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Abstract— Presented in this paper is the kinematic analysis 

of a symmetrical three-degree-of-freedom planar parallel 

manipulator. In opposite to serial manipulators, parallel 

manipulators can admit not only multiple inverse kinematic 

solutions, but also multiple direct kinematic solutions. This 

property produces more complicated kinematic models but 

allows more flexibility in trajectory planning. To take into 

account this property, the notion of aspects, i.e. the maximal 

singularity-free domains, was introduced, based on the notion 

of working modes, which makes it possible to separate the 

inverse kinematic solutions. The aim of this paper is to show 

that a non-singular assembly-mode changing trajectory exist 

for a symmetrical planar parallel manipulator, with equilateral 

base and platform triangle. 

Index Terms—Parallel manipulator, Singularity, Aspect, 

Assembly modes, Working modes. 

I. INTRODUCTION 

OR two decades, parallel manipulators have attracted the 

attention of more and more researchers who consider them 

as valuable alternative for robotic mechanisms [1-3]. As stated 

by a number of authors [4], conventional serial kinematic 

machines have already reached their dynamic performance 

limits, which are bounded by high stiffness of the machine 

components required to support sequential joints, links and 

actuators. Thus, while having good operating characteristics 

(large workspace, high flexibility and manoeuvrability), serial 

manipulators have disadvantages of low precision, low 

stiffness and low power. Also, they are generally operated at 

low speed to avoid excessive vibration and deflection. 

Conversely, parallel kinematic machines offer essential 

advantages over their serial counterparts (lower moving 

masses, higher rigidity and payload-to-weight ratio, higher 

natural frequencies, better accuracy, simpler modular 

mechanical construction, possibility to locate actuators on the 

fixed base) that should lead to higher dynamic capabilities. 

However, most existing parallel manipulators have limited and 

complicated workspace with singularities, and highly non-

isotropic input/output relations [5]. Hence, the performances 

may significantly vary over the workspace and depend on the 

direction of the motion.  

A well-known feature of parallel manipulators is the existence 

of multiple direct kinematic solutions (or assembly modes). 

That is, the mobile platform can admit several positions and 

orientations (or configurations) in the workspace for one given 

set of input joint values [6]. The dual problem arises in serial 

manipulators, where several input joint values correspond to 

one given configuration of the end-effector. To cope with the 

existence of multiple inverse kinematic solutions in serial 

manipulators, the notion of aspects was introduced [7]. The 

aspects were defined as the maximal singularity-free domains 

in the joint space. For usual industrial serial manipulators, the 

aspects were found to be the maximal sets in the joint space 

where there is only one inverse kinematic solution. Many other 

serial manipulators, referred to as cuspidal manipulators, were 

shown to be able to change solution without passing through a 

singularity, thus meaning that there is more than one inverse 

kinematic solution in one aspect. New uniqueness domains 

have been characterized for cuspidal manipulators [8], [9].  

A definition of the notion of aspect was given by [10] for 

parallel manipulators with only one inverse kinematic solution. 

These aspects were defined as the maximal singularity-free 

domains in the workspace. A second definition was given by 

[11] for parallel manipulators with several inverse kinematic 

solutions. These aspects were defined as the maximal 

singularity-free domains in the Cartesian product of the 

workspace with the joint space. 

However, it was shown in [12] that it is possible to link several 

direct kinematic solutions without meeting a singularity, thus 

meaning that there exists cuspidal parallel manipulators. This 

property was found for particular links lengths. However, [13] 

conjectured that such properties cannot exist for symmetrical 

parallel manipulator. The aim of this paper is to show that a 

symmetrical 3-DOF planar parallel manipulator can change 

assembly mode without meeting a singularity. We mean by 

symmetrical, a manipulator with equilateral base and platform 

triangles. 

This paper is organized as follows. Section II describes the 

planar 3-RRR parallel manipulator studied, which is used all 

along this paper. Section III recalls the notion of aspect for 

parallel manipulators. A non-singular assembly-mode 

changing trajectory is shown for the symmetrical planar 

parallel manipulator. The workspace and the generalized 
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aspects are calculated using octree models.  

II. PRELIMINARIES 

A. Parallel manipulator studied 

The manipulator under study is a planar three-dof manipulator 

comprising three parallel RRR chains shown in Fig. 1. This 

manipulator is used to illustrate the example in this paper. This 

manipulator has frequently studied, in particular in [6-15].  
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Figure 1: The 3-RRR parallel manipulator studied 

The actuated joint variables are the rotation of the three 

revolute joints located on the base ( 1 2 3, ,   ). The Cartesian 

variables are the coordinate ( , )x y  of the operation point P and 

the orientation  of the platform. The passive and actuated 

joints will always be assumed unlimited in this study. Points 

A1, A2 and A3, (respectively C1, C2 and C3) lie at the corners of 

an equilateral triangle, whose geometric center is 0 

(respectively P). Moreover, 1 2 3 6l l l l    , with li denoting 

the length of AiBi, 1 2 3 6m m m m    , with mi denoting the 

length of BiCi, 1 2 3 10r r r r    , with ri denoting the length 

of AiOi and 1 2 3 5s s s s    , with si denoting the length of 

CiP, in units of length that need not be specified in the paper.  

B. Kinematic Relations 

The velocity p  of point P can be obtained in three different 

forms, depending on which leg is traversed, namely, 

 = ( ) + ( ) ( ), [1,3]i i i i i i i i      p E b a E c b E p c    (1) 

with matrix E,  
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We would like to eliminate the three idle joint rates 1
 , 2

  

and 3
  from eq. (1), which we do by dot-multiplying eq. (1) 

by ( )T

i ic b , thus obtaining 
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Equation (2) can now be cast in vector form, namely, 

 1 2 3 with  and
T T

       At Bρ t p ρ       (3) 

with ρ  thus being the vector of actuated joint rates. Moreover, 

A and B are, respectively, the direct-kinematics and the 

inverse-kinematics matrices of the manipulator, defined as 
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C. Singularities 

For the planar manipulator studied, such configurations are 

reached whenever the axes B1C1, B2 C2 and B3C3 intersect 

(possibly at infinity), as depicted in Fig. 2. In the presence of 

such configurations, the manipulator cannot resist any torque 

applied at the intersection point I. 
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Figure 2: Example of parallel singularity 

For the manipulator under study, the serial singularities occur 

whenever ( ) ( )T

i i i i i il m  b a c b  for at least one value of i, 

as depicted in Fig. 3 for i = 1, i.e. whenever the points Ai, Bi, 

and Ci are aligned. 

D. Working modes 

The notion of working modes was introduced in [11] for 

parallel manipulators with several solutions to the inverse 

kinematic problem and whose matrix B is diagonal. 

A working mode, denoted iMf , is the set of mechanism 

configurations for which the sign of jjB  ( 1, ,j n   for a 

parallel manipulator with n degrees of freedom) does not 

change and 
jjB  does not vanish. A mechanism configuration 

is represented by the vector (X, q), which permits us to locate 

the mobile platform as well as all the links.. 

( , )  such that sign( )=cst for 1, ,  

and det( ) 0

jj

i

X q W Q B j n
Mf

B

   
  

 


 

Therefore, the set of working modes ( iMf , j I ) is obtained 

while using all permutations of sign of each term jjB . 

The manipulator under study has eight working modes, as 

depicted in Fig. 4, that we call now (a), (b), ..., (h). Each 

working mode is defined according to the sign of jjB  as is 

given is in table 1. 
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Figure 3: Example of serial singularity when 1A , 1B  and 1C  are aligned 

(g) (h)

(e) (f)

(c) (d)

(a) (b)

 
Figure 4: The eight working modes 

 

Figure 4  (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)  

11B  P P P P N N N N 

22B  P N P N N P N P 

33B  P P N N P P N N 

Table 1: The eight working modes of the manipulators studied with N 

(resp. P) denoted negative values of 
iiB  (resp. positive values) 

According to each working mode, the parallel singularity locus 

changes in the workspace, as shown in Fig. 5. In generally, the 

ability of a parallel manipulator to change its inverse kinematic 

solution depends on the bounds in the passive and actuated 

joints. This problem is not taken into account in our study 

since unlimited joints are assumed. 
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Figure 5: The same platform configuration with two joint 

configurations (singular on the left and none singular on the 

right) 

E. Octree Models 

Octree models are hierarchical data structures based on 

recursive subdivision of the space, respectively [16]. They are 

useful for representing complex 3 dimensional shapes like 

workspaces [10]. A close method is used in [17] that divides 

the workspace into boxes. This method does not use recursive 

subdivision but interval analysis methods [18] to build the 

dextrous workspace. However, it does not make it possible to 

perform Boolean operations or to make path-connectivity 

analysis easily. The first method permits us to calculate easily 

all kind of space and the computing time is limited as a 

function of the accuracy. The second one is more exact but 

requires more ability to be implemented. In both cases, we can 

characterize spaces whose dimensions are either lengths or 

angles. 

Since the structure of the octree model has an implicit 

adjacency graph, path-connectivity analyses and trajectory 
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planning can be carried out naturally. The optimal construction 

method of a 2k -tree is derived from the shape, which recalls 

the tree. The most interesting approach consists in testing 

successively all the nodes present in the maximal depth, 

following an order of numbering which quickly allows nodes 

to be grouped and thus, simplifies the 2k -tree. The order of 

numbering for this algorithm is based on Morton's sweeping 

[19]. The inverse or direct kinematic model is used to calculate 

2k -tree.  

The figure 6 represents the octree model of its Cartesian 

workspace where the first and the second axis represent the 

position and the third axis the orientation of the mobile 

platform. 

 

x y



 
Figure 6: The Cartesian workspace 

III. WORKSPACE ANALYSIS 

A. Aspect definitions 

The notion of aspect was introduced by [7] to cope with the 

existence of multiple inverse kinematic solutions in serial 

manipulators. Recently, the notion of aspect was defined for 

parallel manipulators with only one inverse kinematic solution 

to cope with the existence of multiple direct kinematic 

solutions [10] and for parallel manipulators with multiple 

inverse and direct kinematic solutions (the generalized aspects 

[11]). For the manipulator studied, we use the second 

definition. 

The generalized aspects 
ijA  are defined as the maximal sets in 

W Q  so that 

 
ijA W Q  ; 

 
ijA  is connected; 

  ( , )   such that det( ) 0ij iA X q Mf  A   

In other words, the generalized aspects ijA  are the maximal 

singularity-free domains of the Cartesian product of the 

reachable workspace (called W) with the reachable joint space 

(called Q). 

The projection of the generalized aspects onto the workspace 

yields the parallel aspects ijWA  so that, 

 ijWA W ; 

 ijWA  is connected. 

The parallel aspects are the maximal singularity-free domains 

in the workspace for one given working mode. 

The projection of the generalized aspects onto the joint space 

yields the serial aspects ijQA  so that, 

 
ijQA Q ; 

 
ijQA  is connected. 

The serial aspects are the maximal singularity-free domains in 

the joint space for one given working mode.  

For each working mode, there exists, at least, one aspect where 

det( )A  is positive and another one where det( )A  is negative. 

However, such regions can be disjoint. In table 2, we 

associated the aspects with a working mode for which det( )A  

is positive. For the working mode (a), there exist four aspects 

and for the other ones, there is only one aspect. Due to the 

symmetrical properties of the mechanism, there exist also 11 

aspects where det( )A  is negative.  

Working modes (a) (b) (c) (d) (e) (f) (g) (h) 

N° figure 7 8 9 10 11 12 13 14 

Table 2: The projection of the generalized aspects on the workspace when 

det( ) 0A  for each working mode 

 

 
Figure 7: The four parallel aspects for the working mode (a) and 

det( ) 0A  

 

  
Figure 8: The parallel aspect for 

the working mode (b) and det( ) 0A  

Figure 9: The parallel aspect for 

the working mode (c) and det( ) 0A  

 

  

Figure 10: The parallel aspect for 

the working mode (d) and det( ) 0A  

Figure 11: The parallel aspect for 

the working mode (e) and det( ) 0A  
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Figure 12: The parallel aspect for 

the working mode (f) and det( ) 0A  

Figure 13: The parallel aspect for 

the working mode (g) and det( ) 0A  

 

 
Figure 14: The parallel aspect for the working mode (h) and det( ) 0A  

The calculation of the generalized aspects can be performed by 

using a 62  octree model or two octree models. We use the 

second method. The first one is the projection of the 

generalized aspect onto the reachable workspace and the 

second one the projection onto the reachable joint space for a 

given working mode and a given sign of det( )A constant. To 

obtain these results with an accuracy of 0.093 for the position 

and 1,4 degrees for the orientation, the computing times is 90 

seconds with an AMD Athlon XP processor 2500
+ 

and the 

maximum memory used is 180 Mb. The connectivity analysis 

of each domain requires 20 seconds. 

B. Non-singular posture changing trajectories 

In [12], a non-singular posture changing trajectory was found 

for a 3-RPR planar manipulator. However, it appears that this 

trajectory passes close to a singular configuration. This 

property was confirmed in [10] for the same manipulator and 

for a 3-RRR planar manipulator with non-symmetrical 

geometry [20].  

According to the assumption in [13], we can think that such 

properties may not exist for the mechanism studied. However, 

we shown that a non-singular configuration changing 

trajectories exists. 

For the following input joint values: 

1 2 3=5.862610, =1.277470, = 5.213885    

Four direct kinematic solutions are found (Figure 15 and Table 

3). We notice that solutions 1 and 4 are in the same 

generalized aspect (The parallel aspect associated is depicted 

in the figure 8).  

  
Posture (1) Posture (2) 

  
Posture (3) Posture (4) 

Figure 15: The four direct kinematic solutions for 1=5.862610 , 

2 3=1.277470, = 5.213885   

Posture N° x y  in degrees 

(1) 1.102  1.956 57.50 

(2) 0.705  2.751 46.85 

(3) 4.638  -5.413 32.35 

(4) -0.357  2.720 26.51 

Table 3: Four direct kinematic solutions for the same joint values 

 

A first method to confirm this property is to evaluate the 

determinant of A and iiB  (Table 4) and to find out a trajectory 

between these two postures. 

 det(A) 
11B  22B  33B  

Posture (1) 307.990 -34.132 -34.008 31.827 

Posture (4) 522.868 -33.023 -35.997 21.7203 

Table 4: Evaluation of det( )A  and 
iiB  for the two pose in the same 

generalized aspect  

We find a non-singular continuous trajectory between postures 

(1) and (4) by passing through an intermediate posture (5) 

(Figure 16) whose position is (-0.987; 1.930)  and orientation 

is 12.35 degrees. Between these three postures, a linear 

interpolation is defined to stay in the same generalized aspect. 

The values of det(A), 11B , 22B  and 33B  are evaluated and 

each value of these indices is normalized by its maximum 

value as it is shown in figure 17.  
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Figure 16: The intermediate posture (5) for the non-singular changing 

trajectory 

With this result, we have proofed that a non-singular assembly 

mode trajectory is possible for a symmetrical planar 3-RRR 

parallel manipulator. Inside such trajectory, not any kinematic 

index, derived from the Jacobian matrices, permits us to 

recognize such property. 
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Figure 17: Variations of the normalized values of det(A), 11B , 22B  and 

33B  along the trajectory (t) between postures (1) and (4) 

 

C. Characteristic surfaces 

To separate the direct and inverse kinematic solutions, the 

uniqueness domains are determined for the parallel 

manipulator with one inverse kinematic solution in [10] and 

for parallel manipulator with several inverse kinematic 

solutions in [20]. The boundaries of the uniqueness domains 

are defined by the characteristic surfaces [20]. For the 

generalized aspect (b), we can compute the characteristic 

surface that permits us to isolate the assembly modes where it 

is possible to realize non-singular assembly mode changing 

trajectories (Figure 18). 

 
Figure 18: The parallel singularities and the characteristic 

surfaces associated with the generalized aspect (b) 

IV. SUMMARY AND CONCLUSIONS 

A kinematic analysis of a planar 3-RRR parallel manipulator 

with symmetrical properties was presented in this paper. The 

eight working modes have been characterized and 22 

generalized aspects have been found out. Inside such domains, 

any continuous trajectories are possible. In such domains, 

there are non-singular changing trajectories but not any 

kinematic index can recognize such property. An example of 

non-singular changing trajectory is given and the characteristic 

surface are computed which permit, in a future works, to 

define closely the uniqueness domains of the manipulator 

studied. 
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