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Expressiveness of full �rst order 
onstraintsin the algebra of �nite or in�nite treesAlain Colmerauer and Thi-Bi
h-Hanh DaoLaboratoire d'Informatique de Marseille, CNRS,Universités de la Méditerranée et de Proven
eAbstra
t. We are interested in the expressiveness of 
onstraints repre-sented by general �rst order formulae, with equality as unique relationalsymbol and fun
tional symbols taken from an in�nite set F . The 
hosendomain is the set of trees whose nodes, in possibly in�nite number, arelabeled by elements of F . The operation linked to ea
h element f of Fis the mapping (a1; : : : ; an) 7! b, where b is the tree whose initial nodeis labeled f and whose sequen
e of daughters is a1; : : : ; an.We �rst 
onsider 
onstraints involving long alternated sequen
es of quan-ti�ers 9898 : : :. We show how to express winning positions of two-partnersgames with su
h 
onstraints and apply our results to two examples.We then 
onstru
t a family of strongly expressive 
onstraints, inspiredby a 
onstru
tive proof of a 
omplexity result by Pawel Mielni
zuk. Thisfamily involves the huge number �(k), obtained by evaluating top downa power tower of 2's, of height k. With elements of this family, of sizesat most proportional to k, we de�ne a �nite tree having �(k) nodes,and we express the result of a Prolog ma
hine exe
uting at most �(k)instru
tions.By repla
ing the Prolog ma
hine by a Turing ma
hine we redis
overthe following result of Sergei Vorobyov: the 
omplexity of an algorithm,de
iding whether a 
onstraint without free variables is true, 
annot bebounded above by a fun
tion obtained by �nite 
omposition of elemen-tary fun
tions in
luding exponentiation.Finally, taking advantage of the fa
t that we have at our disposal an algo-rithm for solving su
h 
onstraints in all their generality, we produ
e a setof ben
hmarks for separating feasible examples from purely spe
ulativeones. Among others we solve 
onstraints involving alternated sequen
esof more than 160 quanti�ers.1 Introdu
tionThe algebra of (possibly) in�nite trees plays a fundamental a
t in 
omputers
ien
e: it is a model for data stru
tures, program s
hemes and program exe
u-tions. As early as 1976, Gérard Huet proposed an algorithm for unifying in�niteterms, that is solving equations in that algebra [11℄. Bruno Cour
elle has studiedthe properties of in�nite trees in the s
ope of re
ursive program s
hemes [8, 9℄.Alain Colmerauer has des
ribed the exe
ution of Prolog II, III and IV programsin terms of solving equations and disequations in that algebra [4�6, 1℄. Mi
hael



Maher has introdu
ed and justi�ed a 
omplete theory of the algebra of in�nitetrees [12℄. Among others, he has shown that in this theory, and thus in the algebraof in�nite trees, any �rst order formula is equivalent to a Boolean 
ombinationof 
onjun
tions of equations (partially or totally) existentially quanti�ed. SergeiVorobyov has shown that the 
omplexity of an algorithm, de
iding whether aformula without free variables is true in that theory, 
annot be bounded above,by a fun
tion obtained by �nite 
omposition of elementary fun
tions, in
ludingexponentiation [14℄. Pawel Mielni
zuk has shown a similar result in the theoryof feature trees, but with a more 
onstru
tive method, whi
h has inspired someof our examples [13℄.We have re
ently developed an algorithm for solving general �rst order 
on-straints in the algebra of in�nite trees [10℄. The purpose of this paper is notthe presentation of this algorithm, but of examples, �rst imagined as tests, thenextended to show the expressiveness of su
h general 
onstrains. The paper isorganized as follows.(1) We end this �rst se
tion by making 
lear the notions of tree algebra and�rst order 
onstraints in that algebra.(2) In the se
ond se
tion we 
onsider 
onstraints involving long alternatedsequen
es of quanti�ers 9898 : : :. We show how to express winning positions oftwo-partners games with su
h 
onstraints and apply our results to two examples.(3) In the third se
tion, we investigate the most expressive family of 
on-straints we know. It involves the truly huge number �(k), obtained by evaluatingtop down a tower of powers of 2's, of height k. With elements of this family, ofsizes at most proportional to k, we de�ne a �nite tree having �(k) nodes, andwe express the result of a Prolog ma
hine exe
uting at most �(k). By repla
ingthe Prolog ma
hine by a Turing ma
hine we redis
over the 
omplexity result ofSergei Vorobyov mentioned at the beginning of this se
tion. This part has beenstrongly in�uen
ed by the work of Pawel Mielni
zuk [13℄.(4) We 
on
lude by dis
ussions and ben
hmarks separating the feasible ex-amples from the purely spe
ulative ones.1.1 The algebra of in�nite treesTrees are well known obje
ts in the 
omputer s
ien
e world. Here are some ofthem:
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Their nodes are labeled by the symbols 0; 1; s; f , of respe
tive arities 0; 0; 1; 2,taken from a set F of fun
tional symbols, whi
h we assume to be in�nite. Notethat the �rst tree is the only one having a �nite set of nodes, but that the se
ondone has still a �nite set of (patterns of) subtrees. We denote by A the set of alltrees 1 
onstru
ted on F .We introdu
e in A a set of 
onstru
tion operations 2, one for ea
h elementf 2 F whi
h is the mappings (a1; : : : ; an) 7! b, where n is the arity of f and b thetree whose initial node is labeled f and the sequen
e of daughters is (a1; : : : ; an)and whi
h be s
hematized as
1

1
. . . . . .

f

a a
aa n

nWe thus obtain the algebra of in�nite trees 
onstru
ted on F , whi
h we denoteby (A; F ).1.2 Tree 
onstraintsWe are interested in the expressiveness of 
onstraints represented by general�rst order formulae, with equality as unique relational symbol and fun
tionalsymbols taken from an in�nite set F . These tree 
onstraints are of one of the 9forms: s= t; true; false; :(p); (p ^ q); (p _ q); (p! q); 9x p; 8x p;where p and q are shorter tree 
onstraints, x a variable taken from an in�niteset and s; t terms, that are expressions of one of the formsx; ft1 : : : tnwhere n � 0, f 2 F , with arity n, and the ti's are shorter terms.The variables represent elements of the set A of trees 
onstru
ted on F andthe fun
tional symbols f are interpreted as 
onstru
tion operations in the algebraof in�nite trees (A; F ). Thus a 
onstraint without free variables is either true orfalse and a 
onstraint p(x1; : : : ; xn) with n free variables xi establish an n-aryrelation in the set of trees.1 More pre
isely we de�ne �rst a node to be a word 
onstru
ted on the set of stri
tlypositive integers. A tree a, 
onstru
ted on F , is then a mapping of type E ! F ,where E is a non-empty set of nodes, ea
h one i1 : : : ik (with k � 0) satisfying thetwo 
onditions: (1) if k > 0 then i1 : : : ik�1 2 E, (2) if the arity of a(i1 : : : ik) is n,then the set of nodes of E of the form i1 : : : ikik+1 is obtained by giving to ik+1 thevalues 1; : : : ; n.2 In fa
t, the 
onstru
tion operation linked to the n-ary symbol f of F is the mapping(a1; : : : ; an) 7! b, where the ai's are any trees and b is the tree de�ned as followsfrom the ai's and their set of nodes Ei's: the set E of nodes of a is f"g [ fix jx 2Ei and i 2 1::ng and, for ea
h x 2 E, if x = ", then a(x) = f and if x is of the formiy, with i being an integer, a(x) = ai(y).



2 Long nesting of alternated quanti�ersWe �rst introdu
e the notions of k-winning and k-losing position in any two-partners games and in two examples. We show how to express, in any domain,the set of k-winning positions by a 
onstraint. We end the se
tion by expressingthe k-winning positions of the two examples by tree 
onstraints involving analternated embedding of 2k quanti�ers.2.1 Winning positions in a two-partners gameLet (V;E) be a dire
ted graph, with V a set of verti
es and E � V � V a set ofedges. The sets V and E may be empty and the elements of V are also 
alledpositions. We 
onsider a two-partners game whi
h, given an initial position x0,
onsists, one after another, in 
hoosing a position x1 su
h that (x0; x1) 2 E, thena position x2 su
h that (x1; x2) 2 E, then a position x3 su
h that (x2; x3) 2 Eand so on... The �rst one who 
annot play any more has lost and the other onehas won. For example the two following in�nite graphs 
orrespond to the twofollowing games:
10 2 3 4 5 6

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

Game 1 A non-negative in-teger i is given and, one afteranother, ea
h partner sub-tra
ts 1 or 2 from i, but keep-ing i non-negative. The �rstperson who 
annot play anymore has lost.
Game 2 An ordered pair (i; j) of non-negativeintegers is given and, one after another, ea
hpartner 
hooses one of the integers i; j. Depend-ing on the fa
t that the 
hosen integer u is oddor even, he then in
reases or de
reases the otherinteger v by 1, but keeping v non-negative. The�rst person who 
annot play any more has lost.Let x 2 V be any vertex of the dire
ted graph (V;E) and suppose that it isthe turn of person A to play. The position x is said to be k-winning if, no matterthe way the other person B plays, it is always possible for A to win in makingat most k moves. The position x is said to be k-losing if, no matter the way Aplays, B 
an always for
e A to lose and to play at most k moves.Consider the two pre
eding graphs and mark with +k the positions whi
hare k-winning and with �k the positions whi
h are k-losing, with ea
h time kbeing as small as possible. Vertex 0 of the �rst graph and vertex (0; 0) of these
ond one being the only 0-losing positions, are marked with �0. Starting from



the verti
es marked with �0 and following the arrows in reverse dire
tion, we�nd su

essively the set of verti
es to be marked by +1, then �1, then +2, then�2, then +3, then �3, and so on. We get
-0 +1 +1 -1 +2 +2 -2

-0 +1 -1 +2 -2 +3

+1 +2 +3

+3

+3

+3

+3

-2

+2

-1 +2

-2 -3

-3

-2and 
onvin
e ourselves that the set of k-winning positions of game 1 isfi 2 N j i < 3k and i mod 3 6= 0gand of game 2 f(i; j)) 2 N2 j i+j < 2k and (i+j) mod 2 = 1}:where N is the set of non-negative integers.2.2 Expressing k-winning positions by a 
onstraintLet D be a domain, that is a non-empty set and let G = (V;E) the graph of atwo-partners game, with V � D. We will express the k-winning positions of Gby a 
onstraint in D involving an embedding 989 : : : of 2k alternated quanti�ers.Let us introdu
e in D the properties move, winningk et losingk, de�ned bymove(x; y) $ (x; y) 2 E;winningk(x)$ x is a k-winning position of G;losingk(x) $ x is a k-losing position of G: (1)In D we then have the equivalen
es, for all k � 0:winning0(x) $ false;winningk+1(x)$ 9y move(x; y) ^ losingk(y);losingk(x) $ 8y move(x; y)! winningk(y): (2)Contrary to what we may believe, it follows that we have:winningk(x)! winningk+1(x); losingk(x)! losingk+1(x):Indeed, from the �rst and the last equivalen
e of (2) we 
on
lude that theseimpli
ations hold for k = 0 and, if we assume that they hold for a 
ertain k � 0,from the last two equivalen
es in (2) we 
on
lude that they also hold for k+1.



From (3) we dedu
e an expli
it formulation of winningk, for all k � 0:
winningk(x) $

2666666666666664
9ymove(x; y) ^ :(9xmove(y; x) ^ :(9ymove(x; y) ^ :(9xmove(y; x) ^ :(: : :9ymove(x; y) ^ :(9xmove(y; x) ^ :(false ) : : :)| {z }2k

3777777777777775 (3)
where of 
ourse all the quanti�ers apply on elements of D. By moving down thenegations, we thus get an embedding of 2k alternated quanti�ers.In equivalen
e (3) it is possible to use a more general de�nition of movethan the one given in (1). We �rst remark, that for any non-negative k, thefollowing property holds:Property 1 Let three dire
ted graphs be of the form G1 = (V1; E1), G2 =(V2; E2) and G = (V1 [ V2; E1 [E2). The graphs G1 and G have the same set ofk-winning positions, if both:1. the sets of verti
es V1 and V2 are disjoint,2. for all x 2 V2, there exists y 2 V2 with (x; y) 2 E2.Indeed, from the �rst 
ondition it follows that E1 and E2 are disjoint and thusthat the set of k-winning positions of G is the union of the set of k-winningpositions of G1 with the set of k-winning positions of G2. This last set is emptybe
ause of the se
ond 
ondition.It follows that:Property 2 (Generalized move relation) Equivalen
e (3) holds also for anymove relation obeying to the two 
onditions:1. for all x 2 V and y 2 V , move(x; y) $ (x; y) 2 E,2. for all x 2 D�V there exists y 2 D�V su
h that move(x; y).2.3 Formalizing game 1 in the algebra of in�nite treesWe now re
onsider game 1 introdu
ed in se
tion 2.1. As domain D we take theset A of trees 
onstru
ted on a set F of fun
tional symbols in
luding amongothers the symbols 0; s, of respe
tive arities 0; 1. We 
ode the verti
es i of thegame graph by the trees3 si(0). Let G = (V;E) be the graph obtained this way.As generalized relation move we then 
an take in the algebra of in�nitetrees:move(x; y) def= x = s(y) _ x = s(s(y)) _ (:(x = 0) ^ :(9ux=s(u)) ^ x=y)3 Of 
ourse, s0(0) = 0 and si+1(0) = s(si(0)).



and a

ording to property 2 the set of k-winning positions of game 1 is the setof solutions in x of the 
onstraint winningk(x) de�ned in (3).For example, with k = 1 the 
onstraint winningk(x) is equivalent tox=s(0) _ x=s(s(0))and with k = 2 tox=s(0) _ x=s(s(0)) _ x=s(s(s(s(0)))) _ x = s(s(s(s(s(0)))))2.4 Formalizing game 2 in the algebra of in�nite treesWe also re
onsider game 2 introdu
ed in se
tion 2.1. As domain D we take theset A of trees 
onstru
ted on a set F of fun
tional symbols in
luding amongothers the symbols 0; f; g; 
, of respe
tive arities 0; 1; 1; 2. We 
ode the verti
es(i; j) of the game graph by the trees 
(i; j) with i = (fg) i2 (0) if i is even, andi = g(i�1) if i is odd4. Let G = (V;E) be the graph obtained this way.The perspi
a
ious reader will 
onvin
e himself that, as generalized relationmove , we 
an take in the algebra of in�nite trees:move(x; y) def= transition(x; y) _ (:(9u 9v x=
(u; v)) ^ x=y)withtransition(x; y) def= 266666649u 9v 9w�(x=
(u; v) ^ y=
(u;w)) _(x=
(v; u) ^ y=
(w; u)) ��̂(9i u=g(i) ^ su

 (v; w)) _(:(9i u=g(i)) ^ pred (v; w))�
37777775su

 (v; w) def= �((9j v=g(j)) ^ w=f(v)) _(:(9j v=g(j)) ^ w=g(v)) �pred (v; w) def= 2666664(9j v=f(j) ^ �(9k j=g(k) ^ w=j) _(:(9k j=g(k)) ^ w=v)�) _(9j v=g(j) ^ �(9k j=g(k) ^ w=v) _(:(9k j=g(k)) ^ w=j)�) _(:(9j v=f(j)) ^ :(9j v=g(j)) ^ :(v=0) ^ w=v)

3777775A

ording to property 2, the set of k-winning positions of game 2 is the set ofsolutions in x of the 
onstraint winningk(x) de�ned in (3).For example, with k = 1 the 
onstraint winningk(x) is equivalent tox=
(g(0); 0) _ x=
(0; g(0)))and with k = 2 to�x=
(0; g(0)) _ x=
(g(0); 0) _ x=
(0; g(f(g(0)))) _x=
(g(0); f(g(0))) _ x=
(f(g(0)); g(0)) _ x=
(g(f(g(0))); 0)�4 Of 
ourse, (fg)0(x) = x and (fg)i+1(x) = (fg)i(f(g(x))).



3 Quasi-universality of tree 
onstraintsAfter all these quanti�ers, we move to 
onstraints, whi
h are so expressive thattheir solving be
omes quasi-unde
idable.3.1 De�ning a huge �nite tree by a 
onstraintWe set �(k) = 22:::2 , with k o

urren
es of 2. More pre
isely we take�(0) = 1; �(k + 1) = 2�(k);with k � 0. The fun
tion � in
reases in a stunning way, sin
e �(0) = 1, �(1) = 2,�(2) = 4, �(3) = 16, �(4) = 65536 and �(5) = 265536. Thus �(5) is greaterthan 1020000, a number probably mu
h greater than the number of atoms of theuniverse or the number of nanose
onds whi
h elapsed sin
e its 
reation!We suppose that the set A of trees is 
onstru
ted on a set F of fun
tionalsymbols in
luding among others the symbols 0; 1; 2; 3; s; f , of respe
tive arities0; 0; 0; 0; 1; 4. For k � 0 let us introdu
e the 
onstraint:huge k(x) def= 9z triangle k(3; x; z; 0)with still for k � 0,triangle 0(t; x; z; y) def= z=x ^ z=y
triangle k+1(t; x; z; y) def=

2666666666666664
[9u1 9u2 z=f(x; u1; u2; y)℄2̂66666666664
8t0 8y0 8z0�(t0=1 _ t0 = 2) ^triangle k(t0; z; z0; y0)�!266664(t0=1 ^ form1 (y0)) _(t0=2 ^ 26649u 9v form2 (u; y0; v) ^(t=1! trans1 (u; v)) ^(t=2! trans2 (u; v)) ^(t=3! trans3 (u; v)) 3775377775

377777777775
3777777777777775 (4)

andform1 (x) def= 9u1 : : : 9u4 x=f(u1; f(u2; u2; u2; u2); f(u3; u3; u3; u3); u4)form2 (x; z; y) def= 9u1 : : : 9u6 z=f(u1; f(u1; u2; u3; x); f(y; u4; u5; u6); u6)trans1 (x; y) def= 9u1 : : : 9u4 x=f(u1; u2; u3; u4) ^ (y = u2 _ y = u3)trans2 (x; y) def= trans1 (x; y) _ x = ytrans3 (x; y) def= x = s(y)



To give a feeling of what triangle k(t; x; z; y) means, here are three trees x; z; ysu
h that triangle 2(t; x; z; y) with t = 1, t = 2 and t = 3, from left to right:
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Let us agree that the size jpj of a 
onstraint p, is the number of o

urren
es ofall symbols ex
ept parentheses and 
ommas. (Constraints 
ould be written inin�x notation.) We then have the double property:Property 3 (small 
onstraint, big tree)jhuge k(x)j = 9 + 158k and huge k(x) $ x=s�(k)�1(0).To prove the equality, it is su�
ient to 
ount:jhuge k(x)j = jtriangle k(t; x; z; y)j+ 2;jtriangle 0(t; x; z; y)j = 7;jtriangle k+1(t; x; z; y)j = jtriangle k(t; x; z; y)j+ (54 + 27 + 23 + 27 + 23 + 4)and to 
on
lude. The proof of the equivalen
e (in the algebra of in�nite trees) isthe subje
t of next subse
tion.3.2 Proof of the se
ond part of property 3We write xff; k1; :::; kmgy for expressing that x is a tree whose initial node islabeled f and that there exists i 2 fk1; : : : ; kmg su
h that tree y is the ithdaughter of x. We also agree that:xff; k1; :::; kmg0y $ x = y;xff; k1; :::; kmgn+1y $ 9u xff; k1; :::; kmgu ^ uff; k1; :::; kmgnywith n � 0.Given the de�nition of huge k(x), to show the se
ond part of property 3 itis su�
ient to show that, in the algebra of in�nite trees, the last of the threefollowing equivalen
es holds:(9z triangle k(1; x; z; y))$ xff; 2; 3g�(k)�1y(9z triangle k(2; x; z; y))$ W�(k)�1i=0 xff; 2; 3giy(9z triangle k(3; x; z; y))$ xfs; 1g�(k)�1y (5)



Let us show by indu
tion on k that the three equivalen
es hold. They hold fork = 0. Let us assume that they hold for a 
ertain k � 0 and let us proof thatthey hold for k+1. De�nition (4) 
an be reformulated astriangle k+1(t; x; z; y) $266664[9u1 9u2 z=f(x; u1; u2; y)℄2̂48y0(9z0 triangle k(1; z; z0; y0))!form1 (y0) 35377775 ^ 266666648y0(9z0 triangle k(2; z; z0; y0))!26649u 9v form2 (u; y0; v) ^(t=1! trans1 (u; v)) ^(t=2! trans2 (u; v)) ^(t=3! trans3 (u; v)) 3775 37777775Taking into a

ount our assumptions and using our new notations, we gettriangle k+1(t; x; z; y) $266664[zff; 1gx ^ zff; 4gy℄2̂48y0zff; 2; 3g�(k)�1y0 !form1 (y0) 35377775 ^ 266666648y0[W�(k)�1i=0 zff; 2; 3giy0℄!26649u 9v form2 (u; y0; v) ^(t = 1! uff; 2; 3gv)^(t = 2! uff; 2; 3gv _ u = v) ^(t = 3! ufs; 1gv) 377537777775Sin
e the top of a tree x satisfying form1 (x) and the top of a tree z satisfyingform2 (x; z; y) are respe
tively of the form
f

f f

x y

z
f

f f

x

the top of a tree z satisfying triangle (t; x; z; y) is of the form
α (k)+1

α

α (k)-1

(k)

0
z

x y



It follows that9z triangle k+1(t; x; z; y) $
9z
2666666666666666664
[zff; 2g�(k)+1x ^ zff; 3g�(k)+1y℄2̂664V�(k)i=0248y0 zff; 2; 3giy0 !�9u 9vy0ff; 2gu ^ y0ff; 3gv�3537752̂6648y0 8u8v�zff; 2; 3g�(k)y0 ^y0ff; 2gu ^ y0ff; 3gv�!u=v 3775

3777777777777777775^
2666666666664
V�(k)�1i=026666666648y

0 8u8v 8u0 8v024zff; 2; 3giy0 ^y0ff; 2gu0 ^ u0ff; 3g�(k)�iu ^y0ff; 3gv0 ^ v0ff; 2g�(k)�iv ^ 35!24(t = 1! uff; 2; 3gv)^(t = 2! uff; 2; 3gv _ u = v) ^(t = 3! ufs; 1gv) 35
3777777775
3777777777775Sin
e, in a binary tree the number of nodes of depth n is equal to 2n,9z triangle k+1(t; x; y; z) $9u1 : : : 9u�(k) 2664x=u1 ^ u�(k+1)=y ^24V�(k+1)�1i=1 24(t=1! uiff; 2; 3gui+1) ^(t=2! uiff; 2; 3gui+1 _ ui=ui+1) ^(t=3! uifs; 1gui+1) 35353775We 
on
lude that the equivalen
es (5) hold for k+1, whi
h ends the proof.3.3 Expressing a logi
 program performing a multipli
ationLet step (x; y) be a formula involving two free variables x and y. If we modifyformula triangle k(t; x; z; y) by settingtrans3 (x; y) def= x=y _ step (x; y)and if we introdu
e the formulaiteration k(x; y) def= 9z 9u triangle k(3; x; z; u) ^ trans3 (u; y)we then haveiteration k(x; y) $ �(k)_n=0(9u0 : : :9un x=u0 ^ un= y ^ n̂i=1 step (ui�1; ui)) (6)The binary relation de�ned by iteration is in some way a bounded transitive
losure of the relation de�ned by step .Let T be the theory of trees, that is a set of �rst order propositions whi
hentails all the properties of the algebra of in�nite trees whi
h 
an be expressedas �rst order propositions. A

ording to logi
 programming, the formulatimes (si(0); sj(0); x);



in the theoryT [8>>>><>>>>:8i8j 8k 8k0(times (0; j; 0) true) ^(times (s(i); j; k0) times (i; j; k) ^ plus (j; k; k0)) ^(plus (0; j; j) true) ^(plus (s(i); j; s(k)) plus (i; j; k)) ^9>>>>=>>>>;is equivalent to x = si�j(0):Given the way a Prolog interpreter works and given equivalen
e (6), the 
on-straint iteration k(
(f(si(0); sj(0); x); 0); 0)withstep (x; y) def= 2666649i 9j 9k 9k0 9l(x=
(f(0; j; 0); l) ^ y= l) _(x=
(f(s(i); j; k0); l) ^ y=
(f(i; j; k); 
(p(j; k; k0); l))) _(x=
(p(0; j; j); l) ^ y= l) _(x=
(p(s(i); j; s(k)); l) ^ y=
(p(i; j; k); l)) _377775is equivalent in the algebra of in�nite trees tox = si�j(0)provided that i(j+2)+1 � �(k). For k = 5 we 
an 
onsider that this restri
tionis quasi-satis�ed. Thus we have a systemati
 way to repla
e a logi
 Horn 
lausesprogram by a tree 
onstraint.3.4 Universality versus 
omplexityInstead of a Prolog ma
hine we 
an take a Turing ma
hine M , and express bystep (x; y) the fa
t that M may move from 
on�guration x to 
on�guration y byexe
uting one instru
tion. We then 
on
lude that:Property 4 The result produ
ed by a Turing ma
hine, exe
uting at most �(k)instru
tions, 
an be expressed by a tree 
onstraint of size less or equal to a numberproportional to k.Here also, by taking k = 5 it is possible to express any result that the most pow-erful 
omputer 
ould 
ompute. Thus the tree 
onstraints have a quasi-universalexpressiveness and the 
omplexity of the algorithms for solving them must bevery high. Let us examine this point in more details and in the 
ase of 
onstraintswithout free variables.Let us 
onsider an algorithm as a Turing ma
hine M whose exe
ution termi-nates for all word x 2 V ? given as input. The 
omplexity of M is the mappingof type N! N :n 7! max�i 2 N there exists x 2 V ?, with jxj = n, su
h that Mexe
utes i instru
tions, with x as input. �



Let �� be a set of non-de
reasing fun
tions of type N! N su
h that1. the fun
tions of the form n 7! an+ f(bn), with a 2 N, b 2 N and f 2 ��,belong also to ��,2. there exists a language L, re
ognizable by a Turing ma
hine of 
omplexitybounded above by �, but by no Turing ma
hine of 
omplexity bounded aboveby an element of ��.Property 5 Let T be a Turing ma
hine de
iding whether a tree 
onstraint with-out free variables holds. The 
omplexity of T 
an not be bounded above by anelement of ��.Proof. Let us suppose that there exists su
h a ma
hine T with a 
omplexitybounded above by an element f of �� and let us show that this leads us to a
ontradi
tion. Sin
e �� is not empty, the language L � V ? in part 2 of the de�-nition of ��, exists. A

ording to property 4, to ea
h word x 2 V ?, 
orrespondsa tree 
onstraints px, without free variables, su
h that1. x 2 L if and only if px holds,2. jpxj � bjxj, for some 
onstant b 2 N,3. the transformation x 7! px 
an be performed by a Turing ma
hine S witha 
omplexity bounded above by n 7! an, for some 
onstant a 2 N. (Thispoint 
ould be more detailed.)By linking together the exe
utions of ma
hines S and T , we then build a ma
hineM 0 whi
h re
ognizes L and whose 
omplexity is bounded above by n 7! an +f(bn), a fun
tion whi
h by de�nition belongs to ��. Thus there is a 
ontradi
tionabout the properties of L, whi
h ends the proof.Under the 
ondition of having shown that, as set ��, we 
an take the set offun
tions, of typeN! N, obtained by �nite 
omposition of the elementary fun
-tions: n 7! 
st, +, �, n 7! 2n, we redis
over the result of Sergei Vorobyov [14℄,but in the spirit of Pawel Mielni
zuk [13℄:Property 6 The 
omplexity of an algorithm, whi
h de
ides whether a tree 
on-straint, without free variables, holds, 
an not be bounded above by a fun
tionobtained by �nite 
omposition of elementary fun
tions mentioned above.4 Dis
ussions and 
on
lusionThe presented examples show the 
ontribution of embedded quanti�ers and op-erators :;^;_;! in the expressiveness of tree 
onstraints. They do not reallyuse the fa
t that the trees may be in�nite and are also valid in the algebra of�nite trees. It would be interesting to give examples involving in�nite trees for
oding 
y
li
 stru
tures like �nite states automata, 
ontext-free grammars or�-expressions, as it has been done in [3, 7℄ in the frame of logi
 programming.At subse
tion 3.4 we have provided a glimpse of the huge theoreti
al 
om-plexity of an algorithm for solving tree 
onstraints. However, we have su

eeded



in produ
ing ben
hmarks on all our examples [10℄. The results are summarizedin the following table, with CPU times given in millise
onds:k winningk winningk huge k iteration kgame 1 game 2 1� 10 0 0 0 -1 0 150 0 -2 10 360 10 703 10 610 230 -4 20 840 - -5 30 1180 - -10 300 5 970 - -20 4 270 236 350 - -40 89 870 - - -80 3 841 220 - - -The algorithm is programmed in C++ and the ben
hmarks are performed on a350Mhz Pentium II pro
essor, with 512Mb of RAM.It must be noted that we were able to 
ompute the k-winning positions ofgame 1 with k = 80, whi
h 
orresponds to a formula involving an alternatedembedding of more than 160 quanti�ers. We were prepared to experien
e di�-
ulties in 
omputing the tree of �(k) nodes, beyond k = 3, sin
e �(4) is already65536. With respe
t to multipli
ation by iteration k, we were unable to su

eedbeyond k = 2 and had to satisfy ourselves with the 
omputation of 1� 1!These test have also removed some of our doubts about the 
orre
tness of the
ompli
ated formulae of our examples, even if, for readability, we have introdu
edpredi
ates for naming sub-formulae. Of 
ourse the de�nitions of theses predi
atesare supposed not to be 
ir
ular and the solver unfold and eliminates them in a�rst step.If 
ir
ular de�nitions are a

epted then our 
onstraints look like generalized
ompletions of logi
 programs [2℄. Our solver 
an also take into a

ount su
h pos-sibly 
ir
ular de�nitions by delaying their unfoldings as mu
h as possible. Withbad lu
k the solver does not terminate, with lu
k it terminates and generatesobligatory a simpli�ed 
onstraint without intermediary predi
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