
HAL Id: hal-00144931
https://hal.science/hal-00144931

Submitted on 12 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expressiveness of Full First-Order Constraints in the
Algebra of Finite or Infinite Trees

Alain Colmerauer, Thi-Bich-Hanh Dao

To cite this version:
Alain Colmerauer, Thi-Bich-Hanh Dao. Expressiveness of Full First-Order Constraints in the Algebra
of Finite or Infinite Trees. Constraints, 2003, 8 (3), pp.283-302. �hal-00144931�

https://hal.science/hal-00144931
https://hal.archives-ouvertes.fr

Expressiveness of full �rst-order
onstraintsin the algebra of �nite or in�nite treesAlain Colmerauer Thi-Bi
h-Hanh DaoMar
h 5, 2003Abstra
tWe are interested in the expressiveness of
onstraints represented by general �rst orderformulae, with equality as unique relation symbol and fun
tion symbols taken from an in�niteset F . The
hosen domain is the set of trees whose nodes, in possibly in�nite number, arelabelled by elements of F . The operation linked to ea
h element f of F is the mapping(a1; : : : ; an) 7! b, where b is the tree whose initial node is labelled f and whose sequen
e ofdaughters is a1; : : : ; an.We �rst
onsider tree
onstraints involving long alternated sequen
es of quanti�ers 9898 : : :.We show how to express winning positions of two-person games with su
h
onstraints and applyour results to two examples.We then
onstru
t a family of strongly expressive tree
onstraints, inspired by a
onstru
-tive proof of a
omplexity result by Pawel Mielni
zuk. This family involves the huge number�(k), obtained by top down evaluating a power tower of 2's, of height k. By a tree
on-straint of size proportional to k, it is then possible to de�ne a tree having exa
tly �(k) nodesor to express the multipli
ation table
omputed by a Prolog ma
hine exe
uting up to �(k)instru
tions.By repla
ing the Prolog ma
hine with a Turing ma
hine we show the quasi-universality oftree
onstraints, that is to say, the ability to
on
isely des
ribe trees whi
h the most powerfulma
hine will never have time to
ompute. We also redis
over the following result of SergeiVorobyov: the
omplexity of an algorithm, de
iding whether a tree
onstraint without freevariables is true,
annot be bounded above by a fun
tion obtained from �nite
omposition ofsimple fun
tions in
luding exponentiation.Finally, taking advantage of the fa
t that we have at our disposal an algorithm for solvingsu
h
onstraints in all their generalities, we produ
e a set of ben
hmarks for separating feasibleexamples from purely spe
ulative ones. Among others we noti
e that it is possible to solve a
onstraint of 5000 symbols involving 160 alternating quanti�ers.1 Introdu
tionThe algebra of (possibly) in�nite trees plays a fundamental role in
omputer s
ien
e: it is a modelfor data stru
tures, program s
hemes and program exe
utions. As early as 1976, G�erard Huetproposed an algorithm for unifying in�nite terms, that is solving equations in that algebra [12℄.Bruno Cour
elle has studied the properties of in�nite trees in the s
ope of re
ursive programs
hemes [8, 9℄. Alain Colmerauer has des
ribed the exe
ution of Prolog II, III and IV programsin terms of solving equations and disequations in that algebra [4, 5, 6, 1℄. Mi
hael Maher hasintrodu
ed and justi�ed a
omplete theory of the algebra of in�nite trees [13℄. Among others, hehas shown that in this theory, and thus in the algebra of in�nite trees, any �rst order formula isequivalent to a Boolean
ombination of
onjun
tions of equations (partially or totally) existentiallyquanti�ed. Sergei Vorobyov has shown that the
omplexity of an algorithm, de
iding whether aformula without free variables is true in that theory,
annot be bounded above, by a fun
tionobtained from �nite
omposition of simple fun
tions, in
luding exponentiation [16℄. Pawel Miel-ni
zuk [14℄ has shown a similar result in the theory of feature trees, but with a more
onstru
tivemethod, whi
h has inspired a large part of the work presented here.1

We have re
ently developed an algorithm for solving general �rst order
onstraints in the algebraof in�nite trees [10, 11℄. The purpose of this paper is not the presentation of this algorithm, butof examples, �rst imagined as tests, then extended to show the expressiveness of su
h general
onstraints. The paper is organized as follows:We end this �rst se
tion by making
lear the notions of in�nite trees algebra and �rst-order
onstraints in that algebra.In the se
ond se
tion, we use two-partner games for de�ning
onstraints involving long sequen
esof quanti�ers 9898 : : :.In the third se
tion, we introdu
e a
omposition
onstraint whi
h repeats the same
onstrainta tremendously large number of times. A long part of the se
tion is devoted to proving its mainproperty.At se
tion four, we move on to the most expressive
onstraints we know. They are obtainedby
hanging the nature of the repeated
onstraint. We produ
e several examples, among whi
ha
onstraint de�ning a huge �nite tree and an almost perfe
t multipli
ation
onstraint. Then bysimulating a Turing ma
hine, we show the quasi-universality of tree
onstraint, that is to say,the ability to
on
isely des
ribe trees whi
h the most powerful ma
hine will never have time to
ompute. This also allows us to give another proof of the
omplexity result of Sergei Vorobyov.We
on
lude by dis
ussions and ben
hmarks separating the feasible examples from the purelyspe
ulative ones.1.1 The algebra of in�nite treesAs usual, a fun
tion symbol is a symbol together with a non-negative integer, its arity. Trees, withnodes labelled by fun
tion symbols, are well known obje
ts in the
omputer s
ien
e world. Hereare some of them:
.

f

f

s

f

f

f

f

f

f

s f

s

s s

f

s

s

a b a b

a

a

b

a

a

a

awith, of
ourse, the fun
tion symbols a; b; s; f having respe
tively the arities 0; 0; 1; 2. Note thatthe �rst tree is the only one having a �nite set of nodes, but that the se
ond one has still a �niteset of (patterns of) subtrees. We denote by A the set of all trees built on the in�nite set F offun
tion symbols.1We equip A with a set of
onstru
tion operations, one for ea
h element f 2 F , whi
h are themappings (a1; : : : ; an) 7! b, where n is the arity of f and b the tree whose initial node is labelled1More pre
isely we de�ne �rst a node to be a word on the set of stri
tly positive integers. A tree, built on F , isthen a mapping a : E ! F , where E is a non-empty set of nodes, ea
h one i1 : : : ik (with k � 0) satisfying the two
onditions: (1) if k > 0 then i1 : : : ik�1 2 E, (2) if the arity of a(i1 : : : ik) is n, then the set of nodes of E of the formi1 : : : ikik+1 is obtained by giving to ik+1 the values 1; : : : ; n.
2

f and whose sequen
e of daughters is (a1; : : : ; an):2
.a a

a a

f

1 n
1 nThe set A, together with the
onstru
tion operations, is the algebra of in�nite trees and isdenoted by (A; F).1.2 Tree
onstraintsWe are interested in the expressiveness of
onstraints represented by general �rst order formulae,with equality as unique relation symbol and fun
tion symbols taken from an in�nite set F . Thesetree
onstraints are of one of the 10 forms:s= t; true; false; :('); (' ^); (' _); ('!); ('$); 9x'; 8x';where ' and are shorter tree
onstraints, x a variable taken from an in�nite set and s; t terms,that is to say expressions of one of the forms:x; ft1 : : : tn;where n � 0, f 2 F , with arity n, and the ti's are shorter terms.The variables represent elements of the set A of trees built on F , the equality symbol isinterpreted as equality and the fun
tion symbols f are interpreted as
onstru
tion operations inthe algebra of in�nite trees (A; F). Thus a
onstraint without free variables is either true or falseand a
onstraint '(x1; : : : ; xn) with n free variables xi establishes an n-ary relation in the set oftrees. For example the tree
onstraint (u; v; w; x; y) def= 9z �z = f(x; f(y; z)) ^z = f(u; f(v; f(w; z)))�is equivalent to x = u ^ y = v ^ x = w ^ y = u ^ x = v ^ y = w:Thus it expresses that the trees u; v; w; x; y are equal.2 Long nesting of alternated quanti�ersTo show the expressive power of our
onstraints, we start examining deeply embedded quanti�-
ations. We
onsider two-partner games and
hara
terize the positions from whi
h it is alwayspossible to win in at most k moves. In this manner we obtain
onstraints involving an alternatedsequen
e of 2k quanti�ers.2.1 Winning positions in a two-partner gameLet (V;E) be a dire
ted graph, with V a set of verti
es and E � V � V a set of edges. The sets Vand E may be in�nite and the elements of E are also
alled positions. We
onsider the followingtwo-partner game: starting from an initial position x0, ea
h partner in turn,
hooses a position x1su
h that (x0; x1) 2 E, then a position x2 su
h that (x1; x2) 2 E, then a position x3 su
h that2In fa
t, the
onstru
tion operation linked to the n-ary symbol f of F is the mapping (a1; : : : ; an) 7! b, wherethe ai's are any trees and b is the tree de�ned as follows from the ai's and their sets of nodes Ei's: the set E ofnodes of b is f"g [fix jx 2 Ei and i 2 1::ng and, for ea
h x 2 E, if x = ", then b(x) = f and if x is of the form iy,with i being an integer, b(x) = ai(y). 3

(x2; x3) 2 E and so on... The �rst player who
annot make a move loses. For example the twofollowing in�nite graphs
orrespond to the two following games:
10 2 3 4 5 6Game 1 A non-negative integer iis given and ea
h partner, in turn,subtra
ts 1 or 2 from i, but keepingi non-negative. The �rst person who
annot play any more has lost.

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

Game 2 An ordered pair (i; j) of non-negative integers isgiven and ea
h partner, in turn,
hooses one of the integersi; j. Depending on whether the
hosen integer u is odd oreven, he then in
reases or de
reases the other integer v by1, but keeping v non-negative. The �rst person who
annotplay any more has lost.Let x 2 V be any vertex of the dire
ted graph (V;E) and suppose that it is the turn of personA to play. The position x is said to be k-winning if, no matter the way the other person B plays,it is always possible for A to win, after having made at most k moves. The position x is said to bek-losing if, no matter the way A plays, B
an always for
e A to lose and to play at most k moves.32.2 Expressing k-winning positions by a �rst-order
onstraintInstead of tree
onstraints,
onsider general
onstraints, whi
h are �rst-order formulae whose fun
-tion and relation symbols are interpreted in a given stru
ture D, that is a set D together withoperations and relations. Let G = (V;E) be the graph representing a two-partner game, withV � D, and let move (x; y) be a
onstraint in D su
h that:4for ea
h a 2 V and b 2 V , move (a; b) i� (a; b) 2 E: (1)We want to build
onstraints winningk(x) and losingk(x) in D, su
h that, for k � 0 and ea
ha 2 V , winningk(a) i� a is a k-winning position of G;losingk(a) i� a is a k-losing position of G:>From the de�nition of k-winning and k-losing positions in the pre
eding se
tion, we infer �rstthat, for every k � 0: winning0(x) $ false;winningk+1(x) $ 9y move (x; y) ^ losingk(y); (2)losingk(x) $ 8y move (x; y)! winningk(y): (3)3For the �rst game, it
an be shown that the set of k-winning positions is the set of non-negative integers i su
hthat i < 3k and i is not divisible by 3. For the se
ond game, it is the set of ordered pairs (i; j) of non-negativeintegers, su
h that i+j < 2k and i+j is odd.4If '(x1; : : : ; xn) denotes a
onstraint whose free variables are among the xi's, and if the ai's are elements of D,then '(a1; : : : ; an) is the interpretation of the
onstraint in D, where the free o

urren
es of the xi's are interpretedby the
orresponding ai's.
4

By using only existential quanti�ers and unfolding the equivalen
es, we then noti
e that (2)
anbe repla
ed by
winningk(x) $ 9ymove (x; y) ^ :(9xmove (y; x) ^ :(9ymove (x; y) ^ :(9xmove (y; x) ^ :(: : :9ymove (x; y) ^ :(9xmove (y; x) ^ :(false) : : :)| {z }2k (4)

Thus equivalen
es (4) and (3) provide an expli
it way for building the
onstraints we need. Noti
ethat, by moving the negations down in (4), we get a nesting of 2k alternated quanti�ers.5It is possible to keep equivalen
e (4), while weakening
ondition (1). We �rst remark, that forany non-negative k, the following property holds:Property 1 Let three dire
ted graphs be of the form G1 = (V1; E1), G2 = (V2; E2) and G =(V1 [V2; E1 [E2). The graphs G1 and G have the same set of k-winning positions, if both:1. the sets of verti
es V1 and V2 are disjoint,2. for ea
h x 2 V2, there exists y 2 V2 with (x; y) 2 E2.Indeed, from the �rst
ondition it follows that E1 and E2 are disjoint and thus that the set of k-winning positions of G is the union of the set of k-winning positions of G1 with the set of k-winningpositions of G2. But this last set is empty be
ause of the se
ond
ondition.It follows that:Property 2 (Generalized move) Equivalen
e (4) holds also for any
onstraintmove (x; y) obey-ing the three
onditions:1. for ea
h a 2 V and b 2 V , if (a; b) 2 E then move (a; b),2. for no a 2 D�V and no b 2 V we have move (a; b),3. for ea
h a 2 D�V , there exists b 2 D�V su
h that move (a; b).2.3 Example : tree
onstraint for game 1We now re
onsider game 1 introdu
ed in se
tion 2.1. As stru
ture D we take the algebra (A; F)of in�nite trees
onstru
ted on a set F of fun
tion symbols in
luding among others the symbols0; s, of respe
tive arities 0; 1. We
ode the verti
es i of the game graph by the trees si(0).6 LetG = (V;E) be the graph obtained this way.Then, as generalized move (x; y)
onstraint we
an take:move (x; y) def= x = s(y) _ x = s(s(y)) _ (:(x = 0) ^ :(9ux=s(u)) ^ x=y)and a

ording to property 2, the set of k-winning positions of game 1 is the set of solutions in x ofthe
onstraint winningk(x) de�ned by (4).5From the three equivalen
es in (2) and (3) it follows that 8xwinningk(x)! winningk+1(x) and 8x losingk(x)!losingk+1(x), for any k � 0. Indeed, from the �rst and the last equivalen
e we
on
lude that the impli
ations holdfor k = 0 and, if we assume that they hold for a
ertain k � 0, from the last two equivalen
es we
on
lude that theyalso hold for k+1.6Of
ourse, s0(0) = 0 and si+1(0) = s(si(0)). 5

For example, for k = 1 the
onstraint winningk(x) is equivalent tox=s(0) _ x=s(s(0))and, for k = 2, tox=s(0) _ x=s(s(0)) _ x=s(s(s(s(0)))) _ x = s(s(s(s(s(0))))):2.4 Example : tree
onstraint for game 2We also re
onsider game 2 introdu
ed in se
tion 2.1. As stru
ture D we take the algebra (A; F)of in�nite trees
onstru
ted on a set F of fun
tion symbols in
luding among others the symbols0; f; g;
, of respe
tive arities 0; 1; 1; 2. We
ode the verti
es (i; j) of the game graph by the trees
(i; j) with i = (fg) i2 (0), if i is even, and i = g(i�1), if i is odd.7 Let G = (V;E) be the graphobtained this way.The perspi
a
ious reader will
onvin
e himself that, as generalized
onstraint move (x; y), we
an take: move (x; y) def= transition (x; y) _ (:(9u 9v x=
(u; v)) ^ x=y)with transition (x; y) def= 266666649u 9v 9w�(x=
(u; v) ^ y=
(u;w)) _(x=
(v; u) ^ y=
(w; u)) ��̂(9i u=g(i) ^ su

 (v; w)) _(:(9i u=g(i)) ^ pred (v; w))�
37777775su

 (v; w) def= �((9j v=g(j)) ^ w=f(v)) _(:(9j v=g(j)) ^ w=g(v)) �pred (v; w) def= 2666664(9j v=f(j) ^ �(9k j=g(k) ^ w=j) _(:(9k j=g(k)) ^ w=v)�) _(9j v=g(j) ^ �(9k j=g(k) ^ w=v) _(:(9k j=g(k)) ^ w=j)�) _(:(9j v=f(j)) ^ :(9j v=g(j)) ^ :(v=0) ^ w=v)

3777775A

ording to property 2, the set of k-winning positions of game 2 is the set of solutions in x of the
onstraint winningk(x) de�ned in (4).For example, for k = 1 the
onstraint winningk(x) is equivalent tox=
(g(0); 0) _ x=
(0; g(0))and, for k = 2, to�x=
(0; g(0)) _ x=
(g(0); 0) _ x=
(0; g(f(g(0)))) _x=
(g(0); f(g(0))) _ x=
(f(g(0)); g(0)) _ x=
(g(f(g(0))); 0)�3 Composition of
onstraintsWe now move on to a systemati
 way of
ompressing a
onjun
tion of a very large number of
onstraints into a small
onstraint.7Of
ourse, (fg)0(x) = x and (fg)i+1(x) = f(g((fg)i(x))).
6

3.1 De�nition and propertiesWe introdu
e the integer �(k), de�ned for ea
h integer k � 0, by�(0) = 1; �(k + 1) = 2�(k):Thus �(n) = 2����2(22)�| {z }n :The fun
tion � in
reases in a stunning way, sin
e �(0) = 1, �(1) = 2, �(2) = 4, �(3) = 16,�(4) = 65536 and �(5) = 265536. Thus �(5) is greater than 1020000, a number probably mu
hgreater than the number of atoms of the universe and the number of nanose
onds whi
h elapsedsin
e its
reation!We agree that the size j'j of a
onstraint ', is the number of o

urren
es of all symbols, ex
eptparentheses and
ommas. (Constraints
an be written in in�x notation.) We denote by jj'jj thenumber of di�erent symbols o

urring in ', ex
ept parentheses and
ommas. If x; y are variablesand '(x; y) is a
onstraint then, for ea
h n � 0, the n-fold
omposition of '(x; y) is the
onstraintdenoted and de�ned by:8'n(x; y) def= 9u0 : : :9un x=u0 ^ '(u0; u1) ^ '(u1; u2) ^ � � � ^ '(un�1; un) ^ un=y (5)We assume that the set A of trees is
onstru
ted over a set F of fun
tion symbols in
ludingamong others the symbols 1; 2; 3, of arity zero, and the symbol f , of arity four. Given a
onstraint'(x; y), for ea
h k � 0 we introdu
e the
onstraint:super
omposition k['℄(x; y) def= 9z triangle k(3; x; z; y) (6)with, triangle 0(t; x; z; y) def= z=x ^ z=y
triangle k+1(t; x; z; y) def=

2666666666666664
[9u1 9u2 z=f(x; u1; u2; y)℄2̂66666666664
8t0 8y0 8z0�(t0=1 _ t0 = 2) ^triangle k(t0; z; y0; z0)�!266664(t0=1 ^ form1 (z0)) _(t0=2 ^ 26649u 9v form2 (u; z0; v) ^(t=1! son (u; v)) ^(t=2! son (u; v) _ u=v) ^(t=3! '(u; v)) 3775377775

377777777775
3777777777777775 (7)

and form1 (x) def= 9u1 : : : 9u4 x=f(u1; f(u2; u2; u2; u2); f(u3; u3; u3; u3); u4)form2 (x; z; y) def= 9u1 : : : 9u6 z=f(u1; f(u1; u2; u3; x); f(y; u4; u5; u6); u6)son (x; y) def= 9u1 : : : 9u4 x=f(u1; u2; u3; u4) ^ (y = u2 _ y = u3) (8)We noti
e �rst that the size of the
onstraint de�ned in (6) linearly depends on k. Morepre
isely:Property 3 jsuper
omposition k['℄(x; y)j = 9+ k(155 + j'(x; y)j).8Of
ourse, if '(x1; : : : ; xn) is a
onstraint, the xi's variables and the ti's terms, '(t1; : : : ; tn) denotes the same
onstraint with the ti's substituted for all the free o

urren
es of the
orresponding xi's.7

To show this property, it is suÆ
ient to
ount:jform1 (z0)j = 23;jform2 (u; z0; v)j = 27;json (u; v)j = 23;jtriangle k+1(t; x; z; y)j = 59 + jtriangle k(t; x; z; y)j+ jform1 (z0)j+jform2 (u; z0; v)j + 2json (u; v)j + j'(u; v)j;= 155 + jtriangle k(t; x; z; y)j+ j'(u; v)j;jtriangle 0(t; x; z; y)j = 7;jsuper
omposition k['℄(x; y)j = 2 + jtriangle k(t; x; z; y)j;and to
on
lude. This property is interesting only if one noti
es that:Property 4 It is possible to name the variables o

urring in the family of
onstraints of theprevious property, in su
h a way that, there exists an integer
, depending only on ', withjjsuper
omposition k['℄(x; y)jj �
, for ea
h k � 0.We remind the reader that jj'jj is the number of di�erent symbols o

urring in ', ex
ept paren-theses and
ommas.But the essential result is:Theorem 1 super
omposition k['℄(x; y) $ '�(k)�1(x; y).The next two subse
tions are devoted to the proof of the theorem.3.2 Preliminaries to the proof of Theorem 1We introdu
e trees,
alled k-onions, whose upper parts of depth k are essentially binary trees withadditional bran
hes permitting dire
t a

esses to the nodes at depth k + 1. For k = 3 su
h treesare of the form
f

f

f

ffff

f

k+1

f

f

f

ffff

u u u u u u u u
21 2 3 4 5 6 7 k (9)where the ui's are any trees. More generally, for k � 0, a k-onion is a tree z whi
h satis�es the
onstraint onion k(z), with:onion 0(z) def= 9u z = f(u; u; u; u)onion k+1(z) def= 26649u 9u1 : : : 9u4 9v 9v1 : : : 9v4u=f(u1; u2; u3; u4) ^ onion k(u) ^v=f(v1; v2; v3; v4) ^ onion k(v) ^z = f(u1; u; v; v4) 3775 (10)The relevan
e of these trees
omes from the property whi
h follows. This property involves the
onstraints son ; form2 , de�ned by (8), and the notation son i, de�ned by (5).8

Property 5 For every tree
onstraint '(x; y) and every k � 0, the following equivalen
e holds9:
'2k�1(x; y) $ 9z 2666666666664

onion k(z)[̂9v29v3 z=f(x; v2; v3; y)℄2̂66648z0hWk�1i=0 son i(z; z0)i!�9u9v form2 (u; z0; v) ^'(u; v) �37775
3777777777775Proof We pro
eed by indu
tion on k. We �rst show that the property holds for k = 0. In that
ase, Wk�1i=0 son i(z; z0) = false and the impli
ation o

urring in the right member of the equivalen
eis equivalent to true. Thus it only remains to prove thatx = y $ 9z onion 0(z) ^ [9v2 9v3 z=f(x; v2; v3; y)℄;whi
h is a dire
t
onsequen
e of the de�nition of onion 0(z). Let us now assume that the propertyholds for k � 0 and let us show that it holds for k+1. Thus, under this assumption, we must showthat the
onstraint '2k+1�1(x; y) is equivalent to9z "onion k+1(z) ^ [9w19w2 z=f(x;w1; w2; y)℄ ^Vki=0 [8z0son i(z; z0)! [9u9v form2 (u; z0; v) ^ '(u; v)℄℄# :Taking into a

ount the de�nition of onion k+1(z) and splitting the
ase where i = 0 from the
aseswhere i > 0, we get the equivalent
onstraint9z 266666426649z1 9u1 : : :9u4 9z2 9v1 : : : 9v4z1=f(u1; u2; u3; u4) ^ onion k(z1) ^z2=f(v1; v2; v3; v4) ^ onion k(z2) ^z=f(u1; z1; z2; v4) 3775 ^ [9w19w2 z=f(x;w1; w2; y)℄ ^[9u9v form2 (u; z; v) ^ '(u; v)℄ ^Vki=1 [8z0son i(z; z0)! [9u9v form2 (u; z0; v) ^ '(u; v)℄℄

3777775 ;whi
h simpli�es into9z 9z1 9u2 : : : 9u4 9z2 9v1 : : : 9v3 2664z1=f(x; u2; u3; u4) ^ onion k(z1) ^z2=f(v1; v2; v3; y) ^ onion k(z2) ^z=f(x; z1; z2; y) ^ '(u4; v1) ^Vki=1[8z0son i(z; z0)! [9u9v form2 (u; z0; v) ^ '(u; v)℄℄3775and thus is equivalent to9u4 9v1 26666666649z1 onion k(z1) ^[9u29u3 z1=f(x; u2; u3; u4)℄ ^266648z0hWk�1i=0 son i(z1; z0)i!�9u9v form2 (u; z0; v) ^'(u; v) �37775
3777777775 ^ '(u4; v1) ^

26666666649z2 onion k(z2) ^[9v29v3 z2=f(v1; v2; v3; y)℄ ^266648z0hWk�1i=0 son i(z2; z0)i!�9u9v form2 (u; z0; v) ^'(u; v) �37775
3777777775 :Sin
e we have assumed that Property 5 holds for k, the pre
eding
onstraint is equivalent to the
onstraint 9u4 9v1 '2k�1(x; u4) ^ '(u4; v1) ^ '2k�1(v1; y);9For k = 0 we
onsider that Wk�1i=0 son i(z; z0) is the logi
al
onstant false.9

whi
h is indeed equivalent to '2k+1�1(x; y). 2For the next subse
tion we need an expli
it de�nition of the
onstraint onion k(z). The propertywhi
h follows does the job. It involves the
onstraints son ; form1 ; form2 , de�ned by (8), and thenotation son i, de�ned by (5).Property 6 For every tree z and every k � 1,onion k(z) $ 2666664�8z0son k�1(z; z0)! form1 (z0)�"̂8z0hWk�1i=0 son i(z; z0)i! �9u9v form2 (u; z0; v)�#3777775Proof We pro
eed by indu
tion on k. Property 6 is true for k = 1. Indeed, a

ording to thede�nition of onion 1 and onion 0, to be an 1-onion
onsists in being at the same time a tree of theform (1) and a tree of the form (2) below.
(1) (2)

ff

f f

f fThus onion 1(z) $ form1 (z) ^ [9u9v form2 (u; z; v)℄;whi
h is nothing else than Property 6, for k = 1. Let us assume that Property 6 holds for k andlet us show that it holds for k+1. Thus, under this assumption, we must show that the
onstraintonion k+1(z) is equivalent to the
onstraint�[8z0 son k(z; z0)! form1 (z0)℄ ^Vki=0 [8z0 son i(z; z0)! [9u9v form2 (u; z0; v)℄℄� :By splitting the
ase where i = 0 from the
ases where i > 0, the pre
eding
onstraint
an bewritten as the
onstraint24[8z0 son k(z; z0)! form1 (z0)℄ ^[9u9v form2 (u; z; v)℄ ^Vki=1 [8z0 son i(z; z0)! [9u9v form2 (u; z0; v)℄℄35 ;whi
h is equivalent to the
onstraint266664[8z0 son k(z; z0)! form1 (z0)℄ ^249z1 9u1 : : :9u4 9z2 9v1 : : : 9v4z1=f(u1; u2; u3; u4) ^ z2=f(v1; v2; v3; v4) ^z=f(u1; z1; z2; v4) 35 ^Vki=1 [8z0 son i(z; z0)! [9u9v form2 (u; z0; v)℄℄ 377775 ;whi
h is equivalent to the
onstraint9z1 9u1 : : : 9u4 9z2 9v1 : : : 9v4 26666666664
z1=f(u1; u2; u3; u4) ^ z2=f(v1; v2; v3; v4) ^z = f(u1; z1; z2; v4)[8z0 son k�1(z1; z0)! form1 (z0)℄ ^Vk�1i=0 [8z0 son i(z1; z0)! [9u9v form2 (u; z0; v)℄℄ ^[8z0 son k�1(z2; z0)! form1 (z0)℄ ^Vk�1i=0 [8z0 son i(z2; z0)! [9u9v form2 (u; z0; v)℄℄

37777777775 ;10

whi
h, given the assumption on k, is equivalent to the
onstraint9z1 9u1 : : : 9u4 9z2 9v1 : : :9v4 264z1=f(u1; u2; u3; u4) ^ z2=f(v1; v2; v3; v4) ^z = f(u1; z1; z2; v4)onion k(z1) ^ onion k(z2) 375 ;whi
h, by de�nition, is equivalent to onion k+1(z). 23.3 Proof of Theorem 1We
an nowmove on to the proof itself of Theorem 1. Given the de�nition of super
omposition k['℄(x; y),it is suÆ
ient to show that, in the algebra of in�nite trees, the last of the three following equiva-len
es holds: (9z triangle k(1; x; z; y)) $ son �(k)�1(x; y);(9z triangle k(2; x; z; y)) $ Wi=�(k)�1i=0 son i(x; y);(9z triangle k(3; x; z; y)) $ '�(k)�1(x; y): (11)By indu
tion on k, we will prove that the three equivalen
es hold. They hold for k = 0. Assumingthat they hold for a given k � 0, let us prove that they hold for k+1.By introdu
ing an existential quanti�
ation on z, in both side of the de�nition of triangle k+1in (7) and by splitting up the t0 = 1
ase from the t0 = 2
ase, we get
9z triangle k+1(t; x; z; y) $ 9z

2666666666666664
[9u1 9u2 z=f(x; u1; u2; y)℄2̂48z0(9y0 triangle k(1; z; y0; z0))!form1 (z0) 352̂6648z0(9y0 triangle k(2; z; y0; z0))!�9u 9v form2 (u; z0; v) ^ (u; v) � 3775

3777777777777775 ;with (u; v) def= 24(t=1! son (u; v)) ^(t=2! son (u; v) _ u=v) ^(t=3! '(u; v)) 35 :Sin
e we have assumed that the three equivalen
es (11) hold for k, it follows that
9z triangle k+1(t; x; z; y) $ 9z

26666666666666664
[9u29u3 z=f(x; u2; u3; y)℄2̂48z0son �(k)�1(z; z0)!form1 (z0) 352̂6648z0[W�(k)�1i=0 son i(z; z0)℄!�9u 9v form2 (u; z0; v) ^ (u; v) �3775

37777777777777775 ;
11

that is to say, by looking ba
k at Property 6,
9z triangle k+1(t; x; z; y) $ 9z 2666666666664

onion �(k)(z)[̂9u29u3 z=f(x; u2; u3; y)℄2̂66648z0hW�(k)�1i=0 son i(z; z0)i!�9u9v form2 (u; z0; v) ^ (u; v) �37775
3777777777775 : (12)

>From (12), by using Property 5 with instead of ', we get9z triangle k+1(t; x; y; z) $ �(k+1)�1(u; v)and by su

essively assigning the values 1; 2; 3 to t and taking into a

ount the de�nition of , weobtain (11).4 Quasi-universality of tree
onstraintsAs we will see, the
omposition
onstraint is a good starting point for de�ning expressive
on-straints.4.1 Example: huge �nite treeFirst it is possible to de�ne a huge �nite tree, of �(k) nodes, with a small
onstraint, of size linearlydepending on k. We suppose that the symbol 0, of arity zero, and the symbol s, of arity one, areelements of F and we introdu
e the
onstrainthuge k(x) def= super
omposition k['℄(x; 0),with '(x; y) def= x=s(y).A

ording to Property 3 and Theorem 1, we then have:Property 7 jhuge k(x)j = 9+159k.Property 8 huge k(x) $ x=s�(k)�1(0).4.2 Example : multipli
ationLet us now try to express the multipli
ation
onstraint w = uv. Assume that the fun
tion symbols0; s; empty; list; nat ; plus ; times , of respe
tive arities 0; 1; 0; 2; 1; 3; 3, o

ur in F and
onsider theprolog like program,8>>>>>><>>>>>>:Times (0; v; 0) Nat (v);Times (s(u); v; w0) Times (u; v; w) ^ Plus (v; w; w0);Plus (0; v; v) True;Plus (s(u); v; s(w)) Plus (u; v; w);Nat (0) True;Nat (s(u)) Nat (u)
9>>>>>>=>>>>>>; ;

12

whi
h for a query of the form Times (u; v; w) would enumerate the
onstraints of the formu = sm(0) ^ v = sn(0) ^ w = sm�n(0); (13)ad in�nitum, without forgetting any. For this program we
onstru
t the Prolog ma
hine de�nedby the transition
onstraint
'(x; y) def=

x = y _249v 9zx= list(times (0; v; 0); z)) ^y= list(nat (v); z) 35 _249u 9v 9w 9w0 9zx= list(times (s(u); v; w0); z) ^y= list(times (u; v; w); list(plus (v; w; w0); z))35 _249v 9zx= list(plus (0; v; v); z) ^y=z 35 _249u 9v 9w 9zx= list(plus (s(u); v; s(w)); z) ^y= list(plus (u; v; w); z) 35 _249zx= list(nat (0); z) ^y=z 35 _249u 9zx= list(nat (s(u)); z) ^y= list(nat (u); z) 35We see that, starting from
on�guration list(nat (sn(0)); z), the ma
hine performs at most n + 1transitions and, starting from
on�guration list(plus (sn(0); v; v); z), the ma
hine performs at mostn + 1 transitions. Thus, starting from
on�guration list(times (sm(0); sn(0); w); z), the ma
hineperforms at most (m + 1) + (n + 1) +m(n+ 1), that is (m + 1)(n + 2) transitions. We
on
ludethat the
onstraint9x 9y x= list(times (u; v; w); empty) ^ 'k(x; y) ^ y=emptyis equivalent to the disjun
tion the
onstraints (13), with(m+ 1)(n+ 2) � k:>From Property 3 and Theorem 1, it follows that the
onstraintTimes k(u; v; w) def= 9x 9yx= list(times (u; v; w); empty) ^super
omposition k['℄(x; y) ^y=emptyhas the properties:Property 9 jTimes k(u; v; w)j = 26 + 289kProperty 10 Times k(u; v; w) $ W(m+1)(n+2)<�(k)(u = sm(0) ^ v = sn(0) ^ w = sm�n(0)).13

By taking k = 5, we
an then
on
lude:With a tree
onstraint of 1471 symbols length, it is possible to express the multipli
ation table ofintegers ranging to the number of atoms of the universe.>From this example we also dedu
e a systemati
 way to repla
e the \reasonable exe
ution" ofa prolog like program, by the pro
ess of solving a
onstraint of size
omparable to the size of theprogram.4.3 Quasi-universalityInstead of a Prolog ma
hine we
an take a Turing ma
hineM , and express by '(x; y) its transition
onstraint, that is the fa
t that M may move from
on�guration x to
on�guration y by exe
utingone instru
tion or the fa
t that x = y. As an example, we take the ma
hine whose set of instru
tionsis10 �(q0; 1; 1; q1; R); (q0;t;t; q2; L);(q1; 1;t; q0; R); (q1;t; 1; q2; L) � (14)whose states are q0; q1; q2 and whose alphabet is ft; 1g. If we represent the ma
hine
on�guration
a b c d e

qby the in�nite tree
. . .

. . .

g
g

g
g

b
a

c
d

e g
g

g
g

g
q

then the transition
onstraint is
'(x; y) def= x = y _249u 9v 9wx=q0(u; g(1; g(v; w))) ^y=q1(g(u; 1); g(v; w)) 35 _ 249u 9v 9wx=q0(g(u; v); g(t; w)) ^y=q2(u; g(v; g(t; w))) 35 _249u 9v 9wx=q1(u; g(1; g(v; w)) ^y=q0(g(u;t); g(v; w)) 35 _ 249u 9v 9wx=q1(g(u; v); g(t; w)) ^y=q2(u; g(v; g(1; w))) 35where t; 1; g; q0; q1; q2 are fun
tion symbols of respe
tive arities 0; 0; 2; 2; 2; 2.Suppose, in general, that M is a Turing ma
hine with alphabet � [ftg, initial state q0, �nalstate qh and transition
onstraint '(x; y). For any word a = a1a2 : : : am of �?, let M(a) be the10Instru
tion (q; s; s0; q0; R) means: if the ma
hine is in state q and its read-write head is in front of a
ell
ontainingsymbol s, then it repla
es s by s0, moves its head one
ell to the right and
hanges its state into q0. Instru
tion(q; s; s0; q0; L) means the same but with the head moving to the left.14

element of �? output by M on input a, if it exists.11 Consider the tree
onstraints:output k['; a℄(v) def= 9u9x9y is [a℄(u) ^ initial (u; x) ^ super
omposition k['℄(x; y) ^ �nal (y; v)is [a℄(u) def= 9v u = g(a1; g(a2; : : : ; g(am; v) : : :)) ^ v = g(t; v);initial (u; x) def= 9v x = q0(v; u) ^ v = g(v;t);�nal (x; u) def= 9v x = qh(v; u)>From Property 3 and Theorem 1, we
on
lude that:Property 11 joutput k['; a℄(v)j = 40 + 2jaj+ k(155 + j'(x; y)j).Property 12 output k['; a℄(v)$ is [M(a)℄(v), under the restri
tion that the ma
hine M exe-
utes fewer than �(k) instru
tions.We
onsider that a tree v whi
h satis�es the
onstraint is [b℄(v) is an expli
it
oding of the wordb = b1 : : : bn and we denote by jM j the number of instru
tions of the ma
hine M . Then, from thetwo previous properties it follows that:Corollary 13 (Quasi-universality of tree
onstraints) For any words a; b and Turing ma-
hine M , su
h that M
omputes b from a in fewer than �(k) instru
tions, there exists a tree
onstraint (v) of size O(k+ jM j+ jaj), whose unique solution in v is a tree whi
h
odes expli
itlyb.4.4 ComplexityThe tree
onstraints have a quasi-universal expressiveness in the sense of Corollary 13. Thereforethe
omplexity of the algorithms for solving them must be very high. More pre
isely:Theorem 2 The time
omplexity of an algorithm, whi
h de
ides whether a tree
onstraint withoutfree variables is true,
annot be bounded above by an elementary fun
tion.Properties 11 and 12 will allow us to redis
over this result of Sergei Vorobyov [16℄ in the spiritof a proof of a similar result by Pawel Mielni
zuk [14℄.Let us �rst spe
ify our terminology. An elementary fun
tion is a fun
tion obtained by �nite
ompositions of the fun
tions x 7!
st, +, �, (x; y) 7! xy . A Turing ma
hine M is of time
omplexity bounded above by f(n) or just of
omplexity f(n), if, for any word a 2 �?, the ma
hineexe
utes at most f(jaj) instru
tions for
omputing M(a), ex
ept eventually in a �nite number of
ases. A Turing ma
hine M de
ides the language L � �? if, for any a 2 �?,M(a) = �1 if a 2 L,0 if a 62 L. (15)Finally, by h'i we denote a word in �? whi
h
odes in an obvious way the tree
onstraint '.By not distinguishing an algorithm from a Turing ma
hine, theorem 2
an then be restated inmore pre
ise terms:11At the beginning the ma
hine is in the initial state q0 and the twi
e in�nite tape is �lled with t symbols, ex
epta part, starting at the read-write head position, whi
h
ontains the input a 2 �?. Then the ma
hine, whi
h issupposed to be deterministi
, exe
utes the instru
tions until it rea
hes the �nal state qh. The output is the longestelement of �? whi
h starts at the �nal read-write head position. For example, with q0 the initial state, q2 the �nalstate, with n 1's on input, ma
hine (14) outputs the empty word, if n is even, and 11, if n is odd.
15

Theorem 2, restated If N is a Turing ma
hine su
h that, for all tree
onstraints withoutfree variables, N(h i) = �1 if is true,0 if is false, (16)then its time
omplexity
annot be bounded above by an elementary fun
tion.Proof Let's assume for the purpose of obtaining a
ontradi
tion that the restated theorem isfalse. Then there exists a Turing ma
hine N , of elementary
omplexity, su
h that (16). Let Lbe a language, de
idable by a Turing ma
hine M of
omplexity �(n), but by no ma
hine M 0of elementary
omplexity. (For the existen
e of su
h a language, see for example the hierar
hytheorems in the book of Mi
hael Sipser [15℄). Let '(x; y) be the transition
onstraint of M . It isthen possible to build two Turing ma
hines M 0 and A, su
h that, for any a 2 �?,M 0(a) = N(A(a)); A(a) = h9v output n['; a℄(v) ^ is [1℄(v)i:A

ording to Property 11, we
an impose that the
omplexity of ma
hine A is elementary. Thus,N being of elementary
omplexity,M 0 is also of elementary
omplexity. But a

ording to Property12, M 0 de
ides the language L. This
ontradi
ts the de�nition of L and ends the proof. 25 Dis
ussions and
on
lusionThus, at the pri
e of an in
redible time
omplexity, it is possible to express anything by a tree
onstraint. How is it in pra
ti
e?Having at our disposal a general tree
onstraint solver, we have performed ben
hmarks on ourfour families of examples: expressing winning positions in two games, de�ning a huge �nite treeand de�ning a multipli
ation table. The results are summarized in the following table, with CPUtimes given in millise
onds:k winningk winningk huge k Times kgame 1 game 20 0 0 0 01 0 150 0 02 10 360 10 403 10 610 230 -4 20 840 - -5 30 1180 - -10 300 5 970 - -20 4 270 236 350 - -40 89870 - - -80 3 841220 - - -The solver is programmed in C++ and the ben
hmarks are performed on a 350Mhz Pentium IIpro
essor, with 512Mb of RAM.It must be noted that we were able to
ompute the k-winning positions of game 1, with k = 80,and of game 2, with k = 20. This
orresponds respe
tively to a formula of 4961 symbols, involving160 alternating quanti�ers, and a formula of 7681 symbols involving 40 alternating quanti�ers. Wewere prepared to experien
e diÆ
ulties in
omputing the tree of �(k) nodes, beyond k = 3, sin
e�(4) is already 65536. With respe
t to multipli
ation, we were unable to su

eed beyond k = 2and had to satisfy ourselves with 0� 0 = 0 and 0� 1 = 0!These tests have also removed some of our doubts about the
orre
tness of the
ompli
atedformulae of our examples, even if, for readability, we have introdu
ed predi
ates for naming sub-formulae. Of
ourse the de�nitions of these predi
ates are supposed not to be
ir
ular and thesolver unfolds and eliminates them in a �rst step. If
ir
ular de�nitions were a

epted, then our
onstraints would look like generalized
ompletions of logi
 programs [2℄.16

Of all the des
ribed
onstraints, the Turing ma
hine transition
onstraint is the only one usingexpli
itly in�nite trees. All the others are also meaningful in the algebra of �nite trees. Sin
e it ispossible to simulate a Turing ma
hine (in a more
ompli
ated way) in the algebra of �nite trees,our results are also valid in this algebra. For other examples of
onstraints involving expli
itlyin�nite trees, we refer the reader to [3, 7℄, where in�nite trees are used for
oding
y
li
 stru
tures,like �nite state automata,
ontext-free grammars or �-expressions.A
knowledgement We thank Leszek Pa
holski for our dis
ussions during early summer 1998in Marseille. We also thank the two anonymous reviewer for their detailed and helpful
omments.Referen
es[1℄ Benhamou F., P. Bouvier, A. Colmerauer, H. Garetta, B. Giletta, J.L. Massat, G.A. Narboni,S. N'Dong, R. Pasero, J.F. Pique, Toura��vane, M. Van Caneghem and E. V�etillard, Le manuelde Prolog IV. PrologIA, Marseille, June 1996.[2℄ Clark K.L., Negation as failure, in Logi
 and Databases, edited by H. Gallaire and J. Minker,Plenum Press, New York, pp. 293{322, 1978.[3℄ Colmerauer A., Prolog and In�nite Trees, in Logi
 Programming, K.L. Clark and S.A.. Tarn-lund editors, A
ademi
 Press, New York, pp. 231{251, 1982.[4℄ Colmerauer A., Henry Kanoui and Mi
hel Van Caneghem, Prolog, theoreti
al prin
iples and
urrent trends, in Te
hnology and S
ien
e of Informati
s, North Oxford A
ademi
, vol. 2, no4, August 1983. English version of the journal TSI, AFCET-Bordas, where the paper appearsunder the title: Prolog, bases th�eoriques et d�eveloppements a
tuels.[5℄ Colmerauer A., Equations and Inequations on Finite and In�nite Trees, in Pro
eeding of theInternational Conferen
e on Fifth Generation Computer Systems (FCGS-84), ICOT, Tokyo,pp. 85{99, 1984.[6℄ Colmerauer A., An Introdu
tion to Prolog III, Communi
ations of the ACM, 33(7) : 68{90,1990.[7℄ Coupet-Grimal S. and O. Ridoux, On the use of advan
ed logi
 programming features in
omputational linguisti
s. The Journal of Logi
 Programming, 24(1&2), pages 121{159.[8℄ Cour
elle B., Fundamental Properties of In�nite Trees, Theoreti
al Computer S
ien
e, 25(2),pp. 95{169, Mar
h 1983.[9℄ Cour
elle B., Equivalen
es and Transformations of Regular Systems - Appli
ations to Pro-gram S
hemes and Grammars, Theoreti
al Computer S
ien
e, 42, pp. 1{122, 1986.[10℄ Thi-Bi
h-Hanh Dao. R�esolution de
ontraintes du premier ordre dans la th�eorie des arbres�nis ou in�nis. In Programmation en logique ave

ontraintes, JFPLC'2000, pages 225{240.Herm�es S
ien
es et Publi
ation, 2000.[11℄ Thi-Bi
h-Hanh Dao. R�esolution de
ontraintes du premier ordre dans la th�eorie des arbres�nis ou in�nis. PhD thesis, Universit�e de la M�editerran�ee, De
ember 2000.[12℄ Huet G., R�esolution d'�equations dans les langages d'ordre 1; 2; : : : ; !., Th�ese d'Etat, Univer-sit�e Paris 7, 1976.[13℄ Maher M.J., Complete Axiomatization of the Algebra of Finite, Rational and In�nite Trees,Te
hni
al report, IBM - T.J.Watson Resear
h Center, 1988.[14℄ Mielni
zuk P., Basi
 Theory of Feature Trees, submitted to Journal of Symboli
 Computation,available at http://www.t
s.uni.wro
.pl/~mielni.17

[15℄ Sipser M., Introdu
tion to the Theory of Computation, PWS Publishing Company, 1997.[16℄ Vorobyov S., An Improved Lower Bound for the Elementary Theories of Trees, Pro
eedingof the 13th International Conferen
e on Automated Dedu
tion (CADE'96). Springer Le
tureNotes in Arti�
ial Intelligen
e, vol 1104, pp. 275-287, New Brunswi
k, NJ, July/August,1996.

18

