﬂ,j (r, pI|qJ>h’](€g__if;)_j(rv ¢; Px/1/AL/3)
ho1J

+h’l(£|-11l (T q;7, PK|QL)) . (2-33)

The other half of the theorem is obtained from the fact that for large x:
1 1 1 1

t —t 2-34
rI—Mly—M2H$ry—M2 ( 3)
and thus: "
1 W5 (pklaw, q)
HY) (p, ¢; pxlar) — a 2-35
et ) z(p) dy(q) (2-35)

when p — oo,°. [

2.3 Examples, first few terms

Let us solve the recursive definition and give explicit formulae for the simplest functions.

Example Wl(?l):
In particular, definitions Eq. ([2=22) and Eq. [2=Z3) give:

0 dy(q) B(r, p1)
Wi (pilg) = Res —t—T=F
= (y(r) = y(q))
00, is the only point on the curve where the meromorphic function = has a simple pole (see [15]
for further details).

5

10



Therefore we recover:

 Res W) B(r,p1)
RS Wlr) — 9(0)

—B(q,p1)-

WiS (p1,9) + WD (p1]g) = 0.

Example H 1(?3:

how,q;p1) =

Example H, 0(?1) :

i (o, @i p) =

Moreover we have:

hi?g(p, ¢p) + hé‘?{ (p,q;p1)

Example Wz(?l) :

Wg(f)l) (p1,p219)

r—gpp (2(p) — 2(r))(y(r) —y(q))

= B G0 e ) @)

r—ap (2(p) — a(r)

= e ) — ) — 5(@)

r=piap (2(p) = x(r))(y(r) — y(q))

(@(p) = =(p1))(y(p1) — y(q))

)

Res B(ﬁm)hg%(T,q;p2)+B(T7pz)h§%(T7q;p1)+W§?8 (r,p1,p2)

dy(q) r—q ,p1,p2

(y(r)=y(a))

B (T’,p1)h§%(7’,q;pz)+3 (T’,p2)h§(,)())(7’,q;p1)+W3(f)o) (r,p1,p2)

= — Res,_ga

2.4 Conclusion of section 2

(y(r)—y(2)) ’

(2-36)

(2-37)

(2-38)

(2-39)

(2-40)

(2-41)

Therefore, through theorem BTl we have an effective explicit method to compute any
H lg?) and any W,g:ql) for the 2-matrix model.

This is an interesting result in itself, since none of those quantities were computed

before, and those quantities are of importance in applications of random matrices to

combinatorics of maps with colored boundaries, i.e. boundary conformal field theory.

11



An important remark, is that we have chosen to emphasize the role of the loop
equation P=T9 rather than equation P=I§ i.e. we have used the Lagrange interpolation
formula for a polynomial in x, whereas we could have done the same thing with a
polynomial in y. In other words, we have chosen the z-representation rather than the
y-representation, although both methods must give the same answer. In particular,
given Wy, o, theorem LTl allows to compute W ;. Wy, o can be computed with the method
of [8, 2] using the z-representation, while Wy; can be computed with the method of

[8, 21] using the y-representation, i.e. under the exchange
Ty . (2-42)

Therefore, in the following section, we improve the result of theorem 11 in order to
prove that the diagrammatic rules of [8, 2] are indeed symmetric under the exchange

of z and y. In other words we prove theorem 7.1 of [21], as announced in that article.

3 Proof of the symmetry x-y of the algebraic in-
variants F9)(E)

Consider the two algebraic curves:

~ ~

5(1’7 y) = 5(1’, y) and g([L’, y) = g(yv ZL’) (3_1)

In [27], for any curve £ an infinite sequence of invariants F9) was defined. Here we
consider those invariants for the 2 curves € and €.

In this section we prove the following theorem (which was announced in [21]):

Theorem 3.1 Symmetry under the exchange x < y:

FW(E) = FY(E)

where the functional F9)(E) is defined for any curve &(x,y) in [Z1).

3.1 Preliminaries

For the curve &(z,y) = 0, we have defined in [21] an infinite sequence of meromorphic

forms:
W) = W (1), (3-3)
with poles only at the zeroes a = {a;} of dz, and some free energies
P Res @(p)IV{” (p) (3-4)

:2—2g p—a

12



where ® is any antiderivative of ydz, d® = ydr and Res stands for ) . Res.

p—a p—a;

And likewise, for the curve & (z,y) = 0, we have defined an infinite sequence of

meromorphic forms:

W (@, a) = W (o)) (3-5)

with poles only at the zeroes b = {b;} of dy, and some free energies

. 1 .
0 _ 1 (9) ]
F9 = 5o Res W) W{"(q) (3-6)

where d¥ = zdy.

Our first step is to extend those forms into two families of multilinear meromorphic

forms similar to those of section 2 (i.e. mimicking the mixed traces of matrix models):

Wéi)(pl,--~>Pk|CI1,--~>Ql) and Wéﬁ)(pl,..~,pk|q1,---,ql) (3-7)

such that:
W =W W =W (3-8)

Our second step, is to prove that:
Wi =Wl (3-9)

Our third step, is to prove that:

A (p; pK|QL)) (3.10)

Wi, (P plaw) + W%, (pclp.aw) = d, < do(p)dy(p)

where Afj; (p; px|ar) has poles of degree at most 2 at the poles of ydzr, so that in

particular for k =1 = 0 we have:

W (p) + wile) (p) =d Aé‘?())(p) (3-11)
o o ? \ dz(p)dy(p)
where A((f()) has poles of degree at most 2 at the poles of ydx.
This last step is sufficent to prove that
9 — o) (3-12)
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3.2 Definitions of mixed correlators Wk(,’}) and Wé?

We define the initial terms:

S50 (2,y) = By (x,9) = E(x,y), (3-13)

7r(0) =(0) & SC(P)ay(Q))
,q) = Hoo(p,q) = , 3-14
00(P:0) = Hoo (P 0) = o0 N o) — @) (3-14)
WiT () = Wil () = Wi (p) = WS (p) = 0, (3-15)
Wil (p,q) = WS (0, q) = W (p,q) = B(p, q), (3-16)

and

Wit (0, q) = Wi (p,q) = =W (p.q) = B(p. q). (3-17)

Let us define recursively the following quantities for any g, k, [ > 0:

79 (p, a pKIqL)

Z Z Z Wn(lhl-l-l ni p> pM1|qN1)X

m1,m2=0n1,n2=0 h,h/=

h—h
XW(2n2+1(pM2‘qN27Q)HIgg mi— ,7221 ni— nz(p,q, pK/{M1UM2}\qL/{N1UN2})
5 —h
+§j[ WIS (P)dy(a) + (y(a) = y(e)Wsh (@)de(p) | HEG (0, Prclatn)

+Z Z ZHgniLl npa% pK/M\qL/N)x

m=0 n=0;mn#£kl h=0
<[ (2(0) = 2(@)WL (b, Putlan)dy(a) + (y(a) = y )WL, 1 (Prala, @)z (p)
) = @) B 0. 0 prclan) (@) + () =y ) G (0,0 Pclan, 0)de ()

l
+> > [WM (0, Pulan) HE0 ) L (9, ¢ Prmlanw, @)
=0

(Wm+1n+1(p7 pPMm|an, )+W 11, n+1(p7 pPmlan, )) nggml L(%%PK/MML/N)

5 r(h h
+W L (pmlan, ) HE ol (0, 4 p, pK/M\qL/N)] +H 2 (9, ¢ p, PxlaL, 9)
(3-18)
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and

J;fﬂ)(p,q;pxqu) = J) (p, ¢ Px|aL)

—dea { s [(x@»a) — (0))dy(q) H, 1(Pas 4; P (o |ar)

Z k 11)(p0c7Q7 PK- {a}|qL)
<kl
h
+Z ZHz(glj (Pas ¢ P1—{a}|as)W, lg)zl y+1(pK 1lqL- J,Q)]}
h 1,7=0

—quﬁ{ d” [(y(qﬁ)—y(p))dw(p)Hk,z_l(p,qﬁ;px\qL_{ﬁ})
+ZW (p, q8; PK|dL—{s})

"k
+Z ZHZ(”? 2 C_IB;PI|QJ—{6})W£—i+1,z_j(p> pK—I|qL—J)]}

7jOh

dz(p) dy(q) .
+Z deadQB {:L‘(p 4 Do) y(q)y;(qﬁ)Hk—l,l—l(pa7qﬁ7pK—{a}‘qL—{ﬁ}>}
a=1 =1

_ il ”H(pa,q PK—{a}lqL,q)dz(p) H” 1(p,98;p.PxlAL—15})dy(q)
Z%( ) —2(0a) ) Z%( @ —0as) )

(3-19)

Remark 3.1 Those expressions are not as complicated as they look. They are inspired
from section 2. In the matrix model case of section 2, those expressions contain nearly all
the terms we would obtain from inserting loop equation into loop equation =20, or
equivalently, from inserting loop equation into loop equation =21 However, here we are
not in a matrix model, and we don’t assume any of the equations to =211, in fact we are
going to prove them.

Now we define:

Wk(f]i-)l,l(pv Px|ar)

dy (9) da (g
j (s,5 1 TJ.7 (s, s;
= Res dS;,(p [d Z ]z pK|qL +d—z IZ’I) pK|qL)]
saaL 155 Uo ,y(s))dy o1 Upo(2(s), s)dz(s)
(3 —20)
Wéill(PKle, q)
- Res dS 1 & jk(ﬂ (5,5 pklaL) 1 & jéi)(si,S;PKML)
o s—>beg 80 d_z (0) + d_z 77(0) ’
PK =1 Uso(s,y(s))dy(s) =1 Upo(x(s), s)dx(s)
(3—21)
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Gl(fl)(p q; pK|QL)

= J) (p. @ pxlaw) + Hyp (p, @) (3-22)
[(2(0) — @)W, (0. il )u(a) + (u(a) — y() WY,y (prclas. a)d(p)]
G\ (p, ¢; Pxlar)
= j,fﬂ) (p, ¢; PKA|QL) + Héoo) (p,q) (3-23)
(@(p) = 2(@) W% (o, Pclaan)dy(@) + (@) = y() W%, (Pxclaw, a)da(p)]
% (p,q; pxlar) — Res 6% (v, r; PxlaL)

E@®)y@) =t (y(a) - y(p)(y(a) — y(r)(2(p) — x(r)) Hid (p, r)dm(() |

3-24

1) (p, ¢ pxla) R W (r, ¢ pxla)
e H{9(r, q)dy(q)’

E@®)yla)) @ (a(p) — 2(q))(x(p) — x(r)(y(q) — y(r)H
(3-25)
and MO0
H}g?l) _ My —;Hk,l (3-26)

(we prove below that H L({?l) =H ,5?} =H ,ﬁ?}) as well as

G (p,7; pxlav)

EY)(p, ¢, pxlav) — Res
E@P)y(@) = (y(g) — y()(y(q) — y(r))(@(p) — (r) H (p, r)da(p
(3-27)

E)(p,q. pxlaL) Res G (r, ¢: plav)

E@y@)  rd (a(p) — 2(0) (@(p) — () (y(a) — 9 ) HO (. )y (a)
(3-28)

U9, ¢:pxlar) = (y(@) — y®)HE (b, ¢ px|ar)
—h
Y, l)—j (v, ¢; Px/1laL,3)

Wz(ﬂ j(pv PI|QJ)
- Z Z dz(p)

Hz§+1 z)(p ¢; P, PK/|qL)
dz(p)?

de H, (P, ¢ Px/ g |aL)
" z(p) — x(pm)

(3 — 29)
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and

~ U9 p.gpxlar) = (2(p) - ())H,ig}(p,q7px|qL>

+ZZ 2]—1—1 pI|QJ7 )Hkgzl J(pa%pK/I‘QL/J)
dy(q)

Hzi‘f]m (p, ¢; Px|aL, ¢)

i
_Z Hkgl 1(p7 qn7pK‘qL/{n})
dn ’

y(q) — y(qn)

+

n

(3 — 30)

Those definitions form a triangular system of definitions, and each term is well

defined in a unique recursive way.
Remark 3.2 Definitions eqB=29 and eqB=31 coincide with loop equation and P=18 in

the matrix model case, i.e. when £ is the classical spectral curve of the 2 matrix model.

3.3 Theorems

Theorem 3.2 For 2g+ k+ 1 > 3, one has the following properties:

) W (pK|qL) (resp. W,iz)(pK\qL)) has poles only when p; — a,qr, and q¢; —
b>pK;

o in any of the k+1 variables, the A-cycle integrals vanish: §, W]ﬁ?} =9, W]ﬁ?} =0;

o H)(p,q:pxlar) = H) (p.q: pxlar) has poles only when p — q,a,qr, and g —
b, ba Pk, and

E¥)(x(p). ¢: pxlar) = B (0. y(@): pxlar) == B9 (2(p), y(q): pxlar)  (3-31)

is a polynomial of degree di — 1 in z(p) and dy — 1 in y(q);

. U,g?l’(p,y(q);pKqu) (resp. ﬁlg?l)(x(p),q; Pk;qr)) is a polynomial in y(q) (resp.
x(p)) of degree dy — 1 (resp. dy —1).

proof:

Let us proceed by induction on 2g+ k + 1. Suppose that the properties are satisfied
for any ¢', k’, 1’ such that 2¢’ + k' +1' < 29 + k + . Let us prove that they are true for
g, k,l. In order to make the proof more readable, we split it into pieces. Nevertheless,

for every step, the global recursion hypothesis is needed.

We need the following lemma:

17



Lemma 3.1 The quantity

T (5,5 px; av)
F9(s:px:qu) == (3-32)
U (5, y(s))dy(s)

is independent of 7 # 0, it is a meromorphic one-form in the variable s, with poles at

s = a,qr, and it vanishes to order at least deg(ydx) — 1 near the poles of ydx
Similarly, the quantity

J(g)(si 5, PK; dL)

. 3-33
Us (2(s), )da(s) .

is independent of i # 0, it is a meromorphic one-form in the variable s, with poles at

s = b, qr, and it vanishes to order at least deg(xdy) — 1 near the poles of xdy
Moreover one has:

.]?]571 ( S; PK; qL)

]{ (fé,gz)(S; PK;qL) + fé,gl)(S;pK;qL)> =0, (3-34)
A

Zi (flgf]l)(s; pk:aL) + fi (s px; qL)) =0 (3-35)

and:

fli‘f’z)(s;px;qL) F9(s: px; av)

— Res  dS,.( 8)<f,§ ¢; PK; dL) +sz (CLPK,QL)) (3-36)
q—a,b,pk.qL

Proof of the lemma:

First of all, One can remark that the definition of jk(z) involves only quantities

whose properties are known by the recursion hypothesis. One can note that it can be

18



written under the following forms:

'] (p7q7pK7qL)
k

= —Z > Z O i ons @ an) U 1 (2(p), @ P/, dny) d(p)

h=1 m=0 n=0
k l

=SS WM ¢ an) Ui, (@(p), ¢ Pr v, arN)da(p)

m=0 n=0,(m,n)#(0,0)
k l

_Z Z Wrgq,g,)n-l,-l(pMu q, qN)ﬁ]g—m,l—n(x(p>7 q; pK/M7 qL/N>dx(p)

m=0 n=0,(m,n)#(k,l)

~/§gzlll)(a7(p) q7pK,q qr)dz(p)

l
+Z Z Zd W, n+1(prq QN)H;g::;,Ll,n(Pa7‘1§pK/M/{a}vQL/N)dx(p)
P z(p)—z(pa)

hlmOnO

+Z Z d W,(y?,ilﬂ(pm;q,qN)H,Z,m,l,l,n(pa,q;pK/M/{a}7qL/N)dr(p)
P z(p)—z(pa)
m= On =0 (m n)#(0,0)

WSLH(I)M;Q,QN)H;?,mq 1—n (P, @G PK /M /{a},AL/N)dZ (D)
Sy s
# (k1)

m=0 n=0,(m, n)

H( 1 Hl(pa,q PK/{a};4-9L)dz(p)
+dpa Z'( )_CC(pa)
)=o) [ 5557 S0 o )
h=1 m=0 n=0

_'_Zm ozn =0,(m,n) )Wrszo}rln(Pa pMuQN)dy(Q)Hzg@m,l—n(paQ§pK/M§QL/N)
0
Ym0 Do, () £(00) WL (o pats an)dy(@) . (9, ¢ P/ AN

+H ) (p, 4; . pr; a)dy(q)
(3-37)
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k
ZZerH-l pMuqan)UIg m,l— n( (p)a%pK/ma(IL/N)dx(p)

—Z Z Wi (Pv; @ an) U (D), €5 P jms ar/w ) (p)
m= On 0,(m, n);é(0,0)

—Z Z WAt (P ¢ aN) U (2(P), 65 P fms ) dz(p)
m=0 n=0,(m,n)#(k,l)

_Ulgf]l+1)( (p), ¢: Pk; ¢, qu)dz(p)
0%, (p.asipic;a )
Fo < o EB)L/{B} dz(p)dy(q)
— z(pa)=2(q) ry
dpa <Z‘( )_x(pa

”
+(z(p) — z(q)) [ SN TWEL (0 o aw)dy (@) HY ) (1. 6 P Ar/N)

h=1 m=0 n=0

s € PK:{a}, qL)dw(p)dy(Q))

+Z Z W(-i-ln(p? PM; an)dy(g )H;g{)m,l_n(%% PK/M; dL/N)
m= On O(mn # (k)

+Z Z WL, o (popae an)dy (@) H, (9, ¢ P/ Aryw)
m=0n=0,(m,n)#(0,0)

+H1§il,ll) (p, ¢; P, PK; QL)} dy(q).
(3-38)
Thanks to the properties implied by the recursion hypothesis (U and U are poly-

nomials), one has:

J(g)(qi q;pK; qar)
k

= —ZZZ mn+1 PquvQN)Uig mi—n(7(2), ¢ Px/M, du/N)dz(q)

hlmOnO
k

- Z W (v @ an) U - (2(a), @5 Pras ) da(g)
m= On O(mn #(0,0)

- Z Z Wr(rz)vz-i-l(pM; 4, qN)UIS—m,l—n(x(q)a q; Px/M; du/N)dz(q)
m=0 n=0,(m,n)#(k,l)

~UY3 (2(9), ¢ px; ¢, an)da(q)
U (2(q), 45; Px; A ))
d : dz(q)d
” ( y(q) — y(qs) (@dy(a)

+dp,, (ngg—)l,l(pav 4 PK/{a} qL)) dz(q)dy(q)

(3 — 39)
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for any non vanishing ¢. Thus this quantity does not depend on i, and f is clearly
a meromorphic 1-form, whose poles can be easily seen on this expression using the
recursion hypothesis.

The same considerations give the equivalent through the exchange of x < y:

(g) (p,ﬁj' pK' OIL)

7

= - Z Z Z +1 (D, PM; qN)Ué’iZ,z_n(p, y(p); Px/M; Ar/N)dy (p)

7700
- E E W L (o, P AN)UY o (0, 9(D); Pr/M, dryN) dy(p)
m= On =000

—Z Z WA (P P an)UR (P y(P): PR /M, ) dy (p)
m=0 n=0,(m,n)#(k,l)

~U4 (0, y(p); p. Px; aL)dy(p)
U2, 1 (Pa y(D); PK oy AL
+dp<kl,l( (p) /Ha} )

z(p) — 2(pa)

) dz(p)dy(p)

+dg, ( kl) (P, gs; pK/{a}aqL/{ﬁ})) dz(p)dy(p)
(3 — 40)

This quantity does not depend on j, and f is clearly a meromorphic 1-form, whose

poles can be easily seen on this expression using the recursion hypothesis.

The fact that the A and B cycle integrals vanish comes from the symmetry x < y.
Indeed under the symmetry x < y, f is changed to f and f is changed to f. At the
same time the A-cycles are changed to —A because 2ire = §  ydr = — $ , xdy, and
the B-cycles are changed to —B in order to form a canonical basis. Therefore, the A

and B cycle integrals of f + f vanish.

Equation simply comes from Cauchy residue formula and Riemann’s bilinear
identity.

The fact that f vanishes to order at least deg(ydx) — 1 near a pole « of ydx follows
from the definition of J:

jk(fl’)(paﬁj;pK|QL> N
dfﬁ( )dy( ) e

~- k l g
x —_— i
~p—a < Z Z Z m+1 n p> pM|qN)Hl~(£r:,)z_n(P7 pJ; pK/M|QL/N)
=0 h=
+Hk+1l ( \qL)>
SC(pa) —a(p’)) y
_;dpa ( z(p) — (pa) H, (s 75 P (o i)
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N, (W)~ y) |
;dq" ( vo) —o(gp) qﬁ’pK‘qL—{ﬁ}))

‘ y(q
(3 —41)

which is at most finite if p approaches a pole a of ydr. Then it implies that

9 (1 s e ) T PP Prcian)
Jua (i Prci av) U (5:0(3))dy ()

The same holds for f.

vanishes at order at least deg(ydx) — 1.

o W9
k.l

(9) _
ﬁA Wk,l — 0-
From the definition eqB=20, it is clear that Wk(i)lvl(p,pl, o PEl@r, -, @) is finite
when p is not close to a branch point or to one of the ¢;’s, and becomes infinite

has poles only when p, — a,qg and ¢; — b,pk, and

only if the integration contour is pinched. Thus in the variable p, the only poles of

A

W (0o, pela, - @) are at p = a, qg..
The poles of W,gi)ll(p,pl, ., Pkl@1s - -, q) in any other variable, follow from the

recursion hypothesis, and thus they are at p; = a, qr,, and at ¢; = b, p, pk.

The fact that ¢ N Wé%,z = 0 when one integrates over the first variable comes from

the fact that this is a property of dS, and in the other variables it comes from the
recursion hypothesis.

By a symmetric argument, the same holds for ch(7g1)+1(pl> oo DelqL, - q,p), and
we see that Wéﬁ) and W,ﬁf;’ have the same poles.

We have (from the Cauchy residue formula and Riemann bilinear identity):

W (o, plan) + Wi, (pxlar. p) = £ (0 pxlaw) + £ (i pxlan).  (3-42)

(9)

) (p, ¢ pxlac) = HY) (p, ¢ Pxlav)-

¢ Ly

3

One has:

) (popxian)
Ex(p)y(a)
= Res

_ Q,(jf (p,;PK;AL)
TP (y(g)—y(p)) (y(@) —y(r) (@(p) —x(r)) H (p,r)da(p)
Q,(ffl) (s,r;PK;AL)
(@) () (y(@)—y(r) (@(s)—a(r)) (@(s)—z(p) HSY (s,7)
G,if’l)(s,r;pK;QL)

(@) —y(P)) (y(@)—y(r) (@(s)—(r)) (z(s)—x(p) HY g (s,1)

(3-43)

= Res,_,, Res,,)

= Res, ;i Res ., 4
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where the last equality holds because the integrant has no pole when s — ¢/. Then

%) (papxan)
Exp)y(@)

= Res, 4, Res .,z

g)(jl)(svmpKKIL) [ 1
(@) —y(r)(@(s)—z ) HY Y (s,r) L W) =y($))(@(p)~2(a))

1 1
T2 @0 GO @ P —2@) (3-44)
gffl)(sm;pK;qL)
o (y(a)—y()) (2(s) () (y(r)—y(s)) (z(p) —x(q)) H ' (5,)
do G,/ (p.,p';px;av)
+2 (@) —y(P) (y(0)—y () HED (p,pi)dz(p)?”

= Res, 4, Resg

A9 (p.a;px; . . .
Note that the first term corresponds exactly to % with the integration con-

tours for r and s exchanged. However, the poles of the integrand are known and thus:

Res Res = Res Res + Res Res 4+ Res Res + Res Res
r—q,p* s—p,g’ T—q 5D  ropi s—G)  T—q s—  r—pt =D
= Res Res + Res Res + E Res Res + E Res Res
S—p T—q s—)q] r—p* rJ—)q] 5—>qJ rt—p S—p

= Res Res + Res Res + Z Res Res + Z Res Res

sS—p Tr—q s—>q3 r—p? s—>q3 7"3—>q3 s—>q3 Fl—s

+ Z Res Res + Z Res Res

0 s—p riop s—p rioss
= Res Res + g Res Res + g Res Res .
s—p, ¢ r—q,p - s—>qJ 7i—s $—p rios
1#0
(3 —45)

The last term does not contribute because the integrant is regular when r* — s, thus

H(g)(pqu,qL)

E(z(p),y(9)) _
_ B (p.apiar) ng G,if’l)(p,pl;px;qrd)

- Ea)ya) =1 (y()~y () (w(@)—y(p)) Hp (p.p?)da(p)?
g;(fl) (s,7;PK;AL)
(y(@)—y(r)(@(s)—2(p)) (y(r)—y(s)) (@(p)—2(q) HY (5.7)

+ Z#O Res ;.5 Resi_g

_ H9 (py(q) Zdz Q,i?l)(pvpi;pK;QL)
Ez(p)y(@) =1 (y(q)—y(p)) (y(9)—y(p*) Hy (pp?)dax(p)? (3-46)
i Z Q,(Cgl)(~'7Q'PK7QL)
I=1 (a(p)—2(9)) (@(d9) —x(p)) H 'y (3 ,a)dy(q)?
_ HY(py(9)
@) (@) ()) o o |
(p)—y(p®)) Sl (P'iplaL)—W, 0 (PxlqL.p’)
+ 3 G y(p))(y() V) . =)
(@) —x(§7)) 7 (@ lpxsan) Wy, (@ ,pxlaL)
+ i =@ Q)

Notice from Eq. ([B=42), that

ng?l)(S;PKML) = f,i,gl)(s; Px|qL) — Wk(z)—i-l(pK‘qLas)
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— 1) (s; pxlar) + W2, (s, pxlar)

(3 —47)
is a holomorphic 1-form in s, i.e. it has no poles. We have:

) p.q;pxlar)  HY(p, ¢ pxlaw)

Ex(p)yla) E(SC(p),y(@g)))
- (y(p) — y(p")) 91 (0" Px|aL)
a Z(y(q)

P —y@) () —y@))  dz(p)
_ i (z(q) — 2(¢")) 9 (@ pxla)
(x(p) — x(q))(z(p) —x(¢))  dylq)

i Zfi TS0 ) ?(2(3) =
i Z R G TR s

- SR EE) e

- z:; sfieps <(x(p) - x(q))l(y(Q) —y(s)) (a(p) — x(S))l(y(q) —y(s))
RECRERNTCEIR) G @ o) e pela)

= 2 G = e — ) Pl

=0 (3-48)

~

. Eli )(p, ¢; px|ar) = E;ﬁ )(p, ¢; PxaL)-

We have from Eq. ([B227)

(9) .
B v 0. prlan) = (@(p) = 2(0)) (y(p) = y(a) B (. 0. Prclan) - g“izii;?;f;‘é?“

and from Eq. (B223):

(9) .
E{) (v 0. prlan) = (@(p) = 2(0)) (y(p) = y(a) S (. 0. Prclas) - g“izii;‘i’d‘i‘é?“

(3-50)
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so that Eli?l) = E,g?}.
Moreover, one can see from Eq. (B=21) that E,gf]l) (p, ¢; Px|qL) is a polynomial of y(q)
while E,g?l) (p, ¢; Pk|dL) is a polynomial of x(p), therefore

EY)(x(p), y(q); pxlar) = E) (p, ¢; pxlar) = B (0, ¢; Px|av) (3-51)

is a polynomial in two variables.
U ,g?l) and U ,g?l) are polynomials.

Eq. B=29), Eq. (8z20), Eq. (B=31) and Eq. (3=38) imply that

B (@(p). y(q ) Pl
= (2(p) — 2(0)) U (=(p), ¢: PxlaL)

+Z Wz( 1 (pr;as, )Ulgg_i,};)—j(x(p)uq; Px/1/dL/3)

hoI1,J dy(q)

U5 (x(p), ¢; PxlaL, q)

dy(q)

_qu Ulgf]l)—l(x(p)acIm;pK|(1L/{m})

— y(q) — y(qm)
> dy i, (P, @ P ey ) (3-52)

and

E)(x(p), y(¢); pxar)
= (@) — y)UY (p.y(q): Pxar)

o _h
n Z Z Wi(—l-i,j(pa pP1; QJ)Ulgg—i,l)—j(pa y(q): Px/1laL,s)
dz(p)

U (0.y(a); p, pxlav)

d(p)

lg)ll pmuy( ) pK/{m}|QL)
dem

z(p) — x(pm)
- Z dy HE) (9, i P|AL ) (3-53)

m

from which (together with the recursion hypothesis), we deduce that U, ,ﬁ?} and U, ,&?} are
polynomials.
This proves the theorem B2 [
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Theorem 3.3 Symmetry of the W,gi).
For any k,l, g we have:

7r(g—1 y-(g—1
ngf]i-l,l)-i-l(pa PxlaL, ¢) = ngf]i-l,l)-i-l(pa Pxlar; ¢) (3-54)

proof:

Let us prove it by recursion on 2g + k + [. Assume we have already proved it for
any ¢', k', ' such that 2¢' + K +1' <29+ k + 1.

Insert Eq. (B230) into Eq. (B253)) in order to eliminate the U’s, and then insert the
result into Eq. (B229). Most of the terms cancel (in fact the definitions of J,gf’l), jk(fl'),
G,(fl) were designed for that purpose), and using the recursion hypothesis, the only term
left is:

1
(Wk(f]l—l l)+1(p> Pk|dL, q) + ngi1 l+1(p> Pk (9L, C_I)) (3-55)

N | —

1
Wzg?u l)+1(P7 pK|QL> Q) =

which proves the theorem. [

Corollary 3.1 W,gi) (pxlaL) = Wk(?l) (px|ar) is a symmetric function of its variables

D1, - -+, Pk, and a symmetric function of its variables qi, . .., q.

proof:
It is clear from the definitions that Wéﬁ)(pK\qL) is a symmetric function of its

variables pi,...,pr, and that W,ggl)(pK|qL) is a symmetric function of its variables

.., q. U
Now, we prove the following theorem:

Theorem 3.4
W (pk]) = W (px) (3-56)
and

Wt (Jax) = W (qw). (3-57)

proof:
Write Eq. (B=23)) for 1=0:

B (x(p), y(q); Px)
= (ylg) - y(p))(Uiigo) (p, y(q);( pK))
Wz—ﬁl o(D; PI)ng—;,foL (p,y(9); P /1)
¥ dx(p)
Uzi‘il,lo (p,¥(q); P, PK) U2, o (P 9(0); PK /)
* dz(p) =2t 2(p) — x(Pm) '
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(3 — 58)
Using Lemma [B2], we obtain:
Wit (pxl) = Wi (px) (3-59)

The other equality is obtained by writing Eq. (B=52)) for £ = 0 and exchanging the roles
of z and y in the Lemma B2
OJ

Theorem 3.5

: . AY)(p; px|av)
(9) (9) —d k1 \P; PK|QL )
Wk+1,l(p7 PklaL) + Wk,l—l—l(pK‘qLup) p dz(p)dy(p) (3-60)

where A,(fl) (p; px|aL) has at most simple poles when p — «.

proof:

From Eq. (B222), it is easy to see that all contour integrals of Wk(_gk)lvl(p, PklaL) +
W,ﬁill(pmqh p) are vanishing, and thus it is the differential of some function.

The fact that Ag; (p; Px|qr) has at most simple poles when p — «, follows from
lemma BT1

O
Theorem 3.6
Res z(p)y(L)W (p, PxlaL) = 0, (3-61)
Res (p)y(p) Wi, (Pklar, p) = 0. (3-62)
proof:
By definition:
Wiha(p Pulan) = Res dSio(p) /7 (s prcla) (3-63)

and we have:

5162 z(p)y(p W—gl—)l (pvpK‘qL)

)
= Res Res z(p)y(p)dSs.(p ) (S Px|qr)
x(
)

p—a s—a,qr

= Res Res

s—a,qL p—o

)y(
P)y(p)dSs.0(p) £ (s: Pxlar)
(s) —

= — Res (z(s)y(s) —z(o)y (0))]01@71 (s; Pxlar)

s—a,qr,

(3 — 64)

since f,g?l) vanishes near the poles of ydx to order at least degydx — 1, the expression
above has no other poles than a, qr,, and thus the total residue is zero.
O
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Theorem 3.7 For any k,l,g such that k+1+ g <1, one has

Res paan OOV (P Pildn) = Resymbpe UOWEL (Prclansa) g o0
= (2-29— k- Z)Wk(g,) pxla).
proof:
We have:
Res ‘P(P)Wzg-g&,z(% Pk|qL) — Res ‘I’(p)ngqu)Jrl(PKML,P)
p—a,qr, K p—b,px A
= Res (P)y(P)Wih (. Prlan) - s V()W (v, Pxlav)
— Res U(p)W%,,(pklar, p)
p—b,px X 5
= —  Res  W(p)(W (p,pxlac) + W%, (pxlaw. p))
p—a,b,pk,qL o
A 9 (p;
_ Res  2(p)dy(p) ) (p; Px|aL)
p—a,b,pk,qL ( )dy( )
Akl(p7 Pk|qL)
= — Res z(p)dy(p
Res ) P) =g oy o)
= 0. (3-66)

The fact that Res,aqp @(p)Wk(i)u(p, pklaL) = (2—29— k — Z)Wé?(pqu), can
be proved by recursion on 2g + k + [ and using corolary Bl
O

This allows to prove our main theorem:

Theorem 3.8 The F9’s are symmetric under the exchange x < y:

9 — )
(3-67)
proof:
Indeed, we have:
(2-29)F9 = Res ()7 (p) . (2-29)F = Res U(p)W) (p).  (3-68)
O
3.4 Additional properties
The following theorem relates H and W:
Theorem 3.9 We have:
0, prla) = g LD 0PI (3-69)

qg—a 0
H{Y(p, q)
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» HY)(p, ¢; px|ar)
ng?l)—l—l(pK‘qLaw = ;]3:{—?2 7H( )(p 7
0,0 \t"

dz(p). (3-70)

proof:

Multiply equation by dx(p)dy(q)/(y(q) — y(p))Hé?O) (p, q) and take the residues
at ¢ — «.

O

Remark 3.3 This theorem was expected from the matrix model property that

1 1 1 1
—tr

tr —
r—My—My, x y-— DM

(3-71)

when z — oo.

4 Conclusion

In this article, we have proved the x < y symmetry which was announced in [21].
This symmetry has many applications, for instance in [21] it was used to recover the
(p,q) < (q,p) duality of minimal models [30], or to give a very short proof that
Kontsevitch integral indeed depends only on odd times and satisfies KAV hierarchy
[26].

In addition we have shown how to compute some family of mixed correlation func-
tions of the 2-matrix model.

This could open the route to some matrix model approach to the understanding of
boundary conformal field theory in higher genus. In a forthcoming article, we shall in-
troduce a similar algebraic geometry method to compute all possible mixed correlation

functions [23].

This work also raises many questions, and calls the following prospects:

e It would be interesting to see what the Hj; and Wj,; correspond to for other
matrix models (e.g. Kontsevitch’s integral, chain of matrices), although we may guess
that they also correspond to mixed traces expectation values in those cases.

e More interesting would be to understand what the H ,i?} and W,iz) compute in
algebraic geometry. Those should correspond to “volume” or “intersection numbers of

some moduli spaces” ?
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Appendix A Spectral curve

We recall that the curve &(z,y), called the classical spectral curve, is given by a

polynomial of the form:
do+1

=Y &y (1)

We define the “quantum spectral curve” as the formal power series:
= S N EO (a,y) (1-2)
g

where

T

E9 (@, y) = Eppr (z Z >, Z 05 (or+11l- 19vasil|><le> (1-3)

r=1 J1U..UJr=K g1,..., =1

with

and

W (pi) == W2 (k) + 0r10g0(y — Y (1)) (1-5)

where W,§9> (pk) is the meromorphic form defined in [21] for the curve £(z,y).

Lemma A.1 For any g, £9(x,y) is a polynomial in x and y, whose degrees are at
most those of £.

proof:

It is clear that Eyx(x,y) is a polynomial in y, and a rational function of x. Let us
prove that £ (z,y) is indeed a polynomial in = for g > 1. The coefficient of y*
EW(x,y) is:

glig)(x)
Eday+1(@)

oy (0
= > v Z Do D Sl HWw “(p”)
JoCK,|Jo|=k j€Jo r=1 JiU..UJr=K/Jo 91,--:9r

First, notice that the product of W’s can have poles only at branch-points, and the
product of y’s can have poles only at poles of y. The poles of y which are not poles of
x, are killed by the prefactor €,+1(x), as they are in the classical curve £(x,y). Let us
consider the poles at a branch-point a. The only terms which might diverge at p — «a

are of either of the following forms
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(Wl(iu‘( p’) + Wl(ﬁ)m(ﬁ, p’)) x (reg) where reg means a term with no poles at

p — a. This term is regular because of theorem 4.4 in [21].

h . .
¢ or (Wfil\?m(p pjl)WfHJg\l |J1|(p p’7) + W2(+|J\ (p,D:p”)) x (reg) again, this ex-
pression is regular when p — a, because of theorems 4.4 and 4.5 in [21].

Thus, we have proved that 5,&9)(1") is a rational function of x whose only poles are
the poles of z, i.e. it is a polynomial in z.

Consider a pole 0o, of x, the behavior of £ (x(p), y(p)) when p — oo, is at most
that of 7, i [l;cs, ¥(®’). Notice that Jy cannot be equal to K itself, because the
product of the corresponding W’s vanishes (it contains no term), and |Jy| cannot be
equal to |K| — 1, because the prefactor vanishes due to theorem 4.4 in [21]. Thus,
|Jo| < |K| — 2, which implies that £ (x(p), y(p))dx(p) has a pole of degree at most
that of &,(z(p),y(p)), i.e. £9(z(p),y(p)) is contained in the Newton’s polytope of
E(x,y). This means that

ED (x(p), y(p))
&y(x(p),y(p))

dzx(p) (1-7)

is a holomorphic differential.
O

Appendix B Lemma: unicity of the solution of loop
equations

Lemma B.2 The system of equations:

B (x(p), y(q): Px)
= (y(9) —y(p))U( (0, y(q); pK)

+ZZ Wil (e, PI)U;E;( )(p,y(Q);pK/x)

U15+1 )(p,y(Q) P, PK) U9, (pm, (q): PK/m})
dx(p) Z o 2(p) — 2(pm)

+

(2-1)
where:

o if29+k>2, W,g_ggl (p, PK) has poles only at branchpoints in any of its variables,

and vanishing A-cycle integrals,

° E,gg) (z(p),y(q); Px) is a polynomial in x(p) of degree at most d; — 1, and a poly-

nomials in y(q) of degree at most dy — 1,
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o Ulgg) (p,y(q); Px) is a polynomials in y(q) of degree at most dy — 1,

has a unique solution.

This solution is such that
Wi (px) = Wi (px). (2-2)

Proof of the Lemma:

Unicity:

We prove it by recursion on 2¢g + k. Assume it is already proved for any ¢', &’ such
that 29’ + k < 29 + k.

At p = q, Eq. ([2=1)) gives:
B (x(p), y(p); px)dz(p)
Ug” (p, (p))

_ZZ Wi (0, pOUY" (0, y(p); P 1)

Uy (p. y(p))
1
_Uzi‘il (p,y( ); P; Pk) Y4, U, (P> ¥(D); P /()4 (p)

w9 (p,px) =

U (0, y(p)) = (2(p) — 2 U (0 y(0))
(2-3)
Then write Cauchy residue formula:
Wi (. p) = = Res dS,.0(p) Wil (r.pxo). (2-4)

Since we know the poles of W,ﬁ?ﬁl (p, px) and its A-cycle integrals, we may move the

integration contour using Riemann’s bilinear identity and get:
W2 (p,Px) = Res dS,.,(p) W%, (r. px)- (2-5)

Now, we replace W]g-)l(ﬂ pkx) by its value in Eq. ([Z=3). We see that the term
Eég)(x(r),y(r);pK)dx(r)

Ug” (ry(r))
residue, and similarly the las term of Eq. (2=3)) does not contribute to the residue. We

has no pole at the branchpoints and does not contribute to the

get:

dS,.(p) _
Wk(i)l(pu Pk) = — 13_6)2 m (Uliill)(r,y(r);p, Pk)

3> W)U (ry(r); pK/I)) . (2-6)

Since all the terms in the RHS are already known from the recursion hypothesis,
this determines Wk(i)l(p, pk) uniquely. Then, we write Eq. ) for p = ¢ with
j = ]_, ey dli

EP (&), y(q); px)
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h “h
- Yy W@ p)U" (@ y(@); prn)
o dz(q7) o
1),
+Ukil (qjuy ; 7pK Zd . k 1 pmvy(q)7pK/{m})

dx( ) I(pm)

2-17)

since all terms in the RHS are uniquely determined, so is the LHS. And since
E,gg) (z(p),y(q); px) is a polynomial in z(p) of degree d; — 1 and we know its value
in d; points, then E )( (p),y(q); px) is uniquely determined.

Then, using Eq. (=]) once again, we uniquely determine Uk ( p,y(q); PK)-

This proves the unicity for g and k.

Existence:
Start from the meromorphic form W,ﬁg ) (pk) defined in [21] for the curve &(x,y),
and define:

W (k) = W (pre) da(pic) + Or.100(y — y(p1)) (2-8)
Then, let Ko ={0,1,...,dy} UK and K; ={1,...,d2} U K, and define:

do+1+k

ED@), yipr) = Ear(@) Y DD O aial-1g HW\J’j

r=1 J1U..UJr=Ko g1,---, gr

(2-9)
and:
do+k r
Uég)(po,y;px = Ep1(x Z Z Z 05 (gi+171~1).9 H ‘J| p’). (2-10)
r=1 J1U..UJ,=K1 g1,..,9r =1

It is clear that both 5,gg)(:1:,y;pK) and Uég) (p,y; px) are polynomials in y of degree at
most dy — 1. Following the same line as in lemma [A]], it is easy to get that Elig) (x,y; PK)
is also a polynomial in x of degree at most d; — 1.

Therefore, the functions Slgg) (x,y; pK), U,gg) (p,y; px) and Wk(g) (pk ) obey the require-
ments of lemma [B.2, and eq2=Tlis clearly satisfied from the definitions of 8,&9 ) (x,y; PK)
and U,S” (p,y; px). Thus, we have found an explicit solution of the system of lemma

B2, which proves the existence.
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