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Abstract. We present in this paper an axiomatization of the structure
of finite or infinite M -extended trees. This structure is an intuitive com-
bination of the structure of finite or infinite trees with another structure
M and expresses semantically an extension to trees of the model M .
Having a structure M = (DM , FM , RM ), we define the structure of finite
or infinite M -extended tree ExtM = (D, F, R) whose domain D con-
sists of trees labelled by elements of DM ∪ F , where F is an infinite set
of function symbols containing FM and another infinite set of function
symbols disjoint from FM . For each n-ary function symbol f ∈ F , the
operation f(a1, .., an) is evaluated in M and produces an element of DM

if f ∈ FM and all the ai are elements of DM , or is a tree whose root is
labelled by f and whose immediate children are a1, .., an otherwise. The
set of relations R contains RM and another relation which distinguishes
the elements of DM from the others. Using a first-order axiomatization
T of M , we give a first-order axiomatization T of the structure ExtM

and show that if T is flexible then T is complete. The flexible theories
are particular theories whose function and relation symbols have some
elegant properties which enable us to handle formulae more easily.

1 Introduction

Recall that a tree built on a set E is essentially a hierarchized set of nodes labelled
by the elements of E. To each element e of E corresponds an operation f , called
construction operation, which, starting from a sequence a1, . . . , an of trees, builds
the tree whose top node is labelled e and whose sequence of immediate children
is a1, . . . , an.

The algebra of finite or infinite trees plays a fundamental act in computer
science: it is a model for composed data known as record in Pascal or structure
in C. The construction operation corresponds to the creation of a new record,
i.e. of a cell containing an elementary information possibly followed by n cells,
each one pointing to a record. Circuit of pointers correspond to infinite trees.

As early as 1976, G. Huet proposed an algorithm for unifying infinite terms,
that is solving equations in that algebra [11]. B. Courcelle has studied the prop-
erties of infinite trees in the scope of recursive program schemes [6]. A. Colmer-
auer has described the execution of Prolog II, III and IV programs in terms of



solving equations and disequations in that algebra [4, 3, 1]. The unification of
finite terms, i.e. solving conjunctions of equations in the theory of finite trees
has first been studied by A. Robinson [18]. Some better algorithms with better
complexities has been proposed after by M.S. Paterson and M.N.Wegman [16]
and A. Martelli and U. Montanari [15]. Solving conjunctions of equations in the
theory of infinite trees has been studied by G. Huet [11], by A. Colmerauer [4]
and by J. Jaffar [12]. Solving conjunctions of equations and disequations in the
theory of possibly infinite trees has been studied by A. Colmerauer [4] and H.J.
Bürckert [2]. An incremental algorithm for solving conjunctions of equations and
disequations on rational trees has been proposed after by V.Ramachandran and
P. Van Hentenryck [17]. On the other hand, there exists a quantification elimina-
tion algorithm which transforms a first-order formula into a boolean combination
of simple ones. In the case of infinite trees with a finite set of function symbols
we can refer to the work of M.J. Maher [14] and H. Comon [5]. M.J. Maher has
summarized all these cases and proposed a complete axiomatizations for different
sets of trees equipped with construction operations [14].

In this paper, we give and justify an axiomatization of the structure of finite
or infinite M -extended trees. This structure is an intuitive combination of the
structure of trees with another structure M and can be seen semantically as
an extension to trees of the model M . Having a structure M = (DM , FM , RM )
together with its domain DM , its set of operations FM and its set of relations
RM , we define the M -extended tree structure ExtM = (D,F, R) whose domain
D consists of trees labelled by elements of DM ∪ F , where F is an infinite set
of function symbols containing FM and another infinite set of function symbols
disjoint from FM . For each n-ary function f ∈ F , the operation f(a1, ..., an) is
evaluated in M and produces an element of DM if f ∈ FM and all the ai are
elements of DM , or is a tree whose root is labelled by f and whose immediate
children are a1, ..., an otherwise. The set of relations R is built essentialy from
RM . In the case where M is the set of rational numbers together with the opera-
tions of addition and substraction and a linear dense order relation we can refer
to Prolog III and IV whose execution has been modelized by A. Colmerauer [4, 1]
using this M -extended trees.

The paper is organized in four sections followed by a conclusion. This intro-
duction is the first section. In the second section we recall the Maher’s structure
of finite or infinite trees and introduce the M -extended trees structure for any
model M . In the third section, we present our general sufficient conditions for the
completeness of any first-order theory. Then, having a first-order axiomatization
T of M , we give a first-order axiomatization T of finite or infinite M -extended
trees. Finally we present in the fourth section a new class of theories that we
call flexible and show that if T is flexible then T is complete. To show the
completeness of T for any flexible theory T we use the general sufficient con-
ditions presented in the third section. The definition of the M -extended trees,
the axiomatization of T , the definition of flexible theories and the proof of the
completeness of T for every flexible theory T are our main contribution in this
paper.



2 Extension to trees of a model M

2.1 Finite or infinite trees

Let F be an infinite set of function symbols and R be a set of relation symbols.
To each element of F ∪R is associated an integer, its arity. The arities are non-
negative for elements of F and are positive for elements of R. An n-ary symbol
is a symbol with arity n. A constant is a 0-ary symbol.

Let N be a set of words of positive integers, including the empty word ε. Let
“.” denote concatenation of word. A tree built on F is a mapping a : E → F ,
for some non-empty subset E of N such that each element i1 . . . ik (with k ≥ 0)
satisfies two conditions: (1) if k > 0 then i1 . . . ik−1 ∈ E and (2) if a(i1 . . . ik) = f
and f has arity n, then i1 . . . ikik+1 ∈ E if and only if 1 ≤ ik+1 ≤ n.

The subtree of the tree a at n ∈ E is the mapping a′ : E′ → F where
D′ = {d|n.d ∈ E} and a′(d) = a(n.d).

The set of all trees built on F is denoted A. To each n-ary function symbol f
we associate a function from An to A also denoted f such that f(a1, . . . , an) = a
where a(ε) = f and a(i.d) = ai(d) for 1 ≤ i ≤ n and d a node. These functions
are called construction operations. The set of trees A with these construction
operations forms the tree structure or tree algebra.

2.2 Finite or infinite M -extended tree structure

We are given now once for all a structure M = (DM , FM , RM ) with its domain
DM , its set of functions FM and its set of relations RM . Let F be an infinite set
of function symbols containing the set FM and another infinite set of function
symbols disjoint from FM . Let R be the set of relation symbols RM ∪ {p}, with
p a unary relation symbols which does not belong to RM . The extension to
trees of the model M , quite simply called M -extended trees model is the model
ExtM = (D,F, R) defined as follows:

– the domain D is the set of the trees built on F ∪ DM where each element
f ∈ F of arity n is considered as a label of arity n and each element of DM

is considered as a label of arity 0,
– to each n-ary element f of F is associated a function f : Dn → D such that

f(a1, .., an) is the result of f on (a1, .., an) in DM , if f ∈ FM and ai ∈ DM for
all i, and is the result of the construction operation f on (a1, .., an) otherwise,

– to each n-ary relation symbols r of R−{p} is associated the set rExtM = rM .
To the unary relation symbols p is associated the set pExtM = DM .

3 Theory of finite or infinite M -extended trees

Let V an infinite countable set of variables. A term is an expression of the form x
or ft1 . . . tn where n ≥ 0, f an n-ary symbol in F and the ti’s are shorter terms.



A M -term is either a variable or a term whose function symbols are elements of
FM . A formula is an expression of the forms

s= t, rt1..tn, true, false, ¬(ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ψ), (ϕ↔ψ), ∃xϕ, ∀xϕ,

where x ∈ V , s, t and the ti’s are terms, r is an n-ary relation symbol in R and
ϕ and ψ are shorter formulae. Formulae of the first form are called equations
and of the second form relations. A M -equation is an equation of M -terms and
a M -relation is a relation rt1...tn with r ∈ RM and the ti’s M -terms.

An occurrence of a variable x in a formula is bound if it occurs in a sub-
formula of the form (∃xϕ) or (∀xϕ). It is free otherwise. The free variables of a
formula are those which have at least a free occurrence in the formula. For each
formula ϕ, we denote by var(ϕ) the set of all free variables of ϕ.

We call instantiation of a formula ϕ by individuals of DM the obtained
formula from ϕ in which for each free variable x in ϕ, we replace each free
occurrence of x by the same individual i of DM .

3.1 Theory and complete theory

Let x̄ = x1 . . . xn and ȳ = y1 . . . yn be two vectors of variables of the same length.
Let ψ, φ, ϕ and ϕ(x̄) be formulae. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) → ∧

i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

Note that the formulae ∃?εϕ and ∃!εϕ are respectively equivalent to true and to
ϕ in any model M . Theses quantifiers are just convenient notations and can be
expressed in the first-order level.

Definition 3.1.1 Let Ψ(u) be a set of formulas having at most u as a free
variable. We write M |= ∃Ψ(u)

o ∞ x ϕ(x), iff for any instantiation ∃xϕ′(x) of ∃xϕ(x)
by individuals of DM one of the following properties holds:

– the set of the individuals i of DM such that M |= ϕ′(i), is empty,
– for all finite sub-set {ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the

individuals i of DM such that M |= ϕ′(i) ∧∧
j∈{1,...,n} ¬ψj(i) is infinite.

A theory is a set of propositions. We say that the model M is a model of T iff
for each element ϕ of T , M |= ϕ. If ϕ is a formula, we write T |= ϕ iff for each
model M of T , M |= ϕ. A theory T is complete if for each proposition ϕ, either
T |= ϕ or T |= ¬ϕ. A complete axiomatization of a structure M is a recursive
set T of propositions such that for each proposition ϕ, T |= ϕ iff M |= ϕ.

In what follows we use the abbreviation wnfv for “without new free variables”.
By saying a formula ϕ is equivalent to a wnfv formula ψ in T we mean T |= ϕ ↔
ψ and ψ does not contain other free variables than those of ϕ. The following
theorem states general sufficient conditions for the completeness of a theory T .



Theorem 3.1.2 [9, 10] A theory T is complete if there exists a set Ψ(u) of
formulas, having at most u as free variable, a set A of formulas, closed under
conjunction and renaming, a set A′ of formulas of the form ∃x̄α with α ∈ A,
and a sub-set A′′ of A such that:

1. every flat atomic formula is equivalent in T to a wnfv Boolean combination
of basic formulas of the form ∃x̄α with α ∈ A,

2. every formula without free variables of the form ∃x̄′α′ ∧ α′′ with ∃x̄′α′ ∈ A′

and α′′ ∈ A′′ is equivalent either to false or to true in T ,
3. every formula of the form ∃x̄ α ∧ ψ, with α ∈ A and ψ any formula, is

equivalent in T to a wnfv formula of the form:

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′,
4. if ∃x̄′α′ ∈ A′ then T |= ∃?x̄′ α′ and for each free variable y in ∃x̄′α′, at least

one of the following properties holds:
– T |= ∃?yx̄′ α′,
– there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y),

5. if α′′ ∈ A′′ then
– the formula ¬α′′ is equivalent in T to a wnfv formula of the form

∨
i∈I αi

with αi ∈ A,
– for each x′′, the formula ∃x′′α′′ is equivalent in T to a wnfv formula

which belongs to A′′,
– for each x′′, T |= ∃Ψ(u)

o ∞ x′′ α′′.

3.2 Axiomatization of the structure of M-extended trees

M. Maher has introduced a complete axiomatization of the structure of finite
or infinite trees built on an infinite set F [14]. The axiomatization is the set of
propositions of the following forms:

1 ∀x̄∀ȳ f x̄ = fȳ → ∧
i xi = yi,

2 ∀x̄∀ȳ ¬fx̄ = gȳ,
3 ∀x̄∃!z̄ ∧

i zi = ti(z̄, x̄),

where f, g ∈ F , x, y, z are variables, x̄ is vector of variables xi, ȳ is vector of
variables yi, z̄ is vector of distinct variables zi and where ti(x̄, z̄) is a term which
begins by an element of F followed by variables taken from x̄ or z̄.

The first axiom is called axiom of explosion, the second axiom of conflict of
symbols and the third axiom of unique solution.

Let T be an axiomatization of the structure M = (DM , FM , RM ). Using this
axiomatization, let us now define an axiomatization T of the structure of finite
or infinite M -extended trees together with the sets F and R (defined in section
2.2) as function and relation symbols.



Definition 3.2.1 An axiomatization T of the structure of finite or infinite M -
extended trees is the set of propositions of the following forms where x̄, ȳ are
vectors of variables xi, yi.

1. explosion: for each f ∈ F

∀x̄∀ȳ ¬pfx̄ ∧ ¬pfȳ ∧ fx̄ = fȳ →
∧

i

xi = yi

2. conflict of symbols: for f and g distinct symbols in F

∀x̄∀ȳ f x̄ = gȳ → pfx̄ ∧ pgȳ

3. unique solution

∀x̄∀ȳ (
∧

i

pxi) ∧ (
∧

j

¬pyj) → ∃!z̄
∧

k

(pzi ∧ zk = tk(x̄, ȳ, z̄))

where z̄ is a vector of distinct variables zi, tk(x̄, ȳ, z̄) is a term expressed by
a function symbol fk followed by variables taken from x̄, ȳ, z̄, moreover, if
fk ∈ FM , the term tk(x̄, ȳ, z̄) contains at least one variable from ȳ or z̄

4. relations of RM : for each r ∈ RM ,

∀x̄ rx̄ →
∧

i

pxi

5. operations of FM : for each f ∈ FM ,

∀x̄ pfx̄ ↔
∧

i

pxi

(this axiom, in the case of f a constant in FM , becomes pf)
6. elements not in M : for each f ∈ F − FM ,

∀x̄ ¬pfx̄

7. existence of at least one element satisfying p (only if FM does not contains
0-arity function symbols):

∃xpx,

8. the extension of axioms of T : all axioms obtained by the following trans-
formation of an axiom ϕ of T : While it is possible replace all sub-formula
of ϕ which is of the form ∃x̄ ψ, but not of the form ∃x̄ (

∧
pxi) ∧ ψ′, by

∃x̄ (
∧

pxi) ∧ ψ and all sub-formula of ϕ which is of the form ∀x̄ ψ, but not
of the form ∀x̄ (

∧
pxi) → ψ′, by ∀x̄ (

∧
pxi) → ψ.



Example 3.2.2 Let M be the structure of the rational numbers together with
the operations of addition, substraction and a linear dense order relation without
endpoints. In this case DM is the set of the rational numbers, FM = {+,−, 0, 1}
and RM = {<}. Let a be a positive integer and let t1, ..., tn be terms. Let us
denote by:

– t1 < t2, the term < t1t2,
– t1 + t2, the term +t1t2,
– t1 + t2 + t3, the term +t1(+t2t3),
– −at1, the term (−t1) + · · ·+ (−t1)︸ ︷︷ ︸

a

,

– 0t1, the term 0,
– at1, the term t1 + · · ·+ t1︸ ︷︷ ︸

a

,

– a the term 1 + · · ·+ 1︸ ︷︷ ︸
a

.

The axiomatization T of the structure M is of the form

1 ∀x∀y x + y = y + x,
2 ∀x∀y∀z x + (y + z) = (x + y) + z,
3 ∀xx + 0 = x,
4 ∀xx + (−x) = 0,
5n ∀xnx = 0 → x = 0,
6n ∀x∃!yny = x, (n 6= 0)

7 ∀x¬x < x,
8 ∀x∀y∀z (x < y ∧ y < z) → x < z,
9 ∀x∀y (x < y ∨ x = y ∨ y < x),
10 ∀x∀y x < y → (∃z x < z ∧ z < y),
11 ∀x ∃y x < y,
12 ∀x ∃y y < x,
13 ∀x ∀y ∀z x < y → (x + z < y + z),
14 0 < 1.

Using the transformations of Definition 3.2.1, the axiomatization T of the M -
extended trees theory is of the form:

1 ∀x̄∀ȳ ((¬p fx̄) ∧ (¬p fȳ) ∧ fx̄ = fȳ) → ∧
i xi = yi,

2 ∀x̄∀ȳ f x̄ = gȳ → p fx̄ ∧ p gȳ,
3 ∀x̄∀ȳ (

∧
i∈I pxi) ∧ (

∧
j∈J ¬p yj) → (∃!z̄ ∧

k∈K(¬p zk ∧ zk = tk(x̄, ȳ, z̄))),
4 p0,
5 p1,
6 ∀x∀y x < y → (p x ∧ p y),
7 ∀x∀y p x + y ↔ p x ∧ p y,
8 ∀xp − x ↔ px,
9 ∀x̄¬p hx̄ ,
10 ∀x∀y (px ∧ p y) → x + y = y + x,
11 ∀x∀y∀z (px ∧ p y ∧ p z) → x + (y + z) = (x + y) + z,
12 ∀xpx → x + 0 = x,
13 ∀xpx → x + (−x) = 0,
14n ∀xpx → (nx = 0 → x = 0),
15n ∀xpx → ∃!yp y ∧ ny = x, (n 6= 0)
16 ∀xp x → ¬x < x ,
17 ∀x∀y∀z p x ∧ p y ∧ p z → ((x < y ∧ y < z ) → x < z ),
18 ∀x∀y (p x ∧ p y) → (x < y ∨ x = y ∨ y < x ),
19 ∀x∀y (p x ∧ p y) → (x < y → (∃z p z ∧ x < z ∧ z < y)),
20 ∀xp x → (∃y p y ∧ x < y),
21 ∀xp x → (∃y p y ∧ y < x ),
22 ∀x∀y ∀z (p x ∧ p y ∧ p z ) → (x < y → (x + z < y + z )),
23 0 < 1,



where f and g are two distinct function symbols taken from F , h ∈ F − FM , x,
y, z are variables, x̄ is a vector of variables xi, ȳ is a vector of variables yi, z̄ is
vector of distinct variables zi and where tk(x̄, ȳ, z̄) is a term which begins by a
function symbol fk element of F followed by variables taken from x̄ or ȳ or z̄,
moreover, if fk ∈ FM then tk(x̄, ȳ, z̄) contains at least a variable taken from ȳ
or z̄. This theory has been used by A. Colmerauer to modelize the execution of
Prolog III and IV [4, 1].

4 Completeness of T
We suppose that the variables of V are ordered by a strict linear dense order
relation denoted by Â. We call leader of an M -equation α the greatest variable
x of all variables in α, according to the order Â, such that M |= ∃!xα.

4.1 Flexible structure

The model M is called flexible if for each conjunction α of M -equations and
each conjunction β of M -relations:

1. α is equivalent in M either to false or to a wnfv conjunction α′ of M -
equations whose each element has a distinct leader which has one and only
occurrence in α′, and for all variable x ∈ var(α′) we have M |= ∃!xα′,

2. the formula ¬β is equivalent in M to a wnfv disjunction of M -equations and
M -relations,

3. for all x ∈ V
– the formula ∃xβ is equivalent in M either to false or to a quantifier free

conjunction of M -relations,
– for all x ∈ V and for all instantiation ∃xβ′(x) of ∃xβ(x) by individuals

of DM , either M |= ¬∃xβ′(x) or there exists an infinite set of individuals
i of DM such that M |= β′(i).

A theory T is called flexible iff all its models are flexible.

Property 4.1.1 If T is flexible then it is complete.

4.2 Blocks and solved blocks in T
Definition 4.2.1 A block is a conjunction α of formulae of the following forms:

– true, false, px, ¬px,
– x = y, x = fx1 . . . xn, with f ∈ F ,
– t1 = t2 ∧

∧n
i=1 pxi, where {x1, . . . , xn} is the set of variables which occur in

the M -equation t1 = t2,
– rt1 . . . tn, where r ∈ RM and the ti’s are M -terms,

and such that α contains px or ¬px for each variable x ∈ var(α). A relation block
is a block without equations. An equation block is a block without M -relations
and where each variable has an occurrence in at least one equation.



Definition 4.2.2 If a block α has a sub-formula of the form

x0 = t0(x1) ∧ x1 = t1(x2) ∧ · · · ∧ xn−1 = tn−1(xn) ∧
n−1∧

i=0

¬pxi,

where xi+1 has an occurrence in the term ti(xi+1), then the variable xn and the
equation xn−1 = tn−1(xn) are called reachable from x0 in α.

Property 4.2.3 Let α be a block. If all the variables of x̄ are reachable in α
from free variables of ∃x̄α, then T |= ∃?x̄α.

Definition 4.2.4 A block α is called well-typed iff α does not contain sub-
formulae of one of the following forms:

– p x ∧ ¬p x ,
– x = hȳ ∧ p x , with h ∈ F − FM ,
– x = f0 ∧ ¬p x , with f0 a constant of FM ,
– x0 = fx1...xn ∧ ¬p x0 ∧

∧n
i=1 p xi, with f ∈ FM ,

– x0 = fx1...xn ∧ p x0 ∧ ¬p xi, with f ∈ F
– x0 = x1 ∧ p x0 ∧ ¬p x1,
– x0 = x1 ∧ ¬p x0 ∧ p x1,
– rt1...tn∧¬pxi with r ∈ RM and xi a variable which occurs in the M -relation

rt1...tn.

Definition 4.2.5 Let t1 be a term. Let t2 and t3 be two M -terms. Let α be a
well-typed equation block. Either x = t1∧¬px is a sub-formula of α. In this case,
x is called α-leader of the equation x = t1. Else t2 = t3 ∧

∧
i∈var(t2=t3)

pi is a
sub-formula of α. In this case, the greatest variable in var(t2 = t3) according to
the order Â such that T |= ∃!x t2 = t3 ∧

∧
i∈var(t2=t3)

pi is called α-leader of the
equation t2 = t3.

Definition 4.2.6 A block α is called solved block, iff:

1. α is well-typed and does not contain formulae of the form t1 = t2 or rt1...tn
with r ∈ RM and the ti’s terms which does not contain variables,

2. for each equation x = y in α, x Â y,
3. each equation in α has a distinct α-leader which does not occur in M -

relations of α,
4. if px and py are sub-formulas of α with x and y two α-leaders of two equa-

tions α1, α2 of α then x 6∈ var(α2),
5. for all variable x which occurs in an equation of α we have T |= ∃?xα.

Property 4.2.7 Let α be a solved equation block different from the formula false
and let x̄ be the set of the α-leaders of the equations of α. We have T |= ∃!x̄α.

Property 4.2.8 If T is flexible then each block is equivalent in T to a solved
block.



4.3 Completeness of T
Theorem 4.3.1 If T is a flexible theory then T is complete.

We show this theorem using Theorem 3.1.2. The sets Ψ(u), A, A′ and A′′ are
chosen as follows:

– Ψ(u) is the set of the formulae of the form ∃ȳ u = fȳ∧¬pu, with f ∈ F not
a constant.

– A is the set of blocks.
– A′ is the set of the formulae of the form ∃x̄′α′, where:

• all the variables of x̄′ are reachable in α′ from free variables of ∃x̄′α′,
• α′ is a solved equation block, different from the formula false, and where

the order Â is such that all the variables of x̄′ are greater than the free
variables of ∃x̄′α′,

• all the equations of α′ of the form x0 = fx1...xn with f ∈ F − FM are
reachable in α′ from free variables of ∃x̄′α′,

• if the M -equation t1 = t2 is a sub-formula of α′ then, each variable xi

which occurs in it is either a free variable of ∃x̄′α′ or reachable in α′

from free variables of ∃x̄′α′,
– A′′ is the set of solved relation blocks.

5 Conclusion

We have defined in this paper the structure of the M -extended trees for any
model M . This structure can be considered as a combination of the structure
of finite or infinite trees with the structure M . Having used an axiomatization
T of M we have given a first-order axiomatization T of the M -extended trees
structure and have shown that if T is flexible then T is complete. To prove the
completeness in this case, we have used our general sufficient condition. From this
condition we can extract a general algorithm for solving first-order constraints
in T . Due to lack of space we cannot present this algorithm in this paper. Just
note that this algorithm uses the block defined in our paper and transforms
any formula ϕ in a particular formula ψ called solved formula equivalent to ϕ
in T . In particular if ϕ has no free variables then ψ is either the formula true
or the formula false. The correctness of our algorithm is another proof of the
completeness of T of each flexible theory T .

There exists a lot real and practical problems which can be represented by
full first-order formulae on M -extended trees. We can site for example the works
of A. Colmerauer [4, 1] who has realized the execution of Prolog III and IV using
the M -extended trees where M is the structure of the rational numbers together
with the operations of addition and substraction and linear dense order relation.

On the other hand S. Vorobyov [19] have shown that the problem of deciding
if a proposition without free variables is true or not in the tree theory is non-
elementary, i.e. the complexity of all algorithm which solve it is not bounded by
a tower of powers of 2′s (with a top down evaluation) with a fixed height. A.



Colmerauer and B. Dao [8, 7] have also given a proof of non-elementary complex-
ity of solving constraints in the tree theory. Thus, it is normal that our sufficient
condition is complex and the properties of our blocks uses some nonclassical
quantifiers. Nevertheless we hope find some interesting class of complexities in
the implementation of our algorithm as it has been done in [8] in the theory of
finite or infinite trees.

Actually we try to show the completeness of T where M is the structure
of the real numbers together with addition, substraction, multiplication and a
linear dense order relation. We also study the complexity and the expressiveness
of the first-order constraints in T as it has done in [7, 8].
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Appendix

Theorem 3.1.2 If T is a flexible theory then T is complete.

Proof. We show this theorem using Theorem 3.1.2. The sets Ψ(u), A, A′ and A′′

are chosen as follows:

5.1 Choice of the sets Ψ(u), A, A′ and A′′

– Ψ(u) is the set of the formulae of the form ∃ȳ u = fȳ∧¬pu, with f ∈ F−F0.
– A is the set of blocks.
– A′ is the set of the formulae of the form ∃x̄′α′, where:

• all the variables of x̄′ are reachable in α′ from free variables of ∃x̄′α′,
• α′ is a solved equation block, different from the formula false, and where

the order Â is such that all the variables of x̄′ are greater than the free
variables of ∃x̄′α′,

• all the equations of α′ of the form x0 = fx1...xn with f ∈ F − FM are
reachable in α′ from free variables of ∃x̄′α′,

• if the M -equation t1 = t2 is a sub-formula of α′ then, each variable xi

which occurs in it is either a free variable of ∃x̄′α′ or reachable in α′

from free variables of ∃x̄′α′,
– A′′ is the set of solved relation blocks.

Note 5.1.1 Note that, A is closed under conjunction and renaming and A′′ is
a sub-set of A.

Let T be a flexible theory. Let us show that T satisfies the five conditions of
Theorem 3.1.2.



5.2 T satisfies the first condition

Let us show that every flat atomic formula ϕ is equivalent in T to a wnfv Boolean
combination of basic formulas, i.e. a wnfv Boolean combination of formulas of
the form ∃x̄α with α ∈ A. Let ϕ be a flat atomic formula. If ϕ is of the form
true, false, px or ¬p x , then ϕ is a block which is quantified by the empty vector
ε, thus, ϕ is equivalent in T to ∃εϕ with ϕ ∈ A, which is clearly a wnfv Boolean
combination of basic formulas. Else, the following equivalences, after having
distributed the ∧ on the ∨ and the ∃ on the ∨, give the adequate Boolean
combinations:

T |= rx0...xn ↔ ∃ε
[
rx0...xn∧∧n

i=0(p xi ∨ ¬p xi)

]
,

T |= x0 = x1 ↔ ∃ε
[
x0 = x1∧∧1

i=0(p xi ∨ ¬p xi)

]
,

T |= x0 = fx1...xn ↔ ∃ε
[
x0 = fx1...xn∧∧n

i=0(p xi ∨ ¬p xi)

]
,

with r ∈ R− {p}, f ∈ F . Thus T satisfies the first condition of Theorem 3.1.2.

5.3 T satisfies the second condition

Let us show that every formula ϕ, without free variables, of the form ∃x̄′α′ ∧α′′

with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′, is equivalent to true or to false in T . Since the
formula ϕ does not contain free variables, then there are no reachable variables
and no reachable equations in α′ from the free variables of ∃x̄′α′ and thus ac-
cording to section 5.1 x̄′ = ε. From this and since ∃x̄′α′ does not contains free
variables we deduce then that var(α′) = ∅. But according to section 5.1 α′ is a
solved block different from false, thus according to the definition of solved blocks
(first point) the formula α′ is the formula true. Then ϕ is equivalent in T to the
formula without free variables α′′. According to section 5.1, the formulas α′′ is
a solved conjunction of relation blocks and thus according to the definition of
the solved blocks (first point) α′′ is either the formula true or false then ϕ is
either equivalent to false or to true in T . Thus the theory T satisfies the second
condition of Theorem 3.1.2.

5.4 T satisfies the third condition

Let us first introduce the following convenient definition.

Definition 5.4.1 Let α be a solved block. We call non-trees formula each block
of the form

t1 = t2 ∧
n∧

i=1

pxi (1)

with var(t1 = t2) = {x1, ..., xn} and t1, t2 M -terms. If (1) is a sub-formula of α
then we call α-leader of the non-trees formula (1), the α-leader of the M -equation
t1 = t2.



Let us show that every formula of the form ∃x α ∧ ψ, with α ∈ A and ψ any
formula, is equivalent in T to a wnfv formula of the form

∃x′ α′ ∧ (∃x′′ α′′ ∧ (∃x′′′ α′′′ ∧ ψ))), (2)

with ∃x′α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and T |= ∀x̄′′ α′′ → ∃!x̄′′′α′′′.
Let us choose the order Â such that all the variables of x̄ are greater than

the free variables of ∃x̄α. Let β be the solved formula of α, ( β exists according
to Property 4.2.8). Let X be the set of the variables of the vector x̄. Let Yrea

be the set of the reachable variables in β from the free variables of ∃x̄β and let
Ynrea be the set of the no-reachable variables in β from the free variables of ∃x̄β.
Let us now rename the variables of Ynrea ∩X which have at least an occurrence
in a sub-non-trees-formula of β by variables greater than the other variables of
β (according to the order Â). Note that theses variables are quantified (they are
elements Ynrea ∩ X ), thus we can rename them in ∃x̄β. Let β∗ be the solved
formula of β. Let Lead be the set of the β∗-Leaders of all the equations of β∗. If
faux is a sub-formula of β∗ then: x̄′ = x̄′′ = x̄′′′ = ε, α′ = true, α′′ = false and
α′′′ = true. Else:
− x̄′ contains the variables of X ∩ Yrea,
− x̄′′ contains the variables of (X − Yrea)− Lead.
− x̄′′′ contains the variables of (X − Yrea) ∩ Lead.
− α′ is of the form α′1 ∧ α′2 where α′1 is the conjunction of (1) all the reachable
equations in β∗ from the free variables of ∃x̄β∗, (2) all the sub-non-trees-formulas
of β∗ whose β∗-leader is not element of Ynrea∩X. α′2 is the conjunction of all the
sub-formulas of β∗ of the form p x or ¬p x with x having at least an occurrence
in α′1.
− α′′ is of the form α′′1 ∧α′′2 where α′′1 is the conjunction of all the sub-formulas
of β∗ of the form p x or ¬p x with x /∈ x̄′′′, α′′2 is the conjunction of all the
sub-formulas of β∗ of the form rt1...tn.
− α′′′ is of the form α′′′1 ∧α′′′2 where α′′′1 is the conjunction of (1) all the equations
which are not reachable in β∗ from the free variables of ∃x̄β∗, (2) all the sub-non-
trees-formulas of β∗ whose β∗-leader belongs to Ynrea∩X. α′′′2 is the conjunction
of all the sub-formulas of β∗ of the form p x or ¬p x with x having at least an
occurrence in α′′′1 .

By construction of the sets A′ and A′′ it is clear that ∃x̄′α′ ∈ A′, α′′ ∈ A′′

and α′′′ ∈ A. Moreover, Since x̄′′′ = (X − Yrea) ∩ Lead and since the blocks are
solved (thus well typed), then according to the axiom 3 of T (unique solution)
and the definition of solved blocks (point 3 and 4) and the properties of the
α-leaders we get T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′. Thus T satisfies the third condition of
Theorem 3.1.2.

5.5 T satisfies the fourth condition

Let us show now that T satisfies the fourth condition of Theorem 3.1.2, i.e. if
∃x̄′α′ ∈ A′ then T |= ∃?x̄′α′. Since ∃x̄′α′ ∈ A′ and according to section 5.1, the
variables of x̄′ are reachable in α′ from the free variables of ∃x̄′α′. Thus, using
Property 4.2.3 we get T |= ∃?x̄′α′.



Let us show now that if y is a free variable of ∃x̄′α′ then T |= ∃?yx̄′ α′ or
there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y). Let y be a free
variable of ∃x̄′α′. Since α′ is a solved equation block different from false then
three cases arise:

Either y occurs in a sub-formula of α′ of the form y = t(x̄′, z̄′, y)∧¬py, where
z̄′ is the set of the free variables of ∃x̄′α′ which are different from y, t(x̄′, z̄′, y)
is a term which begins by an element of F followed by variables taken from x̄′

or z̄′ or {y}. In this case, the formula ∃x̄′α′ implies in T the formula

∃x̄′ y = t(x̄′, z̄′, y) ∧ ¬p y,

which implies in T the formula

∃x̄′z̄′w y = t(x̄′, z̄′, w) ∧ ¬p y, (3)

where y = t(x̄′, z̄′, w) is the formula y = t(x̄′, z̄′, y) in which we have replaced
every free occurrence of y in the term t(x̄′, z̄′, y) by the variable w. According to
section 5.1, the formula (3) belongs to Ψ(y).

Or y occurs in a sub-formula of α′ of the form y = z ∧ ¬py. In this case:

1. Recall that according to section 5.1, x̄′ contains the quantified reachable
variables and the order Â is such that all the variables of x̄′ are greater than
the free variables of ∃x̄′α′ thus greater than y.

2. According to the definition of solved blocks and α′-leader, we have y Â z
and y is the α′-leader of y = z.

From (1) and (2), we deduce that z is a free variable in ∃x̄′α′. Since α′ is a solved
block, y is not α′-leader in any other equation of α′ (because all the α′-leaders
are distinct), thus y can not appear in another left hand side of an equation of
α′ (because ¬px and α′ is well typed), thus since the variables of x̄ are reachable
in α′ from the free variables of ∃x̄′α′ (section 5.1), all the variables of x̄′ keep
reachable in α′ from the free variables of ∃x̄′y α′ (see Definition4.2.2 of reachable
variable). More over, for each value of the free variable z there exists at most a
value for y. Using this and Property 4.2.3 we get T |= ∃?x̄′y α′.

Or y occurs only in sub-formulas of the form

x0 = t(y) ∧ ¬px0 or t1 = t2 ∧
∧

i∈I

pxi (4)

with t(y) a term which begins by an element of F ∈ F and contains at least an
occurrence of y. t1 = t2 ∧

∧
i∈I pxi is a non-trees-formula. Recall that according

to section 5.1, x̄′ contains the quantified reachable variables. According to section
5.1, all the variables of x̄′ and all the equations of the form x0 = t(y)∧¬px0 are
reachable in α′ from the free variables of ∃x̄′α′. (1) if ¬py is a sub-formula of α′

then since α′ is well typed then y does not occur in any non-trees-formula. Since
y does not occur in a left-hand side of an equation of α′ then the variables of x̄′y
keep reachable in α′ from the free variables of ∃x̄′y α′ and thus using Property
4.2.3 we get T |= ∃?x̄′y α′. (2) If y occurs in a sub-formula of α′ of the form py



then (i) if y occurs in a non-trees-formula of α′ then using the last point of the
solved block definition we get T |= ∃?y α′, using this and using the fact that α′

contains py and not ¬py then the variables of x̄′ keep reachable in α′ from the
free variables of ∃x̄′y α′ and thus using Property 4.2.3 we get T |= ∃?x̄′y α′ (ii)
else since y does not occur in a left-hand side of an equation of α′ of the form
y = fx1...xn or y = x1 then the variables of x̄′y keep reachable in α′ from the
free variables of ∃x̄′y α′ and thus using Property 4.2.3 we get T |= ∃?x̄′y α′.

In all the other cases the blocks are not well typed thus not solved and thus
can not be element of A′. In all cases T satisfies the fourth condition of Theorem
3.1.2.

5.6 T satisfies the fifth condition

T satisfies the first point of the fifth condition Let us show that if α′′ ∈ A′′

then the formula ¬α′′ is equivalent in T to a disjunction of elements of A, i.e. a
disjunction of blocks. Let α′′ a formula of A′′.

According to section 5.1, either α′′ is the formula false and thus ¬α′′ is the
formula true which clearly belongs to A′′, or α′′ is a formula of the form

β ∧ (
∧

x∈X

px) ∧ (
∧

y∈Y

¬py),

with β a conjunction of M -relations βk with var(β) ⊆ X ∪ Y . According to the
second point of the definition of the flexible theory we have T |= ¬β ↔ β′ where
β′ is a disjunction of M -relations and M -equations. Thus, the formula ¬α′′ is
equivalent in T to a wnfv formula of the form

(
∨

k∈K

(β′k ∧ pk)) ∨ (
∨

x∈X

¬px) ∨ (
∨

y∈Y

py),

where β′k is an M -equation or an M -relation, pk is a conjunction of formula of
the form px for all variable x ∈ var(beta′k). This formula is clearly a disjunction
of blocks. In all cases T satisfies the first point the fifth condition of Theorem
3.1.2.

T satisfies the second point of the fifth condition Let us show that if
α′′ ∈ A′′ then for every variable x′′` , the formula ∃x′′` α′′ is equivalent in T to an
element of A′′. Let α′′ be a formula of A′′, three cases arise:

If x′′` has no occurrences in α′′ then the formula ∃x′′` α′′ is equivalent in T to
α′′ which belongs to A′′.

If the formula ∃x′′` α′′ is of the form ∃x′′` α′′1 ∧ ¬p x ′′` with α′′1 ∈ A′′ and
x′′` has no occurrences in α′′1 then the formula ∃x′′` α′′ is equivalent in T to
α′′1 ∧ (∃x′′` ¬p x ′′` ), which, according to our axiomatization is equivalent in T to
α′′1 , which belongs to A′′.

If the formula ∃x′′` α′′ is of the form

∃x′′` α′′1 ∧ ϕ



with ϕ a relation block containing at least a formula of the form rt1...tn with
r ∈ RM and x′′` has no occurrences in α′′1 , then the formula ∃x′′` α′′ is equivalent
in T to

α′′2 ∧ (∃x′′` ϕ),

with α′′2 a block of the form α′′1 ∧ φ where φ is a conjunction of sub-formulas of
α′′1 of the form ¬px or px with x ∈ var((α′′1 ∩ ϕ)− {x′′` }). According to the last
point of the definition of flexible theory, the preceding formula is wnfv equivalent
in T to false or to to

α′′2 ∧ ϕ′′.

Since α′′2 belongs to A′′ and ϕ does not contains new variables (wnfv) then preced-
ing formula belongs to A′′. In all cases T satisfies the second point of the fourth
condition of Theorem 3.1.2. ut

T satisfies the third point of the fifth condition First, we present two
properties which hold in any model M of T . The first one results from the
axiomatization of T and introduce the notion of zero-infinite in M. The second
one is due to the fact that T is flexible thus all model M of T is also flexible
(more exactly the last point of the definition of flexible model).

Property 5.6.1 Let F0 the set of the 0-ary function symbols of F . Let M be
a model of T and let f ∈ F− F0. The set of the individuals i of M, such that
M |= ¬p i and the set of the individuals i of M, such that M |= ∃x i = fx∧¬pi,
are infinite.

Property 5.6.2 Let M be a model of T . Let
∧

j∈J rj(x) be a conjunction of
relation blocks. Let ∃x ∧

j∈J r′j(x) be an instantiation of ∃x ∧
j∈J rj(x) by indi-

viduals of M. Let ϕ(x) the formula

p x ∧
∧

j∈J

r ′j (x ). (5)

The set of the individuals i of M such that M |= ϕ(i) is empty or infinite.

Let M be a model of T . Recall that Ψ(u) is the set of formulae of the form
∃ȳ u = fȳ ∧¬pu, with f ∈ F − F0. Let ϕ(x) be a formula which belongs to A′′,
let us show that, for every variables x we have T |= ∃Ψ(u)

o ∞ xϕ(x). Let M be a
model of T and let ∃xϕ′(x) be an any instantiation of ∃x̄ ϕ(x) by individuals of
M such that M |= ∃xϕ′(x). Having an any condition of the form

M |= ϕ′(i) ∧ ¬ψ1(i) ∧ · · · ∧ ¬ψn(i),

with ψj(u) ∈ Ψ(u), it is enough to show that there exists an infinity of individuals
i of M which satisfy this condition. This condition can be replaced by the
following stronger condition

M |=
(

p i ∨
ψn+1(i)

)
∧ ϕ′(i) ∧ ¬ψ1(i) ∧ · · ∧¬ψn(i),



where ψn+1(u) is an element of Ψ(u) which has been chosen different from
ψ1(u), . . . , ψn(u), (always possible because the set F − FM is infinite). Since
for every k between 1 and n, we have:

– T |= px → ¬ψk(x)
– T |= ψn+1(x) → ¬ψk(x) (axiom 2of T conflict of symbol).

The preceding condition is simplified to

M |= (p i ∧ ϕ′(i)) ∨ (ψn+1 (i) ∧ ϕ′(i))

and thus, knowing that M |= ∃xϕ′(x), it is enough to show that there exists an
infinity of individuals i of M such that

M |= p i ∧ ϕ′(i) or M |= ψn+1 (i) ∧ ϕ′(i). (6)

Two cases arise:
Either the formula p x occurs in ϕ′(x). Since ϕ′(x) is an instantiation of a

solved relation block and M |= ∃xϕ′(x), the formula p x ∧ ϕ′(x ) is equivalent
in M to a M -formula of the form (5). According to Property 5.6.2 and since
M |= ∃xp x ∧ ϕ′(x ), there exists an infinity of individuals i of M such that
M |= p i ∧ ϕ′(i) and thus, such that (6).

Or, the formula p x does not occur in ϕ′(x). Since ϕ′(x) is an instantiation
of a solved relation block and M |= ∃xϕ′(x), the M -formula ψn+1(x) ∧ ϕ′(x)
is equivalent in M to ψn+1(x). According to Property 5.6.1 there exists an
infinity of individuals i of M such that M |= ψn+1(i), thus, such that M |=
ψn+1(i) ∧ ϕ′(i) and thus such that (6). ut
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