N

N

Expressiveness of Full First-Order Constraints in the
Algebra of Finite or Infinite Trees
Alain Colmerauer, Thi-Bich-Hanh Dao

» To cite this version:

Alain Colmerauer, Thi-Bich-Hanh Dao. Expressiveness of Full First-Order Constraints in the Algebra
of Finite or Infinite Trees. Constraints, 2003, 8 (3), pp.283-302. hal-00144931

HAL Id: hal-00144931
https://hal.science/hal-00144931
Submitted on 12 Mar 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00144931
https://hal.archives-ouvertes.fr

Expressiveness of full first-order constraints
in the algebra of finite or infinite trees

Alain Colmerauer Thi-Bich-Hanh Dao
March 5, 2003

Abstract

We are interested in the expressiveness of constraints represented by general first order
formulae, with equality as unique relation symbol and function symbols taken from an infinite
set F. The chosen domain is the set of trees whose nodes, in possibly infinite number, are
labelled by elements of F. The operation linked to each element f of F' is the mapping
(ai,...,an) — b, where b is the tree whose initial node is labelled f and whose sequence of
daughters is ai,...,ax.

We first consider tree constraints involving long alternated sequences of quantifiers IV3V. . ..
We show how to express winning positions of two-person games with such constraints and apply
our results to two examples.

We then construct a family of strongly expressive tree constraints, inspired by a construc-
tive proof of a complexity result by Pawel Mielniczuk. This family involves the huge number
a(k), obtained by top down evaluating a power tower of 2’s, of height k. By a tree con-
straint of size proportional to k, it is then possible to define a tree having exactly a(k) nodes
or to express the multiplication table computed by a Prolog machine executing up to (k)
instructions.

By replacing the Prolog machine with a Turing machine we show the quasi-universality of
tree constraints, that is to say, the ability to concisely describe trees which the most powerful
machine will never have time to compute. We also rediscover the following result of Sergei
Vorobyov: the complexity of an algorithm, deciding whether a tree constraint without free
variables is true, cannot be bounded above by a function obtained from finite composition of
simple functions including exponentiation.

Finally, taking advantage of the fact that we have at our disposal an algorithm for solving
such constraints in all their generalities, we produce a set of benchmarks for separating feasible
examples from purely speculative ones. Among others we notice that it is possible to solve a
constraint of 5000 symbols involving 160 alternating quantifiers.

1 Introduction

The algebra of (possibly) infinite trees plays a fundamental role in computer science: it is a model
for data structures, program schemes and program executions. As early as 1976, Gérard Huet
proposed an algorithm for unifying infinite terms, that is solving equations in that algebra [12].
Bruno Courcelle has studied the properties of infinite trees in the scope of recursive program
schemes [8, 9]. Alain Colmerauer has described the execution of Prolog II, IIT and IV programs
in terms of solving equations and disequations in that algebra [4, 5, 6, 1]. Michael Maher has
introduced and justified a complete theory of the algebra of infinite trees [13]. Among others, he
has shown that in this theory, and thus in the algebra of infinite trees, any first order formula is
equivalent to a Boolean combination of conjunctions of equations (partially or totally) existentially
quantified. Sergei Vorobyov has shown that the complexity of an algorithm, deciding whether a
formula without free variables is true in that theory, cannot be bounded above, by a function
obtained from finite composition of simple functions, including exponentiation [16]. Pawel Miel-
niczuk [14] has shown a similar result in the theory of feature trees, but with a more constructive
method, which has inspired a large part of the work presented here.

We have recently developed an algorithm for solving general first order constraints in the algebra
of infinite trees [10, 11]. The purpose of this paper is not the presentation of this algorithm, but
of examples, first imagined as tests, then extended to show the expressiveness of such general
constraints. The paper is organized as follows:

We end this first section by making clear the notions of infinite trees algebra and first-order
constraints in that algebra.

In the second section, we use two-partner games for defining constraints involving long sequences
of quantifiers VAV

In the third section, we introduce a composition constraint which repeats the same constraint
a tremendously large number of times. A long part of the section is devoted to proving its main
property.

At section four, we move on to the most expressive constraints we know. They are obtained
by changing the nature of the repeated constraint. We produce several examples, among which
a constraint defining a huge finite tree and an almost perfect multiplication constraint. Then by
simulating a Turing machine, we show the quasi-universality of tree constraint, that is to say,
the ability to concisely describe trees which the most powerful machine will never have time to
compute. This also allows us to give another proof of the complexity result of Sergei Vorobyov.

We conclude by discussions and benchmarks separating the feasible examples from the purely
speculative ones.

1.1 The algebra of infinite trees

As usual, a function symbol is a symbol together with a non-negative integer, its arity. Trees, with
nodes labelled by function symbols, are well known objects in the computer science world. Here
are some of them:

NN, N
NN *
a b a b / \

f

; a5
7N LN
‘
\
T

with, of course, the function symbols a, b, s, f having respectively the arities 0,0, 1,2. Note that
the first tree is the only one having a finite set of nodes, but that the second one has still a finite
set of (patterns of) subtrees. We denote by A the set of all trees built on the infinite set F' of
function symbols.!

We equip A with a set of construction operations, one for each element f € F', which are the

I'More precisely we define first a node to be a word on the set of strictly positive integers. A tree, built on F, is
then a mapping a : E — F, where E is a non-empty set of nodes, each one iy ...%; (with k > 0) satisfying the two
conditions: (1) if k > 0 then iy ...4,1 € E, (2) if the arity of a(i1 ...4x) is n, then the set of nodes of F of the form
i1 ...19,0ky1 IS obtained by giving to g4 the values 1,...,n.

f and whose sequence of daughters is (ay,...,a,):>

— ”f_

The set A, together with the construction operations, is the algebra of infinite trees and is
denoted by (A, F').

1.2 Tree constraints

We are interested in the expressiveness of constraints represented by general first order formulae,
with equality as unique relation symbol and function symbols taken from an infinite set F'. These
tree constraints are of one of the 10 forms:

s=t, true, false, _'(<p)7 (410/\1/)) (<PV¢)7 (QD_)'(/)) (90 <_>’l/})7 33730 Vﬂ?%

where ¢ and @ are shorter tree constraints, x a variable taken from an infinite set and s, ¢ terms,
that is to say expressions of one of the forms:

€T, ftl fn,

where n > 0, f € F, with arity n, and the #;’s are shorter terms.

The variables represent elements of the set A of trees built on F, the equality symbol is
interpreted as equality and the function symbols f are interpreted as construction operations in
the algebra of infinite trees (A, F'). Thus a constraint without free variables is either true or false
and a constraint ¢(z1,...,%,) with n free variables z; establishes an n-ary relation in the set of

trees. For example the tree constraint

def

z = f 3
Y(u,v,w,z,y) = Iz z = f(u, f(v, f(w, 2)))

is equivalent to
r=uANy=vANrz=wANy=uNz=vANy=w.

Thus it expresses that the trees u,v,w,x,y are equal.

2 Long nesting of alternated quantifiers

To show the expressive power of our constraints, we start examining deeply embedded quantifi-
cations. We consider two-partner games and characterize the positions from which it is always
possible to win in at most k£ moves. In this manner we obtain constraints involving an alternated
sequence of 2k quantifiers.

2.1 Winning positions in a two-partner game

Let (V, E) be a directed graph, with V a set of vertices and E C V x V a set of edges. The sets V
and E may be infinite and the elements of E are also called positions. We consider the following
two-partner game: starting from an initial position x, each partner in turn, chooses a position x;
such that (zg,z1) € E, then a position x4 such that (x1,2z2) € E, then a position x3 such that

2In fact, the construction operation linked to the n-ary symbol f of I is the mapping (a1,...,a,) — b, where
the a;’s are any trees and b is the tree defined as follows from the a;’s and their sets of nodes F;’s: the set FE of
nodes of bis {e}U{iz|z € E; and i € 1..n} and, for each z € E, if x = ¢, then b(z) = f and if z is of the form iy,
with i being an integer, b(z) = a;(y).

(z2,73) € E and so on... The first player who cannot make a move loses. For example the two
following infinite graphs correspond to the two following games:

|

03—=13—=23—=33—

|

02-—12=—22=32~—

|

01—11—=21—=31—

|

00— 10—20—30—
S
Game 2 An ordered pair (i, j) of non-negative integers is
Game 1 A non-negative integer ¢ given and each partner, in turn, chooses one of the integers
is given and each partner, in turn, 4,j. Depending on whether the chosen integer u is odd or
subtracts 1 or 2 from ¢, but keeping even, he then increases or decreases the other integer v by
i non-negative. The first person who 1, but keeping v non-negative. The first person who cannot
cannot play any more has lost. play any more has lost.

Let z € V be any vertex of the directed graph (V, E) and suppose that it is the turn of person
A to play. The position z is said to be k-winning if, no matter the way the other person B plays,
it is always possible for A to win, after having made at most & moves. The position z is said to be
k-losing if, no matter the way A plays, B can always force A to lose and to play at most k& moves.?

2.2 [Expressing k-winning positions by a first-order constraint

Instead of tree constraints, consider general constraints, which are first-order formulae whose func-
tion and relation symbols are interpreted in a given structure D, that is a set D together with
operations and relations. Let G = (V, E) be the graph representing a two-partner game, with
V C D, and let move (z,y) be a constraint in D such that:*

for each a € V and b € V, move(a,b) iff (a,b) € E. (1)

We want to build constraints winning () and losing;,(z) in D, such that, for & > 0 and each
acV,

winning,(a) iff ais a k-winning position of G,

losing;, (a) iff a is a k-losing position of G.

iFrom the definition of k-winning and k-losing positions in the preceding section, we infer first
that, for every k& > 0:

winning () + false, @)
winning, () <> 3y move(z,y) A losing,(y),

losing, (z) <+ Yy move(z,y) — winning, (y). (3)

3For the first game, it can be shown that the set of k-winning positions is the set of non-negative integers 4 such
that # < 3k and i is not divisible by 3. For the second game, it is the set of ordered pairs (i,7) of non-negative
integers, such that ¢+j < 2k and i+ is odd.

41f o(z1,...,2n) denotes a constraint whose free variables are among the x;’s, and if the a;’s are elements of D,
then ¢(a1,...,an) is the interpretation of the constraint in D, where the free occurrences of the z;’s are interpreted
by the corresponding a;’s.

By using only existential quantifiers and unfolding the equivalences, we then notice that (2) can
be replaced by

Jdy move (z,y

(z,
dz move (
Jy move (

(

1

A
A\
z,y) N
A

1

)

Y1)

3z move (y, x)
winningy, (z) < |--- (4)
Jy move (z,y) A —(
Iz move (y,) A —(

false).
—
2k

Thus equivalences (4) and (3) provide an explicit way for building the constraints we need. Notice
that, by moving the negations down in (4), we get a nesting of 2k alternated quantifiers.’

It is possible to keep equivalence (4), while weakening condition (1). We first remark, that for
any non-negative k, the following property holds:

Property 1 Let three directed graphs be of the form G; = (Vi,E1), Go = (Va,Es) and G =
(Vi1 U Vs, Ey U Es). The graphs G1 and G have the same set of k-winning positions, if both:

1. the sets of vertices V1 and Vs are disjoint,
2. for each x € Vi, there exists y € Vo with (z,y) € Es.

Indeed, from the first condition it follows that E; and Es are disjoint and thus that the set of k-
winning positions of G is the union of the set of k-winning positions of G; with the set of k-winning
positions of G5. But this last set is empty because of the second condition.

It follows that:

Property 2 (Generalized move) Equivalence (4) holds also for any constraint move (z,y) obey-
ing the three conditions:

1. for eacha €V and b€V, if (a,b) € E then move(a,b),
2. for noa € D—V and no b € V we have move (a,b),

3. for each a € D=V, there exists b € D—V such that move(a,b).

2.3 Example : tree constraint for game 1

We now reconsider game 1 introduced in section 2.1. As structure D we take the algebra (A, F)
of infinite trees constructed on a set F' of function symbols including among others the symbols
0, s, of respective arities 0,1. We code the vertices i of the game graph by the trees s?(0).6 Let
G = (V, E) be the graph obtained this way.

Then, as generalized move (z,y) constraint we can take:

move (x,y) def 5= sy Ve =s(s(y)V(~(zx=0)A-(Fuz=s(u)) Nx=y)

and according to property 2, the set of k-winning positions of game 1 is the set of solutions in x of
the constraint winningy, (z) defined by (4).

SFrom the three equivalences in (2) and (3) it follows that Va winningy (z) — winningy, (z) and Vz losingy,(z) —
losingy,; (x), for any k > 0. Tndeed, from the first and the last equivalence we conclude that the implications hold
for £ = 0 and, if we assume that they hold for a certain k£ > 0, from the last two equivalences we conclude that they
also hold for k+1.

60f course, s9(0) = 0 and s (0) = s(s%(0)).

For example, for & = 1 the constraint winningy,(z) is equivalent to
z=5(0) Vx=s(s(0))
and, for k = 2, to

=5(0) Vo =s(s(0)) V a=s(s(s(s(0)))) V & = s(s(s(s(s(0))))).

2.4 Example : tree constraint for game 2

We also reconsider game 2 introduced in section 2.1. As structure D we take the algebra (A, F)
of infinite trees constructed on a set F' of function symbols including among others the symbols
0, f,g,c, of respective arities 0,1,1,2. We code the vertices (i,j) of the game graph by the trees
c(i,7) with i = (fg)2(0), if i is even, and i = g(i—1), if i is odd.” Let G = (V, E) be the graph
obtained this way.

The perspicacious reader will convince himself that, as generalized constraint move (z,y), we
can take:

move (z,y) L transition (z,y) V(= (FuIvz=c(u,v)) ANx=y)

with
Ju v Hw
[—cuv ANy= (,w))v}

transition (z,y) = z=c(v,u) ANy=c(w,u))

A
[(Fiu=yg /\ succ (v, w)) V }
(Fiu= g) A pred (v, w))
wecwy [(ij—g(j))Aw—f(v))v}
’ (=(F v=90)) Aw=g(v))
L (Fkj=gk) Nw=7j)
Bjv=10) A {h(ajkj‘q:g(k)) A uj)—v)})
red (v, w) def o [@kj=gk) Aw=v)V
’ @0=000 A [k Loy m

(=G v=F0G) A=(EFiv=9()) A ~(v=0) Aw=v)

According to property 2, the set of k-winning positions of game 2 is the set of solutions in z of the
constraint winning, (z) defined in (4).
For example, for k = 1 the constraint winning,(z) is equivalent to

and, for k = 2, to

3 Composition of constraints

We now move on to a systematic way of compressing a conjunction of a very large number of
constraints into a small constraint.

7Of course, (fg)°(x) = = and (fg)™ () = f(9((f9)' (x))).

3.1 Definition and properties

We introduce the integer a(k), defined for each integer k > 0, by

a(0) =1, alk +1) =220,
Thus
(2(22))
a(n) =27 .
—
The function a increases in a stunning way, since a(0) = 1, a(l) = 2, a(2) = 4, a(3) = 16,

a(4) = 65536 and a(5) = 265936 Thus «(5) is greater than 1020090 a number probably much
greater than the number of atoms of the universe and the number of nanoseconds which elapsed
since its creation!

We agree that the size |¢| of a constraint ¢, is the number of occurrences of all symbols, except
parentheses and commas. (Constraints can be written in infix notation.) We denote by ||¢|| the
number of different symbols occurring in ¢, except parentheses and commas. If z,y are variables
and @(z,y) is a constraint then, for each n > 0, the n-fold composition of p(x,y) is the constraint
denoted and defined by:®

" (x,y) def Fug ... Ju, x=ug A @(ug,ur) Ap(ur,ug) A+ A p(tn,tun) ANu,=y (5)

We assume that the set A of trees is constructed over a set F' of function symbols including
among others the symbols 1,2, 3, of arity zero, and the symbol f, of arity four. Given a constraint
p(z,y), for each k > 0 we introduce the constraint:

supercomposition i [p](z, y) df 3, triangley (3, x, z,y) (6)

with,

def

triangleo(t, z, z,y) z=xNz=y

([Eul Juy 2= f (2, ur,u2,y)]
A

(w' Vy' V2! }
[(t'=1Vvit =2)A
' dof triangle (', z,y', 2") - (7)
triangleyy1(t, z,2,y) = r

(t'=1A forml(z')) V

Ju Jv form2 (u, z',v) A
(t=1— son (u,v)) A
(t=2 — son (u,v) Vu=uv) A

(t'=2A
L L (t=3 = p(u,v)) 1]

and

forml (z) def

form2(x, z,y)

Fuy ... Jug = f(ug, f(ug,us, us, us), f(us, us, us, us), us)
E’U,] A E'U/ﬁ Z:f(U],f(U],UZ;u37w)7f(y=u4:u5:u6)7u6) (8)

Fuq ... Fug = f(ur, ug,uz,ua) A (y = u2 Vy = us)

def

def

son (z,y)

We notice first that the size of the constraint defined in (6) linearly depends on k. More
precisely:

Property 3 ‘ |supercomposition i [p](z,y)| = 9+ k(155 + |p(z,y)]). ‘

80f course, if ¢(z1,...,Ts) is a constraint, the z;’s variables and the t;’s terms, (t1,...,t,) denotes the same
constraint with the ¢;’s substituted for all the free occurrences of the corresponding z;’s.

To show this property, it is sufficient to count:

|form1 (2")]| = 23,
|form2 (u, 2', v)| = 27,
|son (u, v)| = 23,
|triangle k1 (¢, 2, 2,)| = 59 + |triangle (¢, z, z,y)| + [form1 (2')| +

|form2 (u, z', v)| + 2|son (u,v)| + |p(u,v)],
= 155 + |triangle . (¢, z, 2, y)| + |p(u,v)|,
|triangle o (t, z, 2, y)| 7,
|supercomposition [¢](z,y)| = 2+ |triangle(t, z, z,y)],

and to conclude. This property is interesting only if one notices that:

Property 4 It is possible to name the wvariables occurring in the family of constraints of the
previous property, in such a way that, there exists an integer c, depending only on p, with
||supercomposition [¢](x, y)|| < ¢, for each k > 0.

We remind the reader that ||p|| is the number of different symbols occurring in ¢, except paren-
theses and commas.

But the essential result is:

Theorem 1 | supercomposition [p](z,y) < @*F)~1(z,y).

The next two subsections are devoted to the proof of the theorem.

3.2 Preliminaries to the proof of Theorem 1

We introduce trees, called k-onions, whose upper parts of depth k are essentially binary trees with
additional branches permitting direct accesses to the nodes at depth k£ + 1. For k = 3 such trees
are of the form

(9)

where the u;’s are any trees. More generally, for £ > 0, a k-onion is a tree z which satisfies the
constraint onion (z), with:

def gy, = flu,u,u,u)

JuFuy ... Jug JvFvg ... oy

def |u=f(u1,us,us,us) A oniony(u) A
v=f(v1,v2,v3,v4) A onion(v) A
z = f(ur,u,v,vq)

onion g(z)

onion 1 (2)

The relevance of these trees comes from the property which follows. This property involves the
constraints son, form2, defined by (8), and the notation son?, defined by (5).

Property 5 For every tree constraint ¢(z,y) and every k > 0, the following equivalence holds® :

(om’on k(2) W

A

[Fv2Tvg 2= f(, v2,v3,y)]

A

x,y) < 3z | V2

[\/f;]o SOUi(Z,Z’)] —

JuIv form2 (u, z',v) A
Lot _

k_
©*

ProOOF We proceed by induction on k. We first show that the property holds for £ = 0. In that
case, \/fj] son'(z,z") = false and the implication occurring in the right member of the equivalence
is equivalent to true. Thus it only remains to prove that

x =y ¢ Jzoniong(z) A [Jua Juz z= f(x,v2,v3,9)],

which is a direct consequence of the definition of onionq(z). Let us now assume that the property

holds for £ > 0 and let us show that it holds for £+ 1. Thus, under this assumption, we must show
k

that the constraint ¢ ~1(z,y) is equivalent to

onion 41(z) A [FuwiIws z= f(z, wi,wa,y)] A
Jz

/\f:0 Vz'son’(z,2") = [Fuv form2 (u, 2',v) A p(u,v)]]

Taking into account the definition of onion 4 (2) and splitting the case where i = 0 from the cases
where ¢ > 0, we get the equivalent constraint

dzy Juy ... Fug 2z Jvg ... Ty

z1 = f(u1,us, us, uq) A oniong(z1) A
= 29 = f(v1,v2,v3,v4) A onion g (z2) A

z=f(u1, 21, 22,04)

A [FwiFwy 2= fz, w1, we, y)] A

[[Huﬂv form2 (u, z,v) A p(u,v)] A /\f:1 [Vz'sont(z,2") — [Buv form2 (u,2',v) A p(u, v)]]J
which simplifies into

z1=f(x,u2,uz,uq) A oniong(z1) A

29 = f(v1,v2,v3,y) A onion i (z2) A

z=f(x, 21, 22,9) N\ p(ua,v1) A

/\le[Vz’soni(z,z’) — [JuIv form2 (u, z',v) A p(u,v)]]

dz 3z Jus ... Jug 29 vy ... Fvg

and thus is equivalent to

(321 onion g (z1) A (329 onion g (z2) A

[FuoTug 21 = f(x, us, ug, uqg)] A [FuaTvg 20 = f(v1,v2,v3,9)] A
3us 3 | 17 | [rewamn [T 1
Ug V1 - i Ylug, V1 - i
[\/f:t son ’(zl,z’)] — [\/f:t son (22,2’)] —
Fuﬂv form2 (u, z',v) A } [Huﬂv form2 (u, z',v) A }
¢(u,v) | o(u,v) J

Since we have assumed that Property 5 holds for &, the preceding constraint is equivalent to the

constraint .
DL

ok
Fug v ©* (@, ua) Ap(ug,vi) Ap® (v,),

9For k = 0 we consider that \/f:) son’(z,2') is the logical constant false.

which is indeed equivalent to ¢ ~1(z,y). O

For the next subsection we need an explicit definition of the constraint onion(z). The property
which follows does the job. It involves the constraints son, form1,form2, defined by (8), and the
notation son®, defined by (5).

Property 6 For every tree z and every k > 1,

V2!
son*1(z,2") — forml (')
oniony(z) < |

V2!
h\/f_]o SOHi(Z,Z')] = [Fuv form2(u,z’,v)]]

PROOF We proceed by induction on k. Property 6 is true for & = 1. Indeed, according to the
definition of onion, and oniong, to be an 1-onion consists in being at the same time a tree of the

form (1) and a tree of the form (2) below.
f

@

AN
Q O IN

onioni(z) « forml(z) A [Ju3v form2 (u, z,v)]

Thus
which is nothing else than Property 6, for £ = 1. Let us assume that Property 6 holds for £ and

let us show that it holds for £+ 1. Thus, under this assumption, we must show that the constraint
onion 1 (z) is equivalent to the constraint

[Vz'son*(z,2") — forml (2')] A
/\f:0 [Vz'son'(z,2') = [FuIv form2 (u, 2',v)]]]

By splitting the case where i = 0 from the cases where i > 0, the preceding constraint can be
written as the constraint

{[Vz’ sonk(z,2") — form1(2')] A '|
[Fu3v form2 (u, z,v)] A ,
[/\f:1 [Vz'soni(z,2") — [Fudv form2 (u, z’,v)]]J

which is equivalent to the constraint

[Vz'son*(z,2") — forml1 (z')] A
dzy Juy ... Fug 2z Jvg ... Ty
z1=f(ug,us,uz, ug) A za=f(v1,v2,03,04) A | A |,
z=f(u1,2,22,v4)

/\f:1 V2! son'(z,2") — [Fudv form2(u, 2',v)]]

which is equivalent to the constraint

[21 = f(ur,us, uz, uq) A 2o = f(v1,v2,03,04) A

z = f(“‘l: 21,22, 7)4)

[Vz' son* (2, 2') — form1(2")] A

/\f;t [Vz' soni(z1,2') — [Fudv form2 (u, 2',v)]] A
[Vz' son* (29, 2") — form1(2')] A

_/\f;]o [Vz' son(zq,2') — [Fu3v form2 (u, 2',v)]]

dzy Juy ... Fuyg Jzo Jvr ... Ty

10

which, given the assumption on k, is equivalent to the constraint

21 = f(u1, ug,uz,us) A 22 = f(v1,02,03,04) A
2y Fuy ... Jug 2o Fvy ... Fuy |2 = fua, 21, 22,04)

onion y(z1) A onion g (z2)

which, by definition, is equivalent to onion g (z). O

3.3 Proof of Theorem 1

We can now move on to the proof itself of Theorem 1. Given the definition of supercomposition i [¢](z, y),
it is sufficient to show that, in the algebra of infinite trees, the last of the three following equiva-

lences holds:
(3z triangle(1,z,2,y)) < son®®)1(z, y),

(3z triangle(2,z,2,y)) \/Zig(kH son'(z,y), (11)
(3z triangle, (3,2, 2,y)) < @*F 1 (z y).

By induction on k, we will prove that the three equivalences hold. They hold for £ = 0. Assuming
that they hold for a given k£ > 0, let us prove that they hold for k+1.

By introducing an existential quantification on z, in both side of the definition of triangle j1
in (7) and by splitting up the ¢’ = 1 case from the ¢’ = 2 case, we get

[[Buy Jug 2= f(x,u1,us,y)]

A
(V2!

(Fy' triangle (1, z,y', ")) —
| form1 (2")]
/\)
(V2! T

(Fy' triangle (2, z,y', ")) —

[Hu Ju form2 (u, 2',v) A }
[, v) _

3z triangle g (¢, 2, 2,y) + 3z

with
P(u,v) def [E;i; :: :gz Ezz;)v/\u:v) /\-| .
[(t:?) = p(u,v)) J

Since we have assumed that the three equivalences (11) hold for k, it follows that

[FuaTug 2= f(x,us2,us,y)]

A

(V2! -|

son ®F)-1 (2 21) —

form1 (z") J

Jz triangle i1 (t, 2, 2,y) < Jz | A ,

vz'

(Ve soni(z,2)] -

Ju Jv form2 (u, z', v) A
L 9u,0)

11

that is to say, by looking back at Property 6,

Iz triangle ki (8, 2, 2,y) < Iz

(onion a(k) (2)
A
[FuoTusz 2= f(x, us, us, y)]
A

vz

[\/“(k)f1 son'(z, z’)] —

i=0

el

;From (12), by using Property 5 with ¢ instead of ¢, we get

3z triangle g (t, 2,1y, 2) ¢ B (4, 0)

(12)

and by successively assigning the values 1,2,3 to ¢ and taking into account the definition of v, we

obtain (11).

4 Quasi-universality of tree constraints

As we will see, the composition constraint is a good starting point for defining expressive con-

straints.

4.1 Example: huge finite tree

First it is possible to define a huge finite tree, of a(k) nodes, with a small constraint, of size linearly
depending on k. We suppose that the symbol 0, of arity zero, and the symbol s, of arity one, are

elements of ' and we introduce the constraint,

with

huge(x) def supercomposition i [p](z, 0),

pla,y) E z=s(y).

According to Property 3 and Theorem 1, we then have:

Property 7 ‘\bugek(xﬂ = 9+159k.‘

Property 8

hugey(z) < z=s""1(0).

4.2 Example : multiplication

Let us now try to express the multiplication constraint w = uv. Assume that the function symbols
0, s, empty, list, nat , plus, times, of respective arities 0,1,0,2,1,3,3, occur in F' and consider the
PROLOG like program,

Times (0,v,0) < Nat (v)

Times (s(u),v,w') < Times (u,v, w) A Plus (v, w,w'"),

Plus (0,v,v) < True,

Plus (s(u),v,s(w)) + Plus(u,v,w),

Nat (0) « True,
Nat (s(u)) < Nat (u)

12

which for a query of the form Times (u,v, w) would enumerate the constraints of the form
u=s"(0) Av=s"(0) A w=s"*"(0), (13)

ad infinitum, without forgetting any. For this program we construct the Prolog machine defined
by the transition constraint

r=yV
ECEF; -|
x = list(times (0,v,0), z)) A] V
|y = list(nat (v), z) J
ETEDEE =P -|
x = list(times (s(u),v,w'), z) A \Y
|y = list(times (u, v, w), list(plus (v, w,w'), z))J
ECEF -|
x=list(plus (0,v,v), z) A} V
def —
plr,y) =| LY== J
EVECETEP -|
z=list(plus (s(u),v, s(w)), z) A} V
|y = list(plus (u, v, w), z) J
EF;
z=list(nat (0), z) A| V
Ly==
EVER -|

3

|y = list(nat (u), 2)

x=list(nat (s(u)), z) /\J

We see that, starting from configuration list(nat (s™(0)), z), the machine performs at most n + 1
transitions and, starting from configuration list(plus (s™(0),v, v), z), the machine performs at most
n + 1 transitions. Thus, starting from configuration list(times (s™(0), s"(0),w), z), the machine

performs at most (m + 1) + (n + 1) + m(n + 1), that is (m + 1)(n + 2) transitions. We conclude
that the constraint

3z Jy = = list(times (u, v, w), empty) A @*(z,y) A y=empty
is equivalent to the disjunction the constraints (13), with

(m+1)(n+2)<k.

iFrom Property 3 and Theorem 1, it follows that the constraint

Jx Jy

x = list(times (u, v, w), empty) A
supercomposition i [p](z,y) A

y =empty

Times i (u, v, w) def

has the properties:

Property 9 ‘\Timesk(u,v,w)\ = 26+ 289k‘

Property 10 | Times(u, v, w) < V(1) (ni2)<ap (@ =5"(0) A v =5"(0) A w=57*"(0)).

13

By taking & = 5, we can then conclude:

With a tree constraint of 1471 symbols length, it is possible to express the multiplication table of
integers ranging to the number of atoms of the universe.

i From this example we also deduce a systematic way to replace the “reasonable execution” of
a PROLOG like program, by the process of solving a constraint of size comparable to the size of the
program.

4.3 Quasi-universality

Instead of a Prolog machine we can take a Turing machine M, and express by ¢(x,y) its transition
constraint, that is the fact that M may move from configuration z to configuration y by executing
one instruction or the fact that z = y. As an example, we take the machine whose set of instructions

10
(l]o:Ll:lh:R): (QO:U:U:(D:L): (14)
(q]:17|—l7q0:R)7 (q17|—l71:q27L)

whose states are go, g1, ¢ and whose alphabet is {U, 1}. If we represent the machine configuration

is

uljulalblc|d|elu|u
q
by the infinite tree
/q\
g g
g\ / g
/\ U e / \g
u u / ~
/ ..
then the transition constraint is
r=yV
ETELE Ju Jv Jw
def x=qo(u,g(1,g9(v,w))) Al V |2=qo(g(u,v),g(L,w)) A| V
e(@,y) = | ly=ai(9(u,1),9(v, w)) y=q2(u, g(v, g(U,w)))
ETELE -| IVEU Jv Jw -|
z=q1(u,g(1,9(v,w)) A{ V (z=q1(9(u,v), g(LU,w)) A
y=aolg(u), g00) | Ly=alugl.g(lw)

where LI, 1, g, qo, q1, g2 are function symbols of respective arities 0,0,2,2,2, 2.
Suppose, in general, that M is a Turing machine with alphabet ¥ U {U}, initial state o, final
state qp and transition constraint ¢(z,y). For any word a = ajas ...a,, of ¥*, let M(a) be the

10Tnstruction (q, s, ', ¢', R) means: if the machine is in state q and its read-write head is in front of a cell containing
symbol s, then it replaces s by s’, moves its head one cell to the right and changes its state into ¢’. Tnstruction
(g,8,8',¢', L) means the same but with the head moving to the left.

14

element of ¥* output by M on input a, if it exists.!! Consider the tree constraints:

def

output [y, a](v) Ju3dxTy is[a](u) A initial (u, z) A supercomposition ;[p](z,y) A final (y, v)

is [a] (u) © Fpu=glar, glas, -, g(am,v) ...)) Av = g(U,v),
e def
initial (u, x) =

(
vz = qo(v,u) Av = g(v,U),
final (x, u))

def
= Jvx=qu(v,u

iFrom Property 3 and Theorem 1, we conclude that:

Property 11 ‘ loutput [, a](v)| = 40 + 2|a| + k(155 + |o(x,y)|). ‘

Property 12 |output [p,al(v) < is[M(a)](v), | under the restriction that the machine M exe-

cutes fewer than a(k) instructions.

We consider that a tree v which satisfies the constraint is[b](v) is an ezplicit coding of the word
b=by...b, and we denote by |M| the number of instructions of the machine M. Then, from the
two previous properties it follows that:

Corollary 13 (Quasi-universality of tree constraints) For any words a,b and Turing ma-
chine M, such that M computes b from a in fewer than «(k) instructions, there exists a tree
constraint 1 (v) of size O(k + | M|+ |a|), whose unique solution in v is a tree which codes explicitly

b.

4.4 Complexity

The tree constraints have a quasi-universal expressiveness in the sense of Corollary 13. Therefore
the complexity of the algorithms for solving them must be very high. More precisely:

Theorem 2 The time complezity of an algorithm, which decides whether a tree constraint without
free variables is true, cannot be bounded above by an elementary function.

Properties 11 and 12 will allow us to rediscover this result of Sergei Vorobyov [16] in the spirit
of a proof of a similar result by Pawel Mielniczuk [14].

Let us first specify our terminology. An elementary function is a function obtained by finite
compositions of the functions = — cst, +, %, (z,y) — z¥. A Turing machine M is of time
complezity bounded above by f(n) or just of complexity f(n), if, for any word a € ¥*, the machine
executes at most f(|a|) instructions for computing M (a), except eventually in a finite number of
cases. A Turing machine M decides the language L C X* if, for any a € ¥*,

o ={y egr (15)

Finally, by (¢) we denote a word in ¥* which codes in an obvious way the tree constraint ¢.
By not distinguishing an algorithm from a Turing machine, theorem 2 can then be restated in
more precise terms:

11 At the beginning the machine is in the initial state gy and the twice infinite tape is filled with LI symbols, except
a part, starting at the read-write head position, which contains the input a € X*. Then the machine, which is
supposed to be deterministic, executes the instructions until it reaches the final state g,. The output is the longest
element of X* which starts at the final read-write head position. For example, with go the initial state, g2 the final
state, with » 1’s on input, machine (14) outputs the empty word, if n is even, and 11, if n is odd.

15

Theorem 2, restated If N is a Turing machine such that, for all tree constraints ¢ without
free variables,

0 if v is false,

then its time complexity cannot be bounded above by an elementary function.

— _ {1 if ¢ s true, (16)

PROOF Let’s assume for the purpose of obtaining a contradiction that the restated theorem is
false. Then there exists a Turing machine N, of elementary complexity, such that (16). Let L
be a language, decidable by a Turing machine M of complexity «(n), but by no machine M’
of elementary complexity. (For the existence of such a language, see for example the hierarchy
theorems in the book of Michael Sipser [15]). Let ¢(z,y) be the transition constraint of M. It is
then possible to build two Turing machines M’ and A, such that, for any a € X*,

M'(a) = N(A(a)), A(a) = (Jvoutput,[p,a](v) Ais[1](v)).

According to Property 11, we can impose that the complexity of machine A is elementary. Thus,
N being of elementary complexity, M’ is also of elementary complexity. But according to Property
12, M' decides the language L. This contradicts the definition of L and ends the proof. O

5 Discussions and conclusion

Thus, at the price of an incredible time complexity, it is possible to express anything by a tree
constraint. How is it in practice?

Having at our disposal a general tree constraint solver, we have performed benchmarks on our
four families of examples: expressing winning positions in two games, defining a huge finite tree
and defining a multiplication table. The results are summarized in the following table, with CPU
times given in milliseconds:

k || winning, | winning;, | hugej | Timesy,
game 1 game 2

0 0 0 0 0
1 0 150 0 0
2 10 360 10 40
3 10 610 230 -
4 20 840 - -
5 30 1180 - -
10 300 9970 - -
20 4270 236 350 - -
40 89870 - - -
80 || 3841220 - - -

The solver is programmed in C++ and the benchmarks are performed on a 350Mhz Pentium II
processor, with 512Mb of RAM.

It must be noted that we were able to compute the k-winning positions of game 1, with &£ = 80,
and of game 2, with k = 20. This corresponds respectively to a formula of 4961 symbols, involving
160 alternating quantifiers, and a formula of 7681 symbols involving 40 alternating quantifiers. We
were prepared to experience difficulties in computing the tree of a(k) nodes, beyond k = 3, since
a(4) is already 65536. With respect to multiplication, we were unable to succeed beyond k = 2
and had to satisfy ourselves with 0 x 0 =0 and 0 x 1 = 0!

These tests have also removed some of our doubts about the correctness of the complicated
formulae of our examples, even if, for readability, we have introduced predicates for naming sub-
formulae. Of course the definitions of these predicates are supposed not to be circular and the
solver unfolds and eliminates them in a first step. If circular definitions were accepted, then our
constraints would look like generalized completions of logic programs [2].

16

Of all the described constraints, the Turing machine transition constraint is the only one using
explicitly infinite trees. All the others are also meaningful in the algebra of finite trees. Since it is
possible to simulate a Turing machine (in a more complicated way) in the algebra of finite trees,
our results are also valid in this algebra. For other examples of constraints involving explicitly
infinite trees, we refer the reader to [3, 7], where infinite trees are used for coding cyclic structures,
like finite state automata, context-free grammars or A-expressions.

Acknowledgement We thank Leszek Pacholski for our discussions during early summer 1998
in Marseille. We also thank the two anonymous reviewer for their detailed and helpful comments.

References

[1]

[10]

[11]

[12]

[13]

[14]

Benhamou F., P. Bouvier, A. Colmerauer, H. Garetta, B. Giletta, J.L.. Massat, G.A. Narboni,
S. N'Dong, R. Pasero, J.F. Pique, Touraivane, M. Van Caneghem and E. Vétillard, Le manuel
de Prolog IV. PrologIA, Marseille, June 1996.

Clark K.L., Negation as failure, in Logic and Databases, edited by H. Gallaire and J. Minker,
Plenum Press, New York, pp. 293-322, 1978.

Colmerauer A., Prolog and Infinite Trees, in Logic Programming, K.L. Clark and S.A.. Tarn-
lund editors, Academic Press, New York, pp. 231-251, 1982.

Colmerauer A., Henry Kanoui and Michel Van Caneghem, Prolog, theoretical principles and
current trends, in Technology and Science of Informatics, North Oxford Academic, vol. 2, no
4, August 1983. English version of the journal TSI, AFCET-Bordas, where the paper appears
under the title: Prolog, bases théoriques et développements actuels.

Colmerauer A., Equations and Inequations on Finite and Infinite Trees, in Proceeding of the
International Conference on Fifth Generation Computer Systems (FCGS-84), ICOT, Tokyo,
pp. 8599, 1984.

Colmerauer A., An Introduction to Prolog III, Communications of the ACM, 33(7) : 68-90,
1990.

Coupet-Grimal S. and O. Ridoux, On the use of advanced logic programming features in
computational linguistics. The Journal of Logic Programming, 24(1&2), pages 121-159.

Courcelle B., Fundamental Properties of Infinite Trees, Theoretical Computer Science, 25(2)
pp. 95 169, March 1983.

Courcelle B., Equivalences and Transformations of Regular Systems - Applications to Pro-

gram Schemes and Grammars, Theoretical Computer Science, 42, pp. 1 122, 1986.

Thi-Bich-Hanh Dao. Résolution de contraintes du premier ordre dans la théorie des arbres
finis ou infinis. In Programmation en logique avec contraintes, JFPLC’2000, pages 225 240.
Hermes Sciences et Publication, 2000.

Thi-Bich-Hanh Dao. Résolution de contraintes du premier ordre dans la théorie des arbres
finis ou infinis. PhD thesis, Université de la Méditerranée, December 2000.

Huet G., Résolution d’équations dans les langages d’ordre 1,2, ..., w., These d’Etat, Univer-
sité Paris 7, 1976.

Maher M.J., Complete Aziomatization of the Algebra of Finite, Rational and Infinite Trees,
Technical report, IBM - T.J.Watson Research Center, 1988.

Mielniczuk P., Basic Theory of Feature Trees, submitted to Journal of Symbolic Computation,
available at http://www.tcs.uni.wroc.pl/ mielni.

17

[15] Sipser M., Introduction to the Theory of Computation, PWS Publishing Company, 1997.

[16] Vorobyov S., An Improved Lower Bound for the Elementary Theories of Trees, Proceeding
of the 13th International Conference on Automated Deduction (CADE’96). Springer Lecture
Notes in Artificial Intelligence, vol 1104, pp. 275-287, New Brunswick, NJ, July/August,
1996.

18

