
HAL Id: hal-00144947
https://hal.science/hal-00144947v1

Submitted on 12 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite Domain Constraint Solver Learning
Arnaud Lallouet, Thi-Bich-Hanh Dao, Andrei Legtchenko, Abdelali Ed-Dbali

To cite this version:
Arnaud Lallouet, Thi-Bich-Hanh Dao, Andrei Legtchenko, Abdelali Ed-Dbali. Finite Domain Con-
straint Solver Learning. Eighteenth International Joint Conference on Artificial Intelligence IJCAI-03,
2003, Acapulco, Mexico. pp.1379-1380. �hal-00144947�

https://hal.science/hal-00144947v1
https://hal.archives-ouvertes.fr

Finite Domain Constraint Solver Learning

Arnaud Lallouet, Thi-Bich-Hanh Dao, Andreı̈ Legtchenko, AbdelAli Ed-Dbali
Université d’Orléans – LIFO – BP 6759 – 45067 Orléans – France

firstname.name@lifo.univ-orleans.fr

Abstract

In this paper, we present an abstract framework
for learning a finite domain constraint solver mod-
eled by a set of operators enforcing a consistency.
The behavior of the consistency to be learned is
taken as the set of examples on which the learn-
ing process is applied. The best possible expres-
sion of this operator in a given language is then
searched. We instantiate this framework to the
learning of bound-consistency in the indexical lan-
guage of Gnu-Prolog.

1 Introduction
Constraint Satisfaction Problems (or CSPs) have been widely
recognized as a powerful tool to model, formulate and solve
artificial intelligence problems as well as industrial ones. A
common framework to address this task is the combination of
search and filtering by a local consistency. Enforcing a local
consistency is usually done by the scheduling of monotonic
and contracting operators up to reach their greatest common
fix point. The consistency is obtained as the common closure
of the set of operators. This closure is efficiently computed by
a chaotic iteration of the operators [Apt, 1999]. But usually,
the task of finding efficient operators which actually define a
consistency is considered as one of the smartest skills of the
solver’s implementor. The essence of the learning framework
consists in considering the behavior of the operator enforcing
the desired consistency as a set of examples in order to find an
adequate representation of this operator in a given language.

2 Theoretical framework
Let

�
be a set of variables and ���������
	����� their finite

domains. A constraint � is a pair �������	 where ��� �
is the

arity of the constraints and ����� ���� � � is the set of solu-
tions of � . A CSP is a set of constraints. For ��� �

, a search
state � is a tuple ��� �!	��"��� where #%$'&(� , �)�*�+�,� . A
singletonic search state �.-)/ �10 	 ���� represents a single tu-
ple. The search space is 2 � �3� �����4 ��� � 	 . The set 2 �
ordered by point-wise inclusion � forms a complete lattice.

A consistency for a constraint �5�6�����7�	 is an operator8:9 2 �<; 2 � such that:

= 8
is monotonic, i.e �>�?� @BA 8 ��� 	!� 8 ���)@C	 , in order to

ensure the confluence of the reduction mechanism,
= 8

is contracting, i.e #D�E&F2B� ,
8 ��� 	G�H� , in order to

reduce variable’s domains,
= 8

is correct w.r.t � , i.e #I��&+2B� , every solutions of �
which are present in � remain in

8 ��� 	 ,
= 8

represents � , i.e for every singletonic search state �
which does not represent a solution of � , 8 ��� 	 is an
empty state (at least one element of the tuple

8 ��� 	 is the
empty set).

Operators which satisfy the first three conditions are called
pre-consistencies for � . As an example of consistency, if we
suppose that each variable domain � � is ordered by a total
ordering J and for KL�M�,� , we denote by N KPO the set - QR&
� �TS min ��K	RJ<Q�J max ��K!	 0 , then the bound-consistencyU �WV is defined by #D�X&R2 � , #Y$H&G� ,

U �ZVW���)	 � �3� �\[N � � O ,
with � � the projection of � on $.

Let �W� V be the consistency to be learned. Our aim is to
build a consistency

8
which behaves like �W�]V as much as pos-

sible. Thus
8

must be contracting, monotonic, correct w.r.t
�W� V (#I�5&^2_� , �W� V ��� 	`� 8 ���)) and singleton complete w.r.t
�W� V (

8 ��� 	"�3�W� V)��� 	 for any singletonic search state �). How-
ever, singleton completeness is difficult to get and even not
always possible to express in a given language. In order to
transform a pre-consistency into a consistency, let us define a
consistency a.bcV such that #D��&�2 � , a.b�V)��� 	 is an empty state
if � is a non-solution singletonic state, and a.bdV)���)	P�e� other-
wise. Thus

8>f agb V and a.b V fh8
are consistencies for � if

8
is

a pre-consistency for � . Therefore by adding a.bdV in the set of
operators, processed by a chaotic iteration mechanism [Apt,
1999], we only need to build pre-consistencies for � . On the
other hand, the correctness condition must be ensured for ev-
ery �1&i2 � which is generally huge. We show that:

Proposition 1 If
8

is a monotonic and contracting operator
such that

8 ��� 	j�+� for every singletonic state � which repre-
sents a solution of � , then

8
is a pre-consistency for � .

Therefore, by considering monotonic operators, we can re-
duce the search space to a sample set k which is a subset of
2_� and which contains all singletonic search states. Let l
be the language in which operators are expressed and m be an
operator in this language. In order to find the best possible ex-
pression, we shall be able to compare two consistencies. This

is usually done with a distance. Let b be such a distance be-
tween two consistencies. The learning problem is formulated
as follows:

minimize b%���Z� n �7m�	 ,
subject to #I�
&ik , �W� V)���)	j�om���� 	j�^� ,

where kp�q2 � , k contains all singletonic search states of
2_� and m is a monotonic operator. Following the machine
learning vocabulary, �W�rV represents the example space and l
the hypothesis space.

3 Learning indexicals
To instantiate our theoretical framework, we have to define
strong language biases in order to limit the combinatorial ex-
plosion.

The first question is the language in which operators are ex-
pressed. The language of indexicals [van Hentenryck et al.,
1991] is chosen, motivated by the ease of integration of the
user-defined indexicals in Gnu-Prolog [Diaz and Codognet,
2001]. In this language, an operator is written X in r,
where X represents the domain of the variable $ and r is an
expression representing a subset of �>� . If we denote s the
unary constraint representing $ ’s domain, then the indexical
represents the operator sut; s [wv .

Then comes the choice of consistency. We learn the bound-
consistency, since it allows to limit the example space to in-
tervals instead of arbitrary subsets.

For each variable we learn a reduction indexical and de-
fine an indexical for a.b V . The reduction indexical for $ is of
the form X in minX .. maxXwhere minX, maxX are in
some fixed forms. In practice, we use linear, piecewise lin-
ear and rational forms. In order to the reduction indexical to
be monotonic, the bound minX must be anti-monotonic and
maxX monotonic. This can be ensured by syntactic condi-
tions on the sign of the coefficients for each expression.

The indexicals for a.bcV could be implemented in two ways:
by using Gnu-Prolog indexicals for predefined constraints in
which each instance of min and max is simply replaced by
val, or by a direct code using val and C operators.

As distance between two consistencies, we use the global
error on the example space k . By considering that

8
must be

correct w.r.t �W�rV , this distance is xPn �zy"S 8 ��� 	7{]�W� VW��� 	 S .
Example For lack of space, we present here one example.
An user defined global constraint is defined by the follow-
ing conjunction: $6|(}�~L����$�|(}��L�z���7�X�h$�|^}6~� ��� � �h}�|\$'���)�z����$��M� � ��}<~ �

. When treated glob-
ally as a two dimensional polyhedra, these constraints yield
less indexicals than the above decomposition. On the domainN ���C� ���rO��oN ����� ���]O , our system generates the following opera-
tors:
X in 6*min(Y)/<20+18 .. -10/<(1 + max(Y))+45
Y in 10/<(max(X)+1)+6 .. -590/<(max(X)+1)+47

Reparation operators are implemented from Gnu-Prolog in-
dexicals. Here is the one for $:
X in val(Y)+4 .. 44 & 0 .. val(Y)+29 &

50+val(Y)/>3+1 .. 44 & 5*val(Y)-119 .. 44

When trying all reductions on boxes included in N��Z����� � O��
N � ���z�rO , the learned operators ran in 290 ms, while the non-
decomposed constraints ran in 400 ms. All tests have been
done on a Pentium4, 2Ghz, 512MB running Linux.

4 Conclusion
Related work Solver learning has been first introduced by
[Apt and Monfroy, 1999] in which they automatically gener-
ate a set of rules from the tuples defining a constraint. The
complexity of the rules generation limits them to small finite
domains such as boolean.

The system PROPMINER [Abdennadher and Rigotti, 2002;
2003] is devoted to the learning of Constraint Handling Rules
[Früwirth, 1998]. The produced solver is often very readable,
especially when a small number of rules are produced. While
being less general in theory since we only deal with finite
domains, our method works on domains and constraint arities
much larger.

In an earlier paper [Dao et al., 2002], we have presented
an indexical learning process. We propose here two main im-
provements, besides a more general theoretical framework:
the possibility of using only a sample of the example space
while still ensuring the correctness of the learned solver and
the reparation method. It follows that our system is able to
handle larger constraint arity and larger domains and there-
fore yields a better solver.
Summary We have presented a general, language-
independent framework for finite domain constraint solver
learning and an instantiation to the learning of bound-
consistency with Gnu-Prolog indexicals.

Acknowledgment We gratefully thank Michel Bergère and the
anonymous referees for their remarks on this paper. This work is
supported by french CNRS grant 2JE095.

References
[Abdennadher and Rigotti, 2002] Slim Abdennadher and

Christophe Rigotti. Automatic generation of rule-based
solvers for intensionally defined constraints. International
Journal on Artificial Intelligence Tools, 11(2):283–302, 2002.

[Abdennadher and Rigotti, 2003] Slim Abdennadher and
Christophe Rigotti. Automatic generation of rule-based
constraint solvers over finite domains. Transaction on Computa-
tional Logic, 2003. accepted for publication.

[Apt and Monfroy, 1999] K. R. Apt and E. Monfroy. Automatic
generation of constraint propagation algorithms for small finite
domains. In Joxan Jaffar, editor, International Conference on
Principles and Practice of Constraint Programming, volume
1713 of LNCS, pages 58–72. Springer, 1999.

[Apt, 1999] K. R. Apt. The essence of constraint propagation. The-
oretical Computer Science, 221(1-2):179–210, 1999.

[Dao et al., 2002] Thi Bich Hanh Dao, Arnaud Lallouet, Andrei
Legtchenko, and Lionel Martin. Indexical-based solver learn-
ing. In Pascal van Hentenryck, editor, International Conference
on Principles and Practice of Constraint Programming, volume
2470 of LNCS, pages 541–555. Springer, 2002.

[Diaz and Codognet, 2001] Daniel Diaz and Philippe Codognet.
Design and implementation of the Gnu-Prolog system. Journal
of Functional and Logic Programming, 2001(6), 2001.

[Früwirth, 1998] Thom Früwirth. Theory and practice of Constraint
Handling Rules. Journal of Logic Programming, 37(1-3):95–
138, 1998.

[van Hentenryck et al., 1991] P. van Hentenryck, V. Saraswat, and
Y. Deville. Constraint processing in cc(fd). draft, 1991.

