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Introduction

Formal matrix integrals can be regarded as an efficient toy model to explore the link between algebraic geometry and integrable systems [START_REF] Krichever | The τ -function of the universal Whitham hierarchy, matrix models and topological field theories[END_REF][START_REF] Bertola | Two-matrix model with semiclassical potentials and extended Whitham hierarchy[END_REF]. The theory of quantum gravity [START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] David | Planar diagrams, two-dimensional lattice gravity and surface models[END_REF][START_REF] Kazakov | Bilocal regularization of models of random surfaces[END_REF] is based on the idea that matrix models provide a generating function to measure "volumes" of moduli spaces of Riemann surfaces, and random matrix models were introduced in the 80's [START_REF] Brezin | [END_REF] as a discretized version of 2d quantum gravity, i.e. conformal field theory coupled to gravity.

The formal matrix integral is at the same time a tau-function of some integrable hierarchy [START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF], and it has a 't Hoof topological expansion [33,[START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Ambjørn | Matrix model calculations beyond the spherical limit[END_REF]:

ln formal dMe -N Tr V (M ) = ∞ g=0 N 2-2g F (g) (1-1)
which is related to algebraic geometry (see [START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF][START_REF] Bertola | Two-matrix model with semiclassical potentials and extended Whitham hierarchy[END_REF][START_REF] Kazakov | Complex Curve of the Two Matrix Model and its Tau-function[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF]).

In a recent work [START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF][START_REF] Chekhov | Hermitian matrix model free energy: Feynman graph technique for all genera[END_REF][START_REF] Eynard | Topological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formula[END_REF][START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], we have developped a method to compute the F (g) 's for various formal hermitian matrix models (1-matrix model, 2-matrix model, matrix model with an external field, double scaling limits of 2-matrix model) out of the data of an algebraic equation (called the classical spectral curve):

E(x, y) = 0 , E = polynomial. (1-2)
The construction of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] extends beyond matrix models, and the F (g) 's can be computed for any algebraic equation of the type E(x, y) = 0. However the construction of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] assumes an embedding of the curve into C 2 , i.e. the choice of 2 meromorphic functions x and y on the curve. It was claimed in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] that F (g) is invariant under the exchange x ↔ y, and the proof was announced to be published separately.

This is what we do in the present paper, together with additional results.

Mixed correlations

In order to prove this claim, we first explore the case where the F (g) 's come from a formal 2-matrix model (the symmetry x ↔ y holds almost by definition in that case, see [START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF]). We write the loop equation relations (W-algebra) [START_REF] Staudacher | Combinatorial solution of the 2-matrix model[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF], which we solve, and we are led to define new mixed correlation functions (W k,l and H k,l below), which did not appear in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].

In the application of the 2-matrix model to quantum gravity and conformal field theory, those mixed correlation functions were known to play an important role in the understanding of boundary operators. But their explicit computation has been a challenge until recently. The main reason is that they don't reduce to eigenvalues of the matrices, and could not be computed by standard methods. The first explicit computations were obtained in [START_REF] Bertola | Mixed Correlation functions of the 2-Matrix Model[END_REF] and [START_REF] Eynard | 2-matrix versus complex matrix model, integrals over the unitary group as triangular integrals[END_REF]. Here in this paper, we show how to compute the topological expansion of a family of mixed correlation functions of the 2-matrix model. In a coming work [START_REF] Eyner | Whole topological expnasion of any correlation function in the two matrix model[END_REF], we shall show how to compute all mixed correlations, and introduce a link with group theory and Bethe ansatz (this is a generalization of [START_REF] Eynard | Mixed correlation functions in the 2-matrix model, and the Bethe ansatz[END_REF]).

Then, for the general case (i.e. if E was not obtained from a matrix model), we mimic those mixed correlation functions and that allows to prove the x ↔ y symmetry of F (g) .

Mixed traces of matrix models

Consider the formal 2-matrix integral3 :

Z = dM 1 dM 2 e -N tr (V 1 (M 1 )+V 2 (M 2 )-M 1 M 2 ) (2-1)
where we assume in this section that V 1 is a polynomial of degree d 1 + 1 and V 2 is a polynomial of degree d 2 + 1.

Our goal is to compute the following connected expectation values:

W k,l (x 1 , . . . , x k |y 1 , . . . , y l )

= tr 1 x 1 -M 1 tr 1 x 2 -M 1 . . . tr 1 x k -M 1 tr 1 y 1 -M 2 tr 1 y 2 -M 2 . . . tr 1 y l -M 2 c = ∞ g=0 N 2-2g-k-l W (g)
k,l (x 1 , . . . , x k |y 1 , . . . , y l ).

(2-2) and H k,l (x, y; x 1 , . . . , x k |y 1 , . . . , y l )

= tr 1 x -M 1 1 y -M 2 tr 1 x 1 -M 1 . . . tr 1 x k -M 1 tr 1 y 1 -M 2 . . . tr 1 y l -M 2 c = ∞ g=0 N 2-2g-k-l-1 H (g)
k,l (x, y; x 1 , . . . , x k |y 1 , . . . , y l )

(2-3)

W (g)
k,l is the generating function which counts connected genus g bi-colored discrete surfaces with k boundaries of the first color, and l boundaries of the second color. H (g) k,l is the generating function which counts genus g bi-colored discrete surfaces with k boundaries of the first color, and l boundaries of the second color, and one additional boundary which carries the 2 colors. The power of N in both cases is the Euler characteristic of such surfaces. The 2-matrix model was introduced in [START_REF] Kazakov | Ising model on a dynamical planar random lattice: exact solution[END_REF] as a discrete version of the Ising model on a random surface.

Notice that in H (g) k,l , the first trace contains both matrices M 1 and M 2 , we call it a mixed trace because it cannot be expressed in terms of eigenvalues of M 1 and M 2 . In applications of matrix models to conformal field theories, such objects correspond to the insertion of a pair of boundary operators, and are thus very interesting. H (0) 0,0 was computed in many works [START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF][START_REF] Daul | Rational Theories of 2D Gravity from the Two-Matrix Model[END_REF], and in the context of convergent integrals (instead of formal integrals), H 0,0 was computed in [START_REF] Bertola | Mixed Correlation functions of the 2-Matrix Model[END_REF][START_REF] Eynard | 2-matrix versus complex matrix model, integrals over the unitary group as triangular integrals[END_REF][START_REF] Bergère | Mixed correlation function and spectral curve for the 2-matrix model[END_REF].

The W (g) k,0 's were already computed in [START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF][START_REF] Eynard | Topological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formula[END_REF][START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF], and are given by the algebraic invariants defined in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], they are the non mixed traces.

It is known (see for instance [START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF]) that all those functions are multivalued functions of their x or y variables, and they are in fact functions living on a Riemann surface called the spectral curve of equation:

E(x, y) = 0.
(2-4)

On this curve, we chose a canonical basis of cycles 4 A i ∩ B j = δ i,j , i, j = 1, . . . G, where G denotes the genus of the curve E. We will note by p i (resp. pj ) the different points of E whose projection in the complex plane by the meromorphic function x (resp. y) are equal:

∀i = 1 . . . d 2 , x(p i ) = x(p 0 ) , ∀i = 1 . . . d 1 , y(p i ) = x(p 0 ), (2-5) 
where the superscript 0 refers to the x-and y-physical sheets.

It is thus more convenient to redefine W (g) k,l and H (g) k,l in terms of meromorphic forms on the curve:

W (g) k,l (p 1 , . . . , p k |q 1 , . . . , q l ) = W (g)
k,l (x(p 1 ), . . . , x(p k )|y(q 1 ), . . . , y(q l )) dx(p 1 ) . . . dx(p k )dy(q 1 ) . . . dy(q l ) +δ g,0 δ k,1 δ l,0 (y(p 1 ) -

V ′ 1 (x(p 1 )))dx(p 1 ) + δ g,0 δ k,0 δ l,1 (x(q 1 ) -V ′ 2 (y(q 1 )))dy(q 1 ) + δ g,0 δ k,2 δ l,0 dx(p 1 )dx(p 2 ) (x(p 1 ) -x(p 2 )) 2
+ δ g,0 δ k,0 δ l,2 dy(q 1 )dy(q 2 ) (y(q 1 ) -y(q 2 )) 2 (2 -6) 4 All required definitions relative to algebraic geometry can be found in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] or more generally in [START_REF] Fay | Theta functions on Riemann surfaces[END_REF][START_REF] Farkas | Riemann surfaces[END_REF]. We will use all along these notes the notations of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]. The A and B-cycles may be the modified cycles of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].

where the p i 's and q j 's are now points on the curve E, instead of points in the complex plane. We have also "renormalized the unstable functions" with 2 -2g -k -l ≥ 0.

With those notations we have [START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF]:

W (0) 1,0 = W (0) 0,1 = 0, (2-7) 
W (0) 2,0 (p, q) = -W (0) 1,1 (p, q) = W (0) 0,2 (p, q) = B(p, q) (2-8)
where B is the Bergmann kernel, i.e. the unique bilinear form on E with a double pole at p = q and no other pole, with vanishing residue, and normalized on A-cycles:

B(p, q) ∼ p→q dz(p)dz(q) (z(p) -z(q)) 2 + finite , ∀i = 1 . . . G , A B = 0. (2-9)
We also define the differentials corresponding to the mixed correlation functions:

H (g) k,l (p, q; p 1 , . . . , p k |q 1 , . . . , q l ) = H (g)
k,l (x(p), y(q); x(p 1 ), . . . , x(p k )|y(q 1 ), . . . , y(q l )) dx(p 1 ) . . . dx(p k )dy(q 1 ) . . . dy(q l ) +δ g,0 δ k,0 δ l,0

and we normalize them by the leading order of the simplest mixed correlation function:

h (g)
k,l (p, q; p 1 , . . . , p k |q 1 , . . . , q l ) =

H (g)
k,l (p, q; p 1 , . . . , p k |q 1 , . . . , q l ) H (0) 0,0 (p, q)

.

(2-11)

It is well known [START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF][START_REF] Daul | Rational Theories of 2D Gravity from the Two-Matrix Model[END_REF] (and it can be rederived from Eq. (2-18) and Eq. (2-21) below) that: -12) We also need to introduce:

H (0) 0,0 (p, q) = E(x(p), y(q)) (x(p) -x(q))(y(p) -y(q)) . ( 2 
U k,l (p, y; p 1 , . . . , p k |q 1 , . . . , q l ) = tr 1 x(p) -M 1 V ′ 2 (y) -V ′ 2 (M 2 ) y -M 2 tr dx(p 1 ) x(p 1 ) -M 1 . . . tr dx(p k ) x(p k ) -M 1 tr dy(q 1 ) y(q 1 ) -M 2 . . . tr dy(q l ) y(q l ) -M 2 c +δ g,0 δ k,0 δ l,0 (V ′ 2 (y) -x(p)) = ∞ g=0 N 2-2g-k-l-1 U (g)
k,l (p, y; p 1 , . . . , p k |q 1 , . . . , q l ), [START_REF] Bergère | Mixed correlation function and spectral curve for the 2-matrix model[END_REF][START_REF] Bertola | Two-matrix model with semiclassical potentials and extended Whitham hierarchy[END_REF][START_REF] Bertola | Mixed Correlation functions of the 2-Matrix Model[END_REF][START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF][START_REF] Brezin | [END_REF][START_REF] Chekhov | Hermitian matrix model free energy: Feynman graph technique for all genera[END_REF][START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Daul | Rational Theories of 2D Gravity from the Two-Matrix Model[END_REF][START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] David | Planar diagrams, two-dimensional lattice gravity and surface models[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF] which is a polynomial of y of degree at most d 2 -1, Ũk,l (x, q; p 1 , . . . , p k |q 1 , . . . , q l ) = tr

V ′ 1 (x) -V ′ 1 (M 1 ) x -M 1 1 y(q) -M 2 tr dx(p 1 ) x(p 1 ) -M 1 . . . tr dx(p k ) x(p k ) -M 1 tr dy(q 1 ) y(q 1 ) -M 2 . . . tr dy(q l ) y(q l ) -M 2 c +δ g,0 δ k,0 δ l,0 (V ′ 1 (x) -y(p)) = ∞ g=0 N 2-2g-k-l-1 Ũ(g)
k,l (x, q; p 1 , . . . , p k |q 1 , . . . , q l ), [START_REF] Bergère | Mixed correlation function and spectral curve for the 2-matrix model[END_REF][START_REF] Bertola | Two-matrix model with semiclassical potentials and extended Whitham hierarchy[END_REF][START_REF] Bertola | Mixed Correlation functions of the 2-Matrix Model[END_REF][START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF][START_REF] Brezin | [END_REF][START_REF] Chekhov | Hermitian matrix model free energy: Feynman graph technique for all genera[END_REF][START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Daul | Rational Theories of 2D Gravity from the Two-Matrix Model[END_REF][START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] David | Planar diagrams, two-dimensional lattice gravity and surface models[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF] which is a polynomial of x of degree at most d 1 -1 and

-E k,l (x, y; p 1 , . . . , p k |q 1 , . . . , q l ) = tr V ′ 1 (x) -V ′ 1 (M 1 ) x -M 1 V ′ 2 (y) -V ′ 2 (M 2 ) y -M 2 tr dx(p 1 ) x(p 1 ) -M 1 . . . tr dx(p k ) x(p k ) -M 1 tr dy(q 1 ) y(q 1 ) -M 2 . . . tr dy(q l ) y(q l ) -M 2 c +δ g,0 δ k,0 δ l,0 ((V ′ 1 (x) -y(p))(V ′ 2 (y) -x(p)) -1) = - ∞ g=0 N 2-2g-k-l-1 E (g)
k,l (x, y; p 1 , . . . , p k |q 1 , . . . , q l ), [START_REF] Bergère | Mixed correlation function and spectral curve for the 2-matrix model[END_REF][START_REF] Bertola | Two-matrix model with semiclassical potentials and extended Whitham hierarchy[END_REF][START_REF] Bertola | Mixed Correlation functions of the 2-Matrix Model[END_REF][START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF][START_REF] Brezin | [END_REF][START_REF] Chekhov | Hermitian matrix model free energy: Feynman graph technique for all genera[END_REF][START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Daul | Rational Theories of 2D Gravity from the Two-Matrix Model[END_REF][START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] David | Planar diagrams, two-dimensional lattice gravity and surface models[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF] which is a polynomial of x of degree d 1 -1 and of y of degree d 2 -1.

We have:

E (0) 0,0 (x, y) = E(x, y) , U (0) 0 
,0 (p, y) = E(x(p), y) y -y(p) , Ũ(0) 0,0 (x, q) = E(x, y(q)) x -x(q) ,
(2-16) and P (0) 0,0 (x, y) = -E(x, y).

(2-17)

Loop equations

In order to obtain a closed set of equations computing these mixed correlation functions, we consider 4 families of loop equations [START_REF] Staudacher | Combinatorial solution of the 2-matrix model[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF][START_REF] Eynard | Loop equations for the semiclassical 2-matrix model with hard edges[END_REF] corresponding to different infinitesimal changes of variables M i → M i + ǫδM i in the matrix integral.

δM 2 = 1 x(p)-M 1 1 y(q)-M 2 k i=1 tr 1 x(p i )-M 1 l j=1 tr 1 y(q j )-M 2 gives: -U (g) k,l (p, y(q); p K |q L ) = (x(p) -x(q))H (g) k,l (p, q; p K |q L ) + h I,J W (h) i,j+1 (p I |q J , q)H (g-h) k-i,l-j (p, q; p K/I |q L/J ) dy(q) + H (g-1)
k,l+1 (p, q; p K |q L , q) dy(q)

- n d qn H (g) k,l-1 (p, q n ; p K |q L/{n} ) y(q) -y(q n ) (2-18) δM 1 = 1 x(p)-M 1 1 y(q)-M 2 k i=1 tr 1 x(p i )-M 1 l j=1 tr 1 y(q j )-M 2 gives: - Ũ(g) k,l (x(p), q; p K |q L ) = (y(q) -y(p))H (g) k,l (p, q; p K |q L ) + h I,J W (h) i+1,j (p, p I |q J )H (g-h)
k-i,l-j (p, q; p K/I |q L/J ) dx(p)

+ H (g-1)
k+1,l (p, q; p,

p K |q L ) dx(p) - m d pm H (g) k-1,l (p m , q; p K/{m} |q L ) x(p) -x(p m ) (2-19) δM 2 = V ′ 1 (x(p))-V ′ 1 (M 1 ) x(p)-M 1 1 y(q)-M 2 k i=1 tr 1 x(p i )-M 1 l j=1 tr 1 y(q j )-M 2 gives: E (g) k,l (x(p), y(q); p K |q L ) = (x(p) -x(q)) Ũ(g) k,l (x(p), q; p K |q L ) + h I,J W (h) i,j+1 (p I |q J , q) Ũ(g-h) k-i,l-j (x(p), q; p K/I |q L/J ) dy(q) + Ũ(g-1) k,l+1 (x(p), q; p K |q L , q) dy(q) - m d qm Ũ(g) k,l-1 (x(p), q m ; p K |q L/{m} ) y(q) -y(q m ) - m d pm H (g) k-1,l (p m , q; p K/{m} |q L ) (2-20)
and

δM 1 = 1 x(p)-M 1 V ′ 2 (y(q))-V ′ 2 (M 2 ) y(q)-M 2 k i=1 tr 1 x(p i )-M 1 l j=1 tr 1 y(q j )-M 2 gives: E (g) k,l (x(p), y(q); p K |q L ) = (y(q) -y(p))U (g) k,l (p, y(q); p K |q L ) + h I,J W (h) i+1,j (p, p I |q J )U (g-h) k-i,l-j (p, y(q); p K/I |q L/J ) dx(p) + U (g-1)
k+1,l (p, y(q); p,

p K |q L ) dx(p) - m d pm U (g) k-1,l (p m , y(q); p K/{m} |q L ) x(p) -x(p m ) - m d qm H (g) k,l-1 (p, q m ; p K |q L/{m} ). (2-21)
Those loop equations can be seen to be equivalent to W-algebra constraints [START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF], or to a generalization of Tutte's equations for the combinatorics of discrete surfaces [START_REF] Tutte | A census of planar triangulations[END_REF][START_REF] Tutte | A census of planar maps[END_REF].

Solution of loop equations

Theorem 2.1 The solution of loop equations is such that:

h (g) k,l (p, q; p K |q L ) = Res r→q j ,p,p K 1 (x(p) -x(r))(y(r) -y(q)) h (g-1)
k+1,l (r, q; r,

p K |q L ) + h I⊂K J⊂L W (h) i+1,j (r, p I |q J )h (g-h)
k-i,l-j (r, q; p K/I |q L/J ) ,

(2 -22) W (g) k,l+1 (p K |q L , q) = Res r→q j ,p K dy(q) (y(r) -y(q)) h (g-1)
k+1,l (r, q; r,

p K |q L ) + h I⊂K J⊂L W (h) i+1,j (r, p I |q J )h (g-h)
k-i,l-j (r, q; p K/I |q L/J ) .

(2 -23)

where Res

r→q j
means that one takes the residues around all the points qj = q such that y(q j ) = y(q).

Given the initial conditions:

h (0) 0,0 = 1 , W (g) k,0 (p 1 , . . . , p k ) = W (g) k (p 1 , . . . , p k ) E (2-24)
where

W (g) k (p 1 , . . . , p k ) E
is the function defined in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], the above system is triangular and computes univocally any h

(g) k,l and W (g)
k,l in at most k + l + g 2 2 steps. One easily proves by recursion on 2g + k + l that:

H (g) k,l (p, q; p K |q L ) has poles        in p = a, q, q L in q = b, p, p K in p j = a, q, q L in q j = b, p, p K (2-25) and W (g) k,l (p K |q L ) has poles in p j = a, q L in q j = b, p K (2-26) proof: Since Ũ(g) k,l (x(p), q; p K |q L ) is a polynomial in x(p) of degree at most d 1 -2,
it is given by the Lagrange interpolation formula:

Ũ(g) k,l (x(p), q; p K |q L ) = Ũ(0) 0,0 (x(p), q) d 1 j=1 Ũ(g) k,l (x(q j ), q; p K |q L ) (x(p) -x(q j )) Ũ(0) 0,0 x (x(q j ), q) = Ũ(0) 0,0 (x(p), q) d 1 j=1 Res r→q j Ũ(g) k,l (x(q j ), q; p K |q L ) dx(r) (x(p) -x(r)) Ũ(0) 0,0 (x(r), q) . (2 -27)
Then we replace Ũ(g) k,l (x(q j ), q; p K |q L ) by its value from the loop equation 2-19:

Ũ(g) k,l (x(p), q; p K |q L ) = - d 1 j=1
Res r→q j

Ũ (0) 0,0 (x(p),q) (x(p)-x(r)) Ũ (0) 0,0 (x(r),q) h I,J W (h) i+1,j (r, p I |q J )H (g-h) k-i,l-j (r, q; p K/I |q L/J ) +H (g-1)
k+1,l (r, q; r,

p K |q L ) - m d pm H (g) k-1,l (pm,q;p K/{m} |q L ) dx(r) x(r)-x(pm)
(2-28) Notice that the same residue computed at r → p gives the terms in the RHS of the loop equation 2-19, and therefore:

(y(q) -y(p))H (g) k,l (p, q; p K |q L ) = Res r→p,q j Ũ(0) 0,0 (x(p), q) (x(p) -x(r)) Ũ(0) 0,0 (x(r), q) h I,J W (h) i+1,j (r, p I |q J )H (g-h) k-i,l-j (r, q; p K/I |q L/J ) +H (g-1)
k+1,l (r, q; r,

p K |q L ) - m d pm H (g) k-1,l (p m , q; p K/{m} |q L ) dx(r) x(r) -x(p m ) .
(2 -29)

Moreover the last term d pm

H (g) k-1,l (pm,q;p K/{m} |q L ) dx(r) x(r)-x(pm)
can be computed explicitely:

d pm Res r→p,q j Ũ (0) 0,0 (x(p),q) (x(p)-x(r)) Ũ (0) 0,0 (x(r),q) H (g) k-1,l (pm,q;p K/{m} |q L ) dx(r) x(r)-x(pm) = d pm Res r→p,q j E(x(p),y(q))(x(r)-x(q)) (x(p)-x(r))(x(p)-x(q)) E(x(r),y(q)) H (g) k-1,l (pm,q;p K/{m} |q L ) dx(r) x(r)-x(pm)
.

(2-30)

Under this form, one can see that the integrant is a rational function of x(r). Thus, the residue can be computed on the complex plane obtained by the projection x and we can move the integration contours on the complex plane instead of the curve E itself. This term is then equal to:

d pm Res x→x(p),x(q j ) E(x(p), y(q))(x -x(q)) (x(p) -x)(x(p) -x(q)) E(x, y(q)) H (g) k-1,l (p m , q; p K/{m} |q L ) dx x -x(p m ) = -d pm Res x→x(pm) E(x(p), y(q))(x -x(q)) (x(p) -x)(x(p) -x(q)) E(x, y(q)) H (g) k-1,l (p m , q; p K/{m} |q L ) dx x -x(p m ) = -d pm E(x(p), y(q))(x(p m ) -x(q)) (x(p) -x(p m ))(x(p) -x(q)) E(x(p m ), y(q)) H (g) k-1,l (p m , q; p K/{m} |q L ) = -Res r→pm Ũ(0) 0,0 (x(p), q) (x(p) -x(r)) Ũ(0) 0,0 (x(r), q) H (g) k-1,l (r, q; p K/{m} |q L )W (0) 2,0 (r, p m ) = -Res r→pm Ũ(0) 0,0 (x(p), q) (x(p) -x(r)) Ũ(0) 0,0 (x(r), q) h,I,J W (h) i+1,j (r, p I |q J )H (g-h) k-i,l-j (r, q; p K/I |q L/J ) +H (g-1)
k+1,l (r, q; r,

p K |q L ) , (2-31) 
where the last equality holds thanks to the loop equation Eq. [START_REF] Bergère | Mixed correlation function and spectral curve for the 2-matrix model[END_REF][START_REF] Bertola | Two-matrix model with semiclassical potentials and extended Whitham hierarchy[END_REF][START_REF] Bertola | Mixed Correlation functions of the 2-Matrix Model[END_REF][START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF][START_REF] Brezin | [END_REF][START_REF] Chekhov | Hermitian matrix model free energy: Feynman graph technique for all genera[END_REF][START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Daul | Rational Theories of 2D Gravity from the Two-Matrix Model[END_REF][START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] David | Planar diagrams, two-dimensional lattice gravity and surface models[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF][START_REF] Eynard | Loop equations for the semiclassical 2-matrix model with hard edges[END_REF][START_REF] Eynard | 2-matrix versus complex matrix model, integrals over the unitary group as triangular integrals[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF][START_REF] Eynard | Topological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formula[END_REF]. Therefore:

(y(q) -y(p))H (g) k,l (p, q; p K |q L ) = Res r→p,q j ,p K Ũ(0) 0,0 (x(p), q) (x(p) -x(r)) Ũ(0) 0,0 (x(r), q) h I,J W (h) i+1,j (r, p I |q J )H (g-h) k-i,l-j (r, q; p K/I |q L/J ) +H (g-1)
k+1,l (r, q; r, p K |q L ) .

(2-32)

If we divide by Ũ(0) 0,0 (x(p), q) we obtain:

-h

(g) k,l (p, q; p K |q L ) = Res r→p,q j ,p K 1 (x(p) -x(r)) (y(r) -y(q)) h I,J W (h) i+1,j (r, p I |q J )h (g-h) k-i,l-j (r, q; p K/I |q L/J ) +h (g-1)
k+1,l (r, q; r, p K |q L ) .

(2-33)

The other half of the theorem is obtained from the fact that for large x:

tr 1 x -M 1 1 y -M 2 → 1 x tr 1 y -M 2 (2-34)
and thus:

H (g) k,l (p, q; p K |q L ) → 1 x(p) W (g) k,l+1 (p K |q L , q) dy(q) (2-35) when p → ∞ x 5 .

Examples, first few terms

Let us solve the recursive definition and give explicit formulae for the simplest functions.

Example W (0)

1,1 : In particular, definitions Eq. and Eq. give:

W (0) 1,1 (p 1 |q) = Res r→q j ,p 1 dy(q) B(r, p 1 ) (y(r) -y(q))
= -Res r→q dy(q) B(r, p 1 ) (y(r) -y(q)) = -B(q, p 1 ).

(2-36)

Therefore we recover:

W (0) 2,0 (p 1 , q) + W (0) 1,1 (p 1 |q) = 0. (2-37) Example H (0) 1,0 : h (0)
1,0 (p, q; p 1 ) = Res

r→q j ,p,p 1 B(r, p 1 ) (x(p) -x(r))(y(r) -y(q)) = -Res r→p i ,q B(r, p 1 ) (x(p) -x(r))(y(r) -y(q)) . (2-38) Example H (0) 0,1 : h (0) 0,1 (p, q; p 1 ) = Res r→q j ,p W (0) 1,1 (r|p 1 ) (x(p) -x(r))(y(r) -y(q)) = -Res r→q j ,p B(r, p 1 ) (x(p) -x(r))(y(r) -y(q)) = Res r→p i ,q,p 1 B(r, p 1 ) (x(p) -x(r))(y(r) -y(q))
.

(2-39)

Moreover we have:

h (0) 1,0 (p, q; p 1 ) + h (0) 0,1 (p, q; p 1 ) = Res r→p 1 B(r, p 1 ) (x(p) -x(r))(y(r) -y(q)) = d p 1 1 (x(p) -x(p 1 ))(y(p 1 ) -y(q)) . (2-40) Example W (0)
2,1 :

W (0) 2,1 (p 1 ,p 2 |q) dy(q) = Res r→q j ,p 1 ,p 2 B(r,p 1 )h (0) 1,0 (r,q;p 2 )+B(r,p 2 )h (0)
1,0 (r,q;p 1 )+W

(0) 3,0 (r,p 1 ,p 2 ) (y(r)-y(q)) = -Res r→q,a B(r,p 1 )h (0) 1,0 (r,q;p 2 )+B(r,p 2 )h (0) 1,0 (r,q;p 1 )+W (0) 3,0 (r,p 1 ,p 2 ) (y(r)-y(q))
.

(2-41)

Conclusion of section 2

Therefore, through theorem 2.1, we have an effective explicit method to compute any H (g) k,l and any W (g) k,l for the 2-matrix model. This is an interesting result in itself, since none of those quantities were computed before, and those quantities are of importance in applications of random matrices to combinatorics of maps with colored boundaries, i.e. boundary conformal field theory.

An important remark, is that we have chosen to emphasize the role of the loop equation 2-19, rather than equation 2-18, i.e. we have used the Lagrange interpolation formula for a polynomial in x, whereas we could have done the same thing with a polynomial in y. In other words, we have chosen the x-representation rather than the y-representation, although both methods must give the same answer. In particular, given W k,0 , theorem 2.1 allows to compute W 0,l . W k,0 can be computed with the method of [START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] using the x-representation, while W 0,l can be computed with the method of [START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] using the y-representation, i.e. under the exchange x ↔ y .

(2-42)

Therefore, in the following section, we improve the result of theorem 2.1, in order to prove that the diagrammatic rules of [START_REF] Chekhov | Free energy topological expansion for the 2-matrix model[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] are indeed symmetric under the exchange of x and y. In other words we prove theorem 7.1 of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], as announced in that article.

3 Proof of the symmetry x-y of the algebraic invariants F (g) (E)

Consider the two algebraic curves:

Ê(x, y) = E(x, y) and Ě(x, y) = E(y, x) (3-1)
In [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], for any curve E an infinite sequence of invariants F (g) was defined. Here we consider those invariants for the 2 curves Ê and Ě.

In this section we prove the following theorem (which was announced in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]):

Theorem 3.1 Symmetry under the exchange x ↔ y:

F (g) ( Ê) = F (g) ( Ě) (3-2)
where the functional F (g) (E) is defined for any curve E(x, y) in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].

Preliminaries

For the curve Ê(x, y) = 0, we have defined in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] an infinite sequence of meromorphic forms:

Ŵ (g) k (p 1 , . . . , p k ) = W (g) k (p 1 , . . . , p k ) Ê (3-3)
with poles only at the zeroes a = {a i } of dx, and some free energies

F (g) = 1 2 -2g Res p→a Φ(p) Ŵ (g) 1 (p) (3-4)
where Φ is any antiderivative of ydx, dΦ = ydx and Res p→a stands for i Res p→a i .

And likewise, for the curve Ě(x, y) = 0, we have defined an infinite sequence of meromorphic forms:

W (g) k (q 1 , . . . , q k ) = W (g) k (q 1 , . . . , q k ) Ě (3-5)
with poles only at the zeroes b = {b i } of dy, and some free energies

F (g) = 1 2 -2g Res q→b Ψ(q) W (g) 1 (q) (3-6)
where dΨ = xdy.

Our first step is to extend those forms into two families of multilinear meromorphic forms similar to those of section 2 (i.e. mimicking the mixed traces of matrix models):

Ŵ (g) k,l (p 1 , . . . , p k |q 1 , . . . , q l ) and W (g) k,l (p 1 , . . . , p k |q 1 , . . . , q l ) (3-7) such that: Ŵ (g) k,0 = Ŵ (g) k , W (g) 0,l = W (g) l . (3-8) 
Our second step, is to prove that:

Ŵ (g) k,l = W (g) k,l . (3-9) 
Our third step, is to prove that:

Ŵ (g) k+1,l (p K , p|q L ) + W (g) k,l+1 (p K |p, q L ) = d p A (g) k,l (p; p K |q L ) dx(p)dy(p) (3-10) 
where

A (g)
k,l (p; p K |q L ) has poles of degree at most 2 at the poles of ydx, so that in particular for k = l = 0 we have:

Ŵ (g) 1,0 (p) + W (g) 0,1 (p) = d p A (g) 0,0 (p) dx(p)dy(p) (3-11)
where A (g) 0,0 has poles of degree at most 2 at the poles of ydx. This last step is sufficent to prove that F (g) = F (g) .

(3-12)

Definitions of mixed correlators

Ŵ (g) k,l and W (g) k,l
We define the initial terms:

Ê(0) 0,0 (x, y) = Ě(0) 0,0 (x, y) = E(x, y), (3-13) 
Ĥ(0) 0,0 (p, q) = Ȟ(0) 0,0 (p, q) = E(x(p), y(q)) (x(p) -x(q))(y(p) -y(q)) ,

Ŵ (0) 1,0 (p) = Ŵ (0) 0,1 (p) = W (0) 1,0 (p) = W (0) 0,1 (p) = 0, (3-14) 
Ŵ (0) 2,0 (p, q) = Ŵ (0) 0,2 (p, q) = - Ŵ (0) 1,1 (p, q) = B(p, q), (3-15) 
and

W (0) 2,0 (p, q) = W (0) 0,2 (p, q) = - W (0) 1,1 (p, q) = B(p, q). (3-17)
Let us define recursively the following quantities for any g, k, l ≥ 0:

J (g) k,l (p, q; p K |q L ) := k m 1 ,m 2 =0 l n 1 ,n 2 =0 g h,h ′ =1 Ŵ (h) m 1 +1,n 1 (p, p M 1 |q N 1 )× × W (h ′ ) m 2 ,n 2 +1 (p M 2 |q N 2 , q)H (g-h-h ′ ) k-m 1 -m 2 ,l-n 1 -n 2 (p, q; p K/{M 1 M 2 } |q L/{N 1 N 2 } ) + g-1 h=1
(x(p) -x(q)) Ŵ (h) 1,0 (p)dy(q) + (y(q) -y(p))

W (h) 0,1 (q)dx(p) H (g-h) k,l (p, q; p K |q L ) + k m=0 l n=0;mn =kl g h=0 H (g-h) k-m,l-n (p, q; p K/M |q L/N )× × (x(p) -x(q)) Ŵ (h) m+1,n (p, p M |q N )dy(q) + (y(q) -y(p)) W (h) m,n+1 (p M |q N , q)dx(p) +(x(p) -x(q))H (g-1)
k+1,l (p, q; p, p K |q L )dy(q) + (y(q) -y(p))H

(g-1)
k,l+1 (p, q; p K |q L , q)dx(p)

+ k m=0 l n=0 g-1 h=0 Ŵ (h) m+1,n (p, p M |q N )H (g-h-1)
k-m,l-n+1 (p, q; p K/M |q L/N , q)

+ 1 2 Ŵ (h) m+1,n+1 (p, p M |q N , q) + W (h) m+1,n+1 (p, p M |q N , q) H (g-h-1) k-m,l-n (p, q; p K/M |q L/N ) + W (h) m,n+1 (p M |q N , q)H (g-h-1) k-m+1,l-n (p, q; p, p K/M |q L/N ) + H (g-2)
k+1,l+1 (p, q; p, p K |q L , q) (3-18)

and

J (g) k,l (p, q; p K |q L ) := J (g) k,l (p, q; p K |q L ) - k α=1 d pα dx(p) x(p)-x(pα) (x(p α ) -x(q))dy(q) H (g) k-1,l (p α , q; p K-{α} |q L ) + g h=1 W (h) 0,1 (q)H (g-h) k-1,l (p α , q; p K-{α} |q L ) + h <kl i,j=0 H (g-h) i-1,j (p α , q; p I-{α} |q J ) W (h) k-i,l-j+1 (p K-I |q L-J , q) - l β=1 d q β dy(q) y(q)-y(q β ) (y(q β ) -y(p))dx(p) H k,l-1 (p, q β ; p K |q L-{β} ) + g h=1 Ŵ (h) 1,0 (p)H (g-h) k,l-1 (p, q β ; p K |q L-{β} ) + <kl i,j=0 h H (g-h) i,j-1 (p, q β ; p I |q J-{β} ) Ŵ h k-i+1,l-j (p, p K-I |q L-J ) + k α=1 l β=1 d pα d q β dx(p) x(p)-x(pα) dy(q) y(q)-y(q β ) H k-1,l-1 (p α , q β ; p K-{α} |q L-{β} ) - k α=1 d pα H (g-1)
k-1,l+1 (pα,q;p K-{α} |q L ,q)dx(p)

x(p)-x(pα)

- l β=1 d q β H (g-1)
k+1,l-1 (p,q β ;p,p K |q L-{β} )dy(q) y(q)-y(q β ) .

( Now we define:

Ŵ (g) k+1,l (p, p K |q L ) := Res s→a,q L dS s,o (p) 1 d 1 d 1 j=1 J (g) k,l (s, sj ; p K |q L ) U (0)
0,0 (s, y(s))dy(s)

+ 1 d 2 d 2 i=1 J (g) k,l (s i , s; p K |q L ) U (0) 0,0 (x(s), s)dx(s) , (3 -20) Ŵ (g) k,l+1 (p K |q L , q) := Res s→b,p K dS s,o (q) 1 d 1 d 1 j=1 J (g) k,l (s, sj ; p K |q L ) U (0)
0,0 (s, y(s))dy(s)

+ 1 d 2 d 2 i=1 J (g) k,l (s i , s; p K |q L ) U (0) 0,0 (x(s), s)dx(s) , (3 -21) and -U (g) k,l (p, q; p K |q L ) := (x(p) -x(q))H (g) k,l (p, q; p K |q L ) + h I,J W (h) i,j+1 (p I |q J , q)H (g-h)
k-i,l-j (p, q; p K/I |q L/J ) dy(q)

+ H (g-1)
k,l+1 (p, q; p K |q L , q) dy(q

) 2 - n d qn H (g)
k,l-1 (p, q n ; p K |q L/{n} ) y(q) -y(q n ) .

(3 -30)

Those definitions form a triangular system of definitions, and each term is well defined in a unique recursive way. Remark 3.2 Definitions eq.3-29 and eq.3-30 coincide with loop equation 2-19 and 2-18 in the matrix model case, i.e. when E is the classical spectral curve of the 2 matrix model.

Theorems

Theorem 3.2 For 2g + k + l ≥ 3, one has the following properties:

• Ŵ (g) k,l (p K |q L ) (resp. W (g) k,l (p K |q L )
) has poles only when p i → a, q L and q j → b, p K ;

• in any of the k +l variables, the A-cycle integrals vanish:

A Ŵ (g) k,l = A W (g) k,l = 0; • H (g)
k,l (p, q; p K |q L ) = Ȟ(g) k,l (p, q; p K |q L ) has poles only when p → q, a, q L and q → p, b, p K , and

E (g) k,l (x(p), q; p K |q L ) = Ě(g) k,l (p, y(q); p K |q L ) := E (g) (x(p), y(q); p K |q L ) (3-31) is a polynomial of degree d 1 -1 in x(p) and d 2 -1 in y(q); • U (g) k,l (p, y(q); p K |q L ) (resp. U (g) k,l (x(p), q; p K ; q L )) is a polynomial in y(q) (resp. x(p)) of degree d 2 -1 (resp. d 1 -1).

proof:

Let us proceed by induction on 2g + k + l. Suppose that the properties are satisfied for any g ′ , k ′ , l ′ such that 2g ′ + k ′ + l ′ < 2g + k + l. Let us prove that they are true for g, k, l. In order to make the proof more readable, we split it into pieces. Nevertheless, for every step, the global recursion hypothesis is needed.

We need the following lemma:

Lemma 3.1 The quantity f (g) k,l (s; p K ; q L ) := J (g) k,l (s, sj ; p K ; q L ) U (0) 0,0 (s, y(s))dy(s) (3-32)
is independent of j = 0, it is a meromorphic one-form in the variable s, with poles at s = a, q L , and it vanishes to order at least deg(ydx) -1 near the poles of ydx.

Similarly, the quantity

f (g) k,l (s; p K ; q L ) := J (g) k,l (s i , s; p K ; q L ) U (0) 0,0 (x(s), s)dx(s) . (3-33)
is independent of i = 0, it is a meromorphic one-form in the variable s, with poles at s = b, q L , and it vanishes to order at least deg(xdy) -1 near the poles of xdy. Moreover one has:

A f (g) k,l (s; p K ; q L ) + f (g) k,l (s; p K ; q L ) = 0, (3-34) 
B f (g) k,l (s; p K ; q L ) + f (g) k,l (s; p K ; q L ) = 0 (3-35)
and:

f (g) k,l (s; p K ; q L ) + f (g) k,l (s; p K ; q L ) = Res q→a,b,p K ,q L dS q,o (s) f (g)
k,l (q; p K ; q L ) + f (g) k,l (q; p K ; q L ) .

(3-36)

Proof of the lemma: First of all, One can remark that the definition of J (g) k,l involves only quantities whose properties are known by the recursion hypothesis. One can note that it can be written under the following forms:

J (g) k,l (p, q; p K ; q L ) := - g-1 h=1 k m=0 l n=0 W (h) m,n+1 (p M ; q, q N ) U g-h k-m,l-n (x(p), q; p K/M , q L/N )dx(p) - k m=0 l n=0,(m,n) =(0,0) W (0) m,n+1 (p M ; q, q N ) U g k-m,l-n (x(p), q; p K/M , q L/N )dx(p) - k m=0 l n=0,(m,n) =(k,l) W (g) m,n+1 (p M ; q, q N ) U 0 k-m,l-n (x(p), q; p K/M , q L/N )dx(p) -U (g-1)
k,l+1 (x(p), q; p K ; q, q L )dx(p)

+ g-1 h=1 k m=0 l n=0 d pα W (h) m,n+1 (p M ;q,q N )H g-h k-m-1,l-n (pα,q;p K/M/{α} ,q L/N )dx(p) x(p)-x(pα) + k m=0 l n=0,(m,n) =(0,0) d pα W (0) m,n+1 (p M ;q,q N )H g k-m-1,l-n (pα,q;p K/M/{α} ,q L/N )dx(p) x(p)-x(pα) + k m=0 l n=0,(m,n) =(k,l) d pα W (g) m,n+1 (p M ;q,q N )H 0 k-m-1,l-n (pα,q;p K/M/{α} ,q L/N )dx(p) x(p)-x(pα) +d pα H (g-1)
k-1,l+1 (pα,q;p K/{α} ;q,q L )dx(p)

x(p)-x(pα)

+(x(p) -x(q)) g-1 h=1 k m=0 l n=0 Ŵ (h) m+1,n (p, p M ; q N )dy(q)H (g-h)
k-m,l-n (p, q; p K/M ; q L/N )

+ k m=0 l n=0,(m,n) =(k,l) Ŵ (0) m+1,n (p, p M ; q N )dy(q)H (g) k-m,l-n (p, q; p K/M ; q L/N ) + k m=0 l n=0,(m,n) =(0,0) Ŵ (g) m+1,n (p, p M ; q N )dy(q)H (0) k-m,l-n (p, q; p K/M ; q L/N ) +H (g-1)
k+1,l (p, q; p, p K ; q L )dy(q) (3-37) and

J (g) k,l (p, q; p K ; q L ) = - g-1 h=1 k m=0 l n=0 W (h) m,n+1 (p M ; q, q N ) U g-h k-m,l-n (x(p), q; p K/m , q L/N )dx(p) - k m=0 l n=0,(m,n) =(0,0) W (0) m,n+1 (p M ; q, q N ) U g k-m,l-n (x(p), q; p K/m , q L/N )dx(p) - k m=0 l n=0,(m,n) =(k,l) W (g) m,n+1 (p M ; q, q N ) U 0 k-m,l-n (x(p), q; p K/m , q L/N )dx(p) -U (g-1)
k,l+1 (x(p), q; p K ; q, q L )dx(p) +d q β U (g) k,l-1 (p,q β ;p K ;q L/{β} ) y(q)-y(q β ) dx(p)dy(q)

-d pα x(pα)-x(q) x(p)-x(pα) H (g) k-1,l (p α , q; p K:{α} , q L )dx(p)dy(q) +(x(p) -x(q)) g-1 h=1 k m=0 l n=0 Ŵ (h) m+1,n (p, p M ; q N )dy(q)H (g-h) k-m,l-n (p, q; p K/M ; q L/N ) + k m=0 l n=0,(m,n) =(k,l) Ŵ (0) m+1,n (p, p M ; q N )dy(q)H (g) k-m,l-n (p, q; p K/M ; q L/N ) + k m=0 l n=0,(m,n) =(0,0) Ŵ (g) m+1,n (p, p M ; q N )dy(q)H (0) k-m,l-n (p, q; p K/M ; q L/N ) +H (g-1)
k+1,l (p, q; p, p K ; q L ) dy(q). (3-38) Thanks to the properties implied by the recursion hypothesis (U and Ũ are polynomials), one has:

J (g) k,l (q i , q; p K ; q L ) = - g-1 h=1 k m=0 l n=0 W (h) m,n+1 (p M ; q, q N ) U g-h k-m,l-n (x(q), q; p K/M , q L/N )dx(q) - k m=0 l n=0,(m,n) =(0,0) W (0) m,n+1 (p M ; q, q N ) U g k-m,l-n (x(q), q; p K/M , q L/N )dx(q) - k m=0 l n=0,(m,n) =(k,l) W (g) m,n+1 (p M ; q, q N ) U 0 k-m,l-n (x(q), q; p K/M , q L/N )dx(q) -U (g-1)
k,l+1 (x(q), q; p K ; q, q L )dx(q) +d q β U (g) k,l-1 (x(q), q β ; p K ; q L/{β} ) y(q) -y(q β ) dx(q)dy(q)

+d pα H (g)
k-1,l (p α , q; p K/{α} , q L ) dx(q)dy(q) (3 -39) for any non vanishing i. Thus this quantity does not depend on i, and f is clearly a meromorphic 1-form, whose poles can be easily seen on this expression using the recursion hypothesis.

The same considerations give the equivalent through the exchange of x ↔ y:

J (g) k,l (p, pj ; p K ; q L ) = - g-1 h=1 k m=0 l n=0 Ŵ (h) m+1,n (p, p M ; q N )U g-h k-m,l-n (p, y(p); p K/M , q L/N )dy(p) - k m=0 l n=0,(m,n) =(0,0) Ŵ (0) m+1,n (p, p M ; q N )U g k-m,l-n (p, y(p); p K/M , q L/N )dy(p) - k m=0 l n=0,(m,n) =(k,l) Ŵ (g) m+1,n (p, p M ; q N )U 0 k-m,l-n (p, y(p); p K/M , q L/N )dy(p) -U (g-1)
k+1,l (p, y(p); p, p K ; q L )dy(p)

+d pα U (g) k-1,l (p α , y(p); p K/{α} ; q L ) x(p) -x(p α ) dx(p)dy(p) +d q β H (g) k,l-1 (p, q β ; p K/{α} , q L/{β} ) dx(p)dy(p) (3 -40)
This quantity does not depend on j, and f is clearly a meromorphic 1-form, whose poles can be easily seen on this expression using the recursion hypothesis.

The fact that the A and B cycle integrals vanish comes from the symmetry x ↔ y. Indeed under the symmetry x ↔ y, f is changed to f and f is changed to f . At the same time the A-cycles are changed to -A because 2iπǫ = A ydx = -A xdy, and the B-cycles are changed to -B in order to form a canonical basis. Therefore, the A and B cycle integrals of f + f vanish. Equation 3-36 simply comes from Cauchy residue formula and Riemann's bilinear identity.

The fact that f vanishes to order at least deg(ydx) -1 near a pole α of ydx follows from the definition of J :

J (g) k,l (p, pj ; p K |q L ) dx(p)dy(p) ∼ p→α ∼ p→α x(p) -x(p j ) dx(p) k m=0 l n=0 g h=0 Ŵ (h) m+1,n (p, p M |q N )H (g-h) k-m,l-n (p, pj ; p K/M |q L/N ) +H (g-1)
k+1,l (p, pj ; p, p K |q L )

- k α=1 d pα (x(p α ) -x(p j )) x(p) -x(p α ) H (g) k-1,l (p α , pj ; p K-{α} |q L )
where the last equality holds because the integrant has no pole when s → qj . Then

H (g) k,l (p,q;p K ;q L ) E(x(p),y(q)) = = Res r→q,p i Res s→p,q j G (g) k,l (s,r;p K ;q L ) (y(q)-y(r))(x(s)-x(p))H (0) 0,0 (s,r) 1 (y(r)-y(s))(x(p)-x(q)) + 1 (x(s)-x(r))(y(q)-y(p)) - 1 (y(r)-y(s))(x(p)-x(q)) = Res r→q,p i Res s→p,q j G (g) k,l (s,r;p K ;q L ) (y(q)-y(r))(x(s)-x(p))(y(r)-y(s))(x(p)-x(q))H (0) 0,0 (s,r) + d 2 i=1 G (g) k,l (p,p i ;p K ;q L ) (y(q)-y(p))(y(q)-y(p i ))H (0) 0,0 (p,p i )dx(p) 2 .
(3-44) Note that the first term corresponds exactly to

Ȟ(g) k,l (p,q;p K ;q L ) E(x(p),y(q))
with the integration contours for r and s exchanged. However, the poles of the integrand are known and thus: (3 -45)

The last term does not contribute because the integrant is regular when r i → s, thus

H (g) k,l (p,q;p K ;q L ) E(x(p),y(q)) so that E (g) k,l = Ě(g) k,l . Moreover, one can see from Eq. (3-27) that E (g) k,l (p, q; p K |q L ) is a polynomial of y(q) while Ě(g) k,l (p, q; p K |q L ) is a polynomial of x(p), therefore E (g) k,l (x(p), y(q); p K |q L ) = E (g) k,l (p, q; p K |q L ) = Ě(g) k,l (p, q; p K |q L ) (3-51)
is a polynomial in two variables.

•U

k,l and Ũ (g) k,l are polynomials.

Eq. (3-49), Eq. (3-50), Eq. (3-37) and Eq. imply that

E (g) k,l (x(p), y(q); p K |q L ) = (x(p) -x(q)) Ũ(g) k,l (x(p), q; p K |q L ) + h I,J W (h) i,j+1 (p I ; q J , q) Ũ(g-h) k-i,l-j (x(p), q; p K/I |q L/J ) dy(q) + Ũ(g-1) k,l+1 (x(p), q; p K |q L , q) dy(q) - m d qm Ũ(g) k,l-1 (x(p), q m ; p K |q L/{m} ) y(q) -y(q m ) - m d pm H (g) k-1,l (p m , q; p K/{m} |q L ) (3-52) and E (g) k,l (x(p), y(q) 
; p K |q L ) = (y(q) -y(p))U (g) k,l (p, y(q); p K |q L ) + h I,J Ŵ (h) i+1,j (p, p I ; q J )U (g-h) k-i,l-j (p, y(q); p K/I |q L/J ) dx(p) + U (g-1)
k+1,l (p, y(q); p,

p K |q L ) dx(p) - m d pm U (g) k-1,l (p m , y(q); p K/{m} |q L ) x(p) -x(p m ) - m d qm H (g) k,l-1 (p, q m ; p K |q L/{m} ) (3-53)
from which (together with the recursion hypothesis), we deduce that U (g) k,l and Ũ(g) k,l are polynomials.

This proves the theorem 3.2.

Theorem 3.3 Symmetry of the W (g) k,l . For any k, l, g we have:

Ŵ (g-1) k+1,l+1 (p, p K |q L , q) = W (g-1) k+1,l+1 (p, p K |q L , q) (3-54) proof:
Let us prove it by recursion on 2g + k + l. Assume we have already proved it for any g ′ , k ′ , l ′ such that 2g

′ + k ′ + l ′ < 2g + k + l.
Insert Eq. (3-30) into Eq. (3-53) in order to eliminate the U's, and then insert the result into Eq. . Most of the terms cancel (in fact the definitions of J

(g) k,l , J (g) k,l , G (g)
k,l were designed for that purpose), and using the recursion hypothesis, the only term left is:

W (g-1) k+1,l+1 (p, p K |q L , q) = 1 2 W (g-1) k+1,l+1 (p, p K |q L , q) + Ŵ (g-1) k+1,l+1 (p, p K |q L , q) (3-55)
which proves the theorem.

Corollary 3.1 Ŵ (g) k,l (p K |q L ) = W (g) k,l (p K |q L
) is a symmetric function of its variables p 1 , . . . , p k , and a symmetric function of its variables q 1 , . . . , q l .

proof:

It is clear from the definitions that W (g) k,l (p K |q L ) is a symmetric function of its variables p 1 , . . . , p k , and that Ŵ (g) k,l (p K |q L ) is a symmetric function of its variables q 1 , . . . , q l . Now, we prove the following theorem:

Theorem 3.4 Ŵ (g) k,0 (p K |) = Ŵ (g) k (p K ) (3-56) and W (g) 0,l (|q L ) = W (g) l (q L ). (3-57)
proof: Write Eq. (3-53) for l=0:

E (g) k,0 (x(p), y(q); p K ) = (y(q) -y(p))U (g) k,0 (p, y(q); p K ) + h I Ŵ (h) i+1,0 (p, p I )U (g-h)
k-i,0 (p, y(q); p K/I ) dx(p)

+ U (g-1)
k+1,0 (p, y(q); p, p K ) dx(p) -

m d pm U (g)
k-1,0 (p m , y(q); p K/{m} ) x(p) -x(p m ) .

(3 -58)

Using Lemma B.2, we obtain:

Ŵ (g) k,0 (p K |) = Ŵ (g) k (p K ) (3-59)
The other equality is obtained by writing Eq. (3-52) for k = 0 and exchanging the roles of x and y in the Lemma B.2.

Theorem 3.5 

Ŵ (g) k+1,l (p, p K |q L ) + W (g) k,l+1 (p K |q L , p) = d p A (g) k,
Ŵ (g) k+1,l (p, p K |q L ) = Res s→a,q L dS s,o (p) f (g) k,l (s; p K |q L ) (3-63)
and we have:

Res p→α x(p)y(p) Ŵ (g) k+1,l (p, p K |q L ) = Res p→α Res s→a,q L x(p)y(p)dS s,o (p) f (g) k,l (s; p K |q L ) = Res s→a,q L Res p→α x(p)y(p)dS s,o (p) f (g) k,l (s; p K |q L ) = -Res s→a,q L (x(s)y(s) -x(o)y(o)) f (g) k,l (s; p K |q L ) (3 -64) since f (g)
k,l vanishes near the poles of ydx to order at least deg ydx -1, the expression above has no other poles than a, q L , and thus the total residue is zero. Theorem 3.7 For any k,l,g such that k + l + g ≤ 1, one has

Res p→a,q L Φ(p) Ŵ (g) k+1,l (p, p K |q L ) = Res q→b,p K Ψ(q) W (g) k,l+1 (p K |q L , q) = (2 -2g -k -l) Ŵ (g) k,l (p K |q L ).
(3-65)

proof:

We have:

Res p→a,q L Φ(p) Ŵ (g) k+1,l (p, p K |q L ) -Res p→b,p K Ψ(p) W (g) k,l+1 (p K |q L , p) = Res p→a,q L x(p)y(p) Ŵ (g) k+1,l (p, p K |q L ) -Res p→a,q L Ψ(p) Ŵ (g) k+1,l (p, p K |q L ) -Res p→b,p K Ψ(p) W (g) k,l+1 (p K |q L , p) = - Res p→a,b,p K ,q L Ψ(p)( Ŵ (g) k+1,l (p, p K |q L ) + W (g) k,l+1 (p K |q L , p)) = Res p→a,b,p K ,q L
x(p)dy(p) A (3-66)

The fact that Res p→a,q L Φ(p)

Ŵ (g) k+1,l (p, p K |q L ) = (2 -2g -k -l) Ŵ (g) k,l (p K |q L )
, can be proved by recursion on 2g + k + l and using corolary 3.1. This allows to prove our main theorem: Theorem 3.8 The F (g) 's are symmetric under the exchange x ↔ y:

F (g) = F (g) (3-67)
proof: Indeed, we have:

(2 -2g) F (g) = Res a Φ(p) Ŵ (g) 1,0 (p) , (2 -2g) F (g) = Res b Ψ(p) W (g) 0,1 (p). (3-68)

Additional properties

The following theorem relates H and W : Theorem 3.9 We have:

Ŵ (g) k+1,l (p, p K |q L ) = Res q→α H (g) k,l (p, q; p K |q L ) H (0) 0,0 (p, q) dy(q) (3-69) W (g) k,l+1 (p K |q L , q) = Res p→α H (g) k,l (p, q; p K |q L ) H (0) 0,0 (p, q)
dx(p).

(3-70)

proof:

Multiply equation 3-30 by dx(p)dy(q)/(y(q) -y(p))H (0) 0,0 (p, q) and take the residues at q → α.

Remark 3.3 This theorem was expected from the matrix model property that

tr 1 x -M 1 1 y -M 2 → 1 x tr 1 y -M 2 (3-71) when x → ∞.

Conclusion

In this article, we have proved the x ↔ y symmetry which was announced in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]. This symmetry has many applications, for instance in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] it was used to recover the (p, q) ↔ (q, p) duality of minimal models [START_REF] Kharchev | On p -q duality and explicit solutions in c < 1 2d gravity models[END_REF], or to give a very short proof that Kontsevitch integral indeed depends only on odd times and satisfies KdV hierarchy [START_REF] Itzykson | Combinatorics of the Modular Group II: The Kontsevich integrals[END_REF].

In addition we have shown how to compute some family of mixed correlation functions of the 2-matrix model.

This could open the route to some matrix model approach to the understanding of boundary conformal field theory in higher genus. In a forthcoming article, we shall introduce a similar algebraic geometry method to compute all possible mixed correlation functions [START_REF] Eyner | Whole topological expnasion of any correlation function in the two matrix model[END_REF]. This work also raises many questions, and calls the following prospects: • It would be interesting to see what the H k,l and W k,l correspond to for other matrix models (e.g. Kontsevitch's integral, chain of matrices), although we may guess that they also correspond to mixed traces expectation values in those cases.

• More interesting would be to understand what the H (g) k,l and W (g) k,l compute in algebraic geometry. Those should correspond to "volume" or "intersection numbers of some moduli spaces" ?

Appendix A Spectral curve

We recall that the curve E(x, y), called the classical spectral curve, is given by a polynomial of the form:

E(x, y) = d 2 +1 j=0 E j (x)y j (1-1)
We define the "quantum spectral curve" as the formal power series:

E N (x, y) = g N -2g E (g) (x, y) (1-2)
where

E (g) (x, y) = E d 2 +1 (x) d 2 r=1 J 1 ∪...∪Jr=K g 1 ,...,gr δ l (g l +|J l |-1),g r l=1 W (g l ) |J l | (p J l ) (1-3) with K = {1, . . . , d 2 } (1-4) and W (g) k (p K ) := W (g) k (p K ) + δ k,1 δ g,0 (y -Y (p 1 )) (1-5) 
where W (g) k (p K ) is the meromorphic form defined in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] for the curve E(x, y).

Lemma A.1 For any g, E (g) (x, y) is a polynomial in x and y, whose degrees are at most those of E.

proof:

It is clear that E N (x, y) is a polynomial in y, and a rational function of x. Let us prove that E (g) (x, y) is indeed a polynomial in x for g ≥ 1. The coefficient of y k in E (g) (x, y) is:

E (g) k (x) E d 2 +1 (x) = J 0 ⊂K,|J 0 |=k j∈J 0 y(p j ) d 2 -k r=1 J 1 ∪...∪Jr=K/J 0 g 1 ,...,gr δ l (g l +|J l |-1),g r l=1 W |J l | (g l ) (p J l ) (1-6)
First, notice that the product of W 's can have poles only at branch-points, and the product of y's can have poles only at poles of y. The poles of y which are not poles of x, are killed by the prefactor E d 2 +1 (x), as they are in the classical curve E(x, y). Let us consider the poles at a branch-point a. The only terms which might diverge at p → a are of either of the following forms

• (W (h) 1+|J| (p, p J ) + W (h) 1+|J| (p, p J )) × (reg)
where reg means a term with no poles at p → a. This term is regular because of theorem 4.4 in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].

• or (W

(g 1 ) 1+|J 1 | (p, p J 1 )W (h-g 1 ) 1+|J|-|J 1 | (p, p J/J 1 ) + W (h-1)
2+|J| (p, p, p J )) × (reg) again, this expression is regular when p → a, because of theorems 4.4 and 4.5 in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].

Thus, we have proved that E (g) k (x) is a rational function of x whose only poles are the poles of x, i.e. it is a polynomial in x.

Consider a pole ∞ x of x, the behavior of E (g) (x(p), y(p)) when p → ∞ x is at most that of J 0 ⊂K j∈J 0 y(p j ). Notice that J 0 cannot be equal to K itself, because the product of the corresponding W 's vanishes (it contains no term), and |J 0 | cannot be equal to |K| -1, because the prefactor vanishes due to theorem 4.4 in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]. Thus, |J 0 | ≤ |K| -2, which implies that E (g) (x(p), y(p))dx(p) has a pole of degree at most that of E y (x(p), y(p)), i.e. E (g) (x(p), y(p)) is contained in the Newton's polytope of E(x, y). This means that

E (g) (x(p), y(p)) E y (x(p), y(p)) dx(p) (1-7) 
is a holomorphic differential.

Appendix B Lemma: unicity of the solution of loop equations

Lemma B. [START_REF] Bergère | Mixed correlation function and spectral curve for the 2-matrix model[END_REF] The system of equations:

E (g) k (x(p), y(q); p K ) = (y(q) -y(p))U (g) k (p, y(q); p K ) + h I W (h) i+1 (p, p I )U (g-h)
k-i (p, y(q); p K/I ) dx(p)

+ U (g-1)
k+1 (p, y(q); p, p K ) dx(p) - where:

• if 2g + k > 2, W (g)
k+1 (p, p K ) has poles only at branchpoints in any of its variables, and vanishing A-cycle integrals,

• E (g) k (x(p), y(q); p K ) is a polynomial in x(p) of degree at most d 1 -1, and a polynomials in y(q) of degree at most d 2 -1,

• U (g) k (p, y(q); p K ) is a polynomials in y(q) of degree at most d 2 -1, has a unique solution.

This solution is such that

W (g) k (p K ) = Ŵ (g) k (p K ). (2-2)
Proof of the Lemma: Unicity:

We prove it by recursion on 2g + k. Assume it is already proved for any g ′ , k ′ such that 2g ′ + k < 2g + k.

At p = q, Eq. (2-1) gives: has no pole at the branchpoints and does not contribute to the residue, and similarly the las term of Eq. (2-3) does not contribute to the residue. We get: W k-i (r, y(r); p K/I ) .

(2-6)

Since all the terms in the RHS are already known from the recursion hypothesis, this determines W (g) k+1 (p, p K ) uniquely. Then, we write Eq. (2-1) for p = qj with j = 1, . . . , d 1 :

E (g) k (x(q j ), y(q); p K ) = h I W (h)
i+1 (q j , p I )U (g-h)

k-i (q j , y(q); p K/I ) dx(q j ) + U (g-1)

k+1 (q j , y(q); qj , p K ) dx(q j ) -

m d pm U (g)
k-1 (p m , y(q); p K/{m} ) x(q j ) -x(p m ) (2 -7) since all terms in the RHS are uniquely determined, so is the LHS. And since E (g) k (x(p), y(q); p K ) is a polynomial in x(p) of degree d 1 -1 and we know its value in d 1 points, then E (g) k (x(p), y(q); p K ) is uniquely determined. Then, using Eq. (2-1) once again, we uniquely determine U (g) k (p, y(q); p K ). This proves the unicity for g and k.

Existence: Start from the meromorphic form W (g) k (p K ) defined in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] for the curve E(x, y), and define: W Therefore, the functions E k (p, y; p K ). Thus, we have found an explicit solution of the system of lemma B.2, which proves the existence.

  (p; p K |q L ) dx(p)dy(p) = -Res p→α x(p)dy(p) A (g) k,l (p; p K |q L ) dx(p)dy(p) = 0.

k- 1

 1 (p m , y(q); p K/{m} ) x(p) -x(p m ) (2 -1)

Wk- 1

 1 (g)k+1 (p, p K ) = E (g) k (x(p), y(p); p K )dx(p) U i+1 (p, p I )U (g-h) k-i (p, y(p); p K/I ) U (p m , y(p); p K/{m} )dx(p) (x(p) -x(p m ))U k+1 (p, p K ) = -Res r→p dS r,o (p) W (g) k+1 (r, p K ).(2-4)Since we know the poles of W (g) k+1 (p, p K ) and its A-cycle integrals, we may move the integration contour using Riemann's bilinear identity and get:W (g) k+1 (p, p K ) = Res r→a dS r,o (p) W (g) k+1 (r, p K ).(2-5)Now, we replace W (g) k+1 (r, p K ) by its value in Eq. (2-3). We see that the termE (g)k (x(r),y(r);p K )dx(r) U

  (g) k (p K ) := W (g) k (p K )/dx(p K ) + δ k,1 δ g,0 (y -y(p 1 )) (2-8)Then, let K 0 = {0, 1, . . . , d 2 } ∪ K and K 1 = {1, . . . , d 2 } ∪ K, and define:E (g) k (x(p 0 ), y; p K ) = E d 2 +1 (x) d 2 +1+kr=1 J 1 ∪...∪Jr=K 0 g 1 ,...,grδ l (g l +|J l |-1),g r l=1 W (g l ) |J l | (p J l ) k (p 0 , y; p K ) = E d 2 +1 (x) d 2 +k r=1 J 1 ∪...∪Jr=K 1 g 1 ,...,gr δ l (g l +|J l |-1),g r l=1 W (g l ) |J l | (p J l ). (2-10) It is clear that both E (g) k (x, y; p K ) and U(g)k (p, y; p K ) are polynomials in y of degree at most d 2 -1. Following the same line as in lemma A.1, it is easy to get that E (g) k (x, y; p K ) is also a polynomial in x of degree at most d 1 -1.

k

  (x, y; p K ), U (g) k (p, y; p K ) and W (g) k (p K ) obey the requirements of lemma B.2, and eq.2-1 is clearly satisfied from the definitions of E (g) k (x, y; p K ) and U (g)

  (p; p K |q L ) has at most simple poles when p → α. K |q L , p) are vanishing, and thus it is the differential of some function. The fact that A (p; p K |q L ) has at most simple poles when p → α, follows from lemma 3.1.

			l (p; p K |q L ) dx(p)dy(p)	(3-60)
	(g) where A k,l proof:			
	From Eq. (3-42), it is easy to see that all contour integrals of W (g) k,l+1 (p (g)	Ŵ (g) k+1,l (p, p K |q L ) +
	k,l Theorem 3.6			
	Res p→α	x(p)y(p)	Ŵ (g) k+1,l (p, p K |q L ) = 0,		(3-61)
	Res p→α	x(p)y(p)	Ŵ (g) k,l+1 (p K |q L , p) = 0.		(3-62)
	proof:			
	By definition:			
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E-mail: orantin@spht.saclay.cea.fr

A formal integral is defined as a formal power series in some expansion parameter t, as explained in[START_REF] Eynard | Formal matrix integrals and combinatorics of maps[END_REF] or[START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]. Formal matrix integrals always have a 1/N 2 expansion order by order in t, called the topological expansion.

∞ x is the only point on the curve where the meromorphic function x has a simple pole (see[START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF] for further details).
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G (g)

k,l (p, q; p K |q L ) := J (g) k,l (p, q; p K |q L ) + H (0) 0,0 (p, q) (x(p) -x(q)) Ŵ (g) k+1,l (p, p K |q L )dy(q) + (y(q) -y(p)) W (g) k,l+1 (p K |q L , q)dx(p) ,

k,l (p, q; p K |q L ) := J (g) k,l (p, q; p K |q L ) + H (0) 0,0 (p, q) (x(p) -x(q)) Ŵ (g) k+1,l (p, p K |q L )dy(q) + (y(q) -y(p))

k,l (p, q; p K |q L ) E(x(p), y(q)) := Res

(we prove below that Ĥ(g)

k,l ) as well as

k+1,l (p, q; p,

which is at most finite if p approaches a pole α of ydx. Then it implies that

vanishes at order at least deg(ydx) -1.

The same holds for f.

k,l has poles only when p i → a, q L and q j → b, p K , and

From the definition eq.3-20, it is clear that Ŵ (g) k+1,l (p, p 1 , . . . , p k |q 1 , . . . , q l ) is finite when p is not close to a branch point or to one of the q j 's, and becomes infinite only if the integration contour is pinched. Thus in the variable p, the only poles of Ŵ (g) k+1,l (p, p 1 , . . . , p k |q 1 , . . . , q l ) are at p = a, q L . The poles of Ŵ (g) k+1,l (p, p 1 , . . . , p k |q 1 , . . . , q l ) in any other variable, follow from the recursion hypothesis, and thus they are at p i = a, q L , and at q j = b, p, p K .

The fact that A Ŵ (g) k+1,l = 0 when one integrates over the first variable comes from the fact that this is a property of dS, and in the other variables it comes from the recursion hypothesis.

By a symmetric argument, the same holds for W (g) k,l+1 (p 1 , . . . , p k |q 1 , . . . , q l , p), and we see that Ŵ (g) k,l and W (g) k,l have the same poles. We have (from the Cauchy residue formula and Riemann bilinear identity):

One has:

k,l (p,r;p K ;q L ) (y(q)-y(p))(y(q)-y(r))(x(p)-x(r))H k,l (s,r;p K ;q L ) (y(q)-y(p))(y(q)-y(r))(x(s)-x(r))(x(s)-x(p))H (0) 0,0 (s,r) = Res r→q,p i Res s→p,q j G (g) k,l (s,r;p K ;q L ) (y(q)-y(p))(y(q)-y(r))(x(s)-x(r))(x(s)-x(p))H (0) 0,0 (s,r)

k,l (q j ,q;p K ;q L ) (x(p)-x(q))(x(q j )-x(p))H (0) 0,0 (q j ,q)dy(q) 2 = Ȟ(g) (p,y(q)) E(x(p),y(q))

is a holomorphic 1-form in s, i.e. it has no poles. We have:

(y(p) -y(p i )) (y(q) -y(p))(y(q) -y(p i ))

(x(q) -x(q j )) (x(p) -x(q))(x(p) -x(q j ))

Res s→p i (y(p) -y(s)) (y(q) -y(p))(y(q) -y(s))

k,l (p, q; p K |q L ) = Ȟ(g) k,l (p, q; p K |q L ) = H (g) k,l (p, q; p K |q L ).

• E (g) k,l (p, q; p K |q L ) = Ě(g) k,l (p, q; p K |q L ).

We have from Eq. (3-27)

k,l (p, q, p K |q L ) = (x(p) -x(q))(y(p) -y(q)) H k,l (p, q, p K |q L ) = (x(p) -x(q))(y(p) -y(q)) Ȟ(g) k,l (p, q, p K |q L ) -G (g) k,l (p, q; p K |q L ) dx(p)dy(q) , (3-50)