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OMBSTRACT

>, The design of a novel prismatic drive is reported in this pa-

(Qer. This transmission is based Shide-O-Cama cam mecha-
Zism with multiple rollers mounted on a common translatiolg f

ower. The design of Slide-O-Cam was reported elsewheris. Th

rive thus provides pure-rolling motion, thereby reducthg
ifriction of rack-and-pinions and linear drives. Such pnoies
—4an be used to design new transmissions for parallel-kitiesna
achines. In this paper, this transmission is optimize@ptace
gall-screws in Orthoglide, a three-DOF parallel robot wyitied
.—0r machining applications.

S
)
=

Introduction

=~ In robotics and mechatronics applications, whereby motion

is controlled using a piece of software, the conversion dfiomo
om rotational to translational is usually done bgll screws

< linear actuators Of these alternatives, ball screws are gain-
ing popularity, one of their drawbacks being the high number

—f moving parts that they comprise, for their functionine®

Cyn a number of balls rolling on grooves machined on a shaé; on

Cnore drawback of ball screws is their low load-carrying aya

_Istemming from the punctual form of contact by means of which

(Toads are transmitted. Linear bearings solve these dréstiac
-Csome extent, for they can be fabricated with roller bearitigsr
drawback being that these devices rely on a form of direieedr

motor, which makes them expensive to produce and to maintain

A novel transmission, callegllide-O-Camwas introduced ir[]1]
(Fig.ﬂ) to transform a rotation into a translation. Slide2@m
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is composed of four major elements: (i) the frame, (ii) thenca
(iii) the follower and (iv) the rollers. The input axis on vehi
the cam is mounted, the camshatft, is driven at a constantang
lar velocity. Power is transmitted to the output, the tratish
follower, which is the roller-carrying slider, by means afrp-
rolling contact between cam and roller. The roller compise
components, the pin and the bearing. The bearing is mouhted
one end of the pin, while the other end is press-fit into thierol
carrying slider. Contact between cam and roller thus takesep

at the outer surface of the bearing. The mechanism uses two co
jugate cam-follower pairs, which alternately take oventiaion
transmission to ensure a positive action; rollers are driethe
cams, throughout a complete cycle. The main advantage of u:
ing a cam-follower mechanism instead of an alternativestras-
sion to transform rotation into translation is that contacbugh

a roller reduces friction, contact stress and wear.

This transmission will be optimized to replace the threé¢ bal

screws used by the Orthoglide prototyﬁe [2]. Orthoglidéfess
three prismatic joints mounted orthogonaly, three idexhtiegs
and a mobile platform, which moves in the Cartesianz space
with fixed orientation, as shown in Fi§] 2. The motor used to
move each axis is SANYO DENKI (ref. P30B08075D) with a
constant torque of 1.2 Nm from 0 to 3000 rpm. This property en-
ables the mechanism to move throughout the workspace a 4 k
load with an acceleration of 17 m&and a velocity of 1.3 ms!.
On the ball screws, the pitch is 50 mm per cam turn. The min.
imum radius of the camshaft is 8.5 mm. Unlike Lampinﬂn [3],
who used a genetic algorithm, we use a deterministic methoc
while taking into account geometric and machining constsas
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is equal top, the distance between two rollers on the same side o
the roller-carrying slider{s = p). Furthermore, if we consider
the initial configuration of the roller as depicted in Fid.tHe
roller is on the lower side of theaxis fory = 0, so that we have
s(0) = —p/2. Hence, the input-output functiars

Conjugate cams

p p

— s(Y) = V-5 )

Figure 1. Layout of Slide-O-Cam Figure 2. The Orthoglide

outlined in B] In section 2, we introduce the relationsd'eba'ng The expression for the first and second derivativequ]j with
the cam profile and the mechanism kinematics. In Section 3, we respect tap will be needed:

derive conditions on the design parameters so as to havéya ful
convex cam profile, to avoidndercuttingand to have a geomet- d(y)=p/2m) and &(y)=0 )
rically feasible mechanism. In Section 4, the pressureera!
key performance index of cam mechanisms, is studied in order
to choose the design parameters that give the best premsgle-
distribution, a compromise being done with the accuracyef t

The cam profile is determined by the displacement of the conta
pointC around the cam. The Cartesian coordinates of this poin
in theu-v frame take the forn{]5]

mechanism.
Uc(Y) = bzcosy + (b3 —as)cofd— ) (3a)
2 Synthesis of the Planar Cam Mechanism V() = —bpsiny + (bz — ag) sin(d — ) (3b)
Let thex-y frame be fixed to the machine and thhe frame
be attached to the_cam_, as depicted in Iﬁg.(:& is the origin with coefficientsb,, bs andd given by
of both frames, whilé is the center of the roller and is the
contact point between cam and roller. The geometric pansiet by = —<(W)sinas (4a)
P v bs = \/(e+ S(W)sina)2 + (s()sinaz)2  (4b)
b y 2 : .
: : o~ araf 500 )
1 P%J . pX 0, X !
u
) 8/2 s(0) whereq; is the directed angle between the axis of the cam ant
— the translating direction of the followeu; is positive in the ccw
e & direction. Considering the orientation adopted for thaiirgngle
Figure 3. Parameterization of Figure 4. Initial configuration of Y and for the outpus, as depicted in Figﬂ 3, we have
Slide-O-Cam the mechanism

defining the cam mechanism are illustrated in the same figure. ay = -T2 )

The notation of this figure is based on the general notatito-n

duced in [B], namely, (ijp: the pitch,i.e., the distance between We now introduce the nondimensional design paramgter
the center of two rollers on the same side of the followe); (i Which will be extensively used:

e: distance between the axis of the cam and the line of centers

of the rollers; (iii) as: radius of the roller bearing,e., the ra- n=e/p (6)
dius of the roller; (iv)y: angle of rotation of the cam, the input
of the mechanism; (v§: position of the center of the rolleirg, Thus, from Eqs[{1)[[2)[J4a-c]] (5) ar{d (6), we compute the

the displacement of the follower, the output of the mechmanis expressions for coefficients, bz andd as
(vi) p: pressure angle; (viif: force transmitted from the cam to

the roller. In this paperp is set to 50 mm, in order to meet the p

Orthoglide specifications. by = om (7a)
The above parameters as well as the contact surface on the p

cam, are determined by the geometric relations dictatechéy t bs = 51\/(2m 12+ (W2 (70)

Aronhold-Kennedy Theorem in the plang [6]. When the cam Y-

makes a complete turd\( = 21, the displacement of the roller 0= arctan( o — 1) (7¢)
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whence a first constraint am, n # 1/(2m), is derived. Anex-
tended anglé\ is introducedl]]7], so that the cam profile closes.
Angle A is obtained as the root of the equatiiy) = 0. In the
case of Slide-O-Cand is negative, as shown in Fif}. 5. Conse-
quently, the cam profile closes within< | < 2m—A.

@uw=a

(b)yp=0 @u=m (dyp=2m-A

Figure 5. Extended angle A

2.1 Pitch-Curve Determination

The pitch curve is the trajectory of the centerof the roller,
distinct from the trajectory of the contact poi@t which pro-
duces the cam profile. The Cartesian coordinates of [iginh
the x-y frame are(e,s), as depicted in Fid] 3. Hence, the Carte-
sian coordinates of the pitch-curve in the frame are

(8a)
(8b)

Up(W) = ecosp+s(y) siny
V(W) = —esiny -+ s(y) cosy

2.2 Geometric Constraints on the Mechanism

In order to lead to a feasible mechanism, the radiusf the
roller must satisfy two conditions, as shown in Hig. 6a:
e Two consecutive rollers on the same side of the roller-éagry
slider must not be in contact. Sinpds the distance between the
center of two consecutive rollers, we have the constrant2p.
Hence the first condition oau:

as/p<l/2 ©)

e The radius of the shaft on which the cams are mounted must
be taken into consideration. Hence, we have the constaint

b < g, the second constraint am, in terms of the parameter
thus being

a/p<n-—b/p (10)

Considering the initial configuration of the roller, as d#pd in
Fig.[4, thev-component of the Cartesian coordinate of the contact
pointC is negative in this configurationg., v¢(0) < 0. Consid-
ering the expression fag(Y) and for parameteilss andd given

x

@)

Figure 6. Constraints on the radius of the roller

(b)

in Egs. [Bb), [(7b & c), respectively, the above relation fesal
the condition:

)] <0

(%\/(Zm —1)2+ (—m2— 1) sin [arctan(2

Further, we definé andB as:

p

:2T[a4

2.2 _ o —T
A (2rm —1)2+ 1@ —1 andB sm[arctan(zTnlﬂ

Since(2rm — 1)? > 0, we have,

(2m-1)2+m®>m (11)

Hence,A > p/(2a4) — 1. Furthermore, from the constraint on
ay, stated in Eq.[{9), we have/(2a4) — 1 > 0, whenceA > 0.
Consequently, the constrain{0) < 0 leads to the constraiBt<

0. We rewrite the expression f&, by using the trigonometric
relation,

—Tt

P20 amonvir im0

which holds only if 2m — 1 > 0. Finally, the constraint;(0) <0
leads to a constraint ant

n>1/(2m (12)

2.3 Pressure Angle

The pressure angle is defined as the angle between the col
mon normal at the cam-roller contact poaind the velocity of
the follower [3], as depicted in Fi] 3, where the presurdaigy
denoted by This angle plays an important role in cam design.
The smallejp], the better the force transmission. In the case of
high-speed operationge., angular velocities of cams exceed-
ing 50 rpm, the recommended bounds of the pressure angle a
within 30°. Nevertheless, as it is not always possible to have ¢
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pressure angle that remains below 30e adopt theservice fac-
tor, which is the percentage of the working cycle with a pressure
angle within 30 [[7]. The service angle will be useful to take
into consideration these notions in the ensuing discussiben
optimizing the mechanism.

For the case at hand, the expression for the pressure angle

is given in [§] as

Considering the expressions foands’, and using the parameter
n given in Egs. [[1),[{2a) andi|(6), respectively, the expreskio
the pressure angle becomes

sS(w)—e

u= arctan< SU)

™

o

p= arctan< 1 (13)

We are only interested in the value of the pressure anglethéth
cam driving the roller, which happens with

<Y< 2n-A (14)

Indeed, if we start the motion in the initial configuratiorpéeted

in Fig. [b, with the cam rotating in the ccw direction, the cam
begins to drive the roller only whegy = 11, and the cam can
drive the follower until contact is lost,e., wheny = 2m— A, as
shown in Figs[J5c & d.

Nevertheless, as shown in F@. 7, the conjugate cam can also
drive the follower when & Y < 11— A; there is therefore a com-
mon interval, form < @ < 11— A, during which two cams can
drive the follower. In this interval, the conjugate cam caivel
a roller with lower absolute values of the pressure angle agve
sume that, when the two cams can drive the rollers, the caim wit
the lower absolute value of pressure angle effectivelyedrihe
follower. Consequently, we are only interested in the valitbe
pressure angle in the interval,

M-A<yYP<2n-A (15)

We study here the influence of parametgerandas on the
values of the pressure angle while the cam drives the roker,
with T— A < < 2m— A, as explained above.

e Influence of parameter: Figureﬂa shows the influence of
the parameten on the pressure angle, withh andp being fixed.
From these plots we have one resiltie lowem, the lower|p].

¢ Influence of the radius of the rolleyaa, does not appear
in the expression for the pressure angle, but itinfluenaegdtue

of the extended angl&, and hence, the plot boundaries of the
pressure angle, as shown in Fﬁlg 7.

By computing the value of the extended angidor sev-
eral values ofy, we can say that the highes, the lower|A|.
Consequently, since the boundaries to plot the pressute argy
m— A and 2t— A, we can say that when we increaag —A
decreases and the boundaries are translated toward thiecleft
toward higher absolute values of the pressure angle.

100 20
-40
-60

-80.

50

Figure 8. Influence of parameter
N on the pressure angle U (in de-
Pressure angle distribu- gree), with p = 50 mm and a4 =
10mm

Figure 7.
tion

3 Convexity of the Cam Profile and Undercutting

In order to enhance machining accuracy, we need the cal
profile to be fully convex. In this section we establish caiotis
on the design parametensanday in order to have a fully con-
vex cam profile. So, we study the sign of the curvature of the
cam profile via that of the pitch curve. Furthermore, for cam
design in roller-follower mechanisms, we should also cbesi
undercutting Undercutting occurs when the radius of the roller
is greater than or equal to the minimum absolute value ofdhe r
dius of curvature of the pitch curve. Upon avoiding undeingt
the sign of the curvature of the pitch curve is identical tat thf
the cam profile.

3.1 Curvature of the Cam Profile

The curvature of any planar parametric curve, in terms of
the Cartesian coordinatesandv, and parameterized with any
parameter, is given by [B]:

V(u'(W) —u(@v'(W)
[ (W)2 + v/ ()2]3/2

K =

(16)

The sign ofk in Eq. ) tells whether the curve is convex or
concave at a point: a positiveimplies a convexity, while a neg-
ativek implies a concavity at that point. To obtain the curvature
of the cam profile for a given roller-follower, we use the @art
sian coordinates of the pitch curve, since obtaining it$ &l
second derivatives leads to simpler expressions as cochpéte
those associated with the cam profile itself. Then, the ¢urea
of the cam profile is derived by a simple geometric relatigmsh
between the curvatures of the pitch curve and of the cam erofil

Copyright 0 2004 by ASME



The Cartesian coordinates of the pitch curve were recalled 3.2 Convexity Condition of the Pitch Curve
in Eqgs. & b), while Eqs[kZa& b) give their first and second Considering the expression fer, in Eq. @), we have,
derivatives for every value ofy, kp > 0 if (2rm —1)(Tm —1) > 0 and
n # 1/(2m), whence the condition om:

S(@) = p/(2my—p/2, S(p)=p/(@2m, s'(P)=0 ko0 if ne01/@m] U [/t 22)

With the above-mentioned expressions, we can compute ge fir
and second derivatives of the Cartesian coordinates ofitble p
curve with respect to the angle of rotation of the cgm,

Figure@ shows pitch curve profiles and their curvaturesvior t
values ofn. The condition om given in Eq. [2R) must be

Up(W) = ( S(Y)—e)siny+s(y)cosy (17a)
Vo(W) = ( S(W) —e)cosp —s(y)siny (17b)
up(W) = (29(y) —e)cosp—s(y)siny  (17c)
Va(W) = —(24(y) —e)sing —s()cosp  (17d)
@n=02(M¢€]% ) (b)n=07(n>1/m
By substitutingn, n = e/p, along with Egs. [(1a-d), into 0.026 Ko -
Eq. (L), the curvatune, of the pitch curve is obtained as %‘_21&/7—2— T oo //" \
2 : 0.022 Ny
szz_n[(q-’*”) +2(2m —1)(m —1)] (18) -1, 01T 2 3 45 6 7
_ 12 —1)2]3/2
P [(w T[) + (Zm 1) ] (c) Pitch curve curvature (d) Pitch curve curvature
withn =0.2 (n €] 4, £) withn=0.7 (n > 1/m)

provided that the denominator never vanishes for any vdlue o
i.e., provided that Figure 9. Concave (a) and convex (b) pitch curve profiles and their cor-
responding curvatures with p = 50mm

n#1/(2m (19) combined with the condition appearing in Ef.](12)> 1/(2m);
hence, the finatonvexity condition of the pitch curveis:
Let pc andpp be the radii of curvature of both the cam profile
and the pitch curve, respectively, akgthe curvature of the cam n>1/m (23)
profile. Since the curvature is the reciprocal of the radiusuo-
vature, we havee = 1/kc andpp = 1/Kp. Furthermore, due to

the definition of the pitch curve, it is apparent that 3.3 Undercutting Avoidance

We assume in this subsection that the pitch curve is fully
convex,.e., Kp > 0 andn > 1/t In order to avoid undercutting,
Pp=Pct+ay (20) i.e., in order to have both the cam profile and the pitch curve fully
convex, we neek. to be positive. Considering the expression for
the curvature of the cam profile. of Eq. ), the condition to
avoid undercutting is a4k p > 0, whence the condition on the
radius of the followery is

Writing Eq. (29) in terms ok andkp, we obtain the curvature
of the cam profile as

Kp

Ke =
T 1-akp

(21) ag < Y eR

_ 1
Kp(P)

with K, given in Eq. [1B). As we saw previously, we want the ~ Sincek, is positive, this condition can be written as
cam profile to be fully convex, which happens if the pitch aurv

is fully convex too. We thus find first the convexity conditioh

the pitch curve. a <

with K = maxkK 24
i max = MAXKp (W) (24)

5 Copyright 0 2004 by ASME



e Expression fokpmax In order to compute the expression
for Kpmax, We need the first derivati\lép of kp with respect tap
and its roots. With the conditiom > 1/, the expression fok,
given in Eq. [1B) is differentiable for every value gf Thus, we
obtain

;o 2m (Y — T (P2 — 2mp + T2+ 4n%TP — 10N TT+ 4)

A (= m07+(2m — 1772

(25)

The roots of, are, apparentlyp; = tand the rootg), andys
of the polynomial

P(Y) = W? — 2mp + T2+ 402 — 10N T+ 4
Let By be the discriminant of the equatiéh= 0, i.e.,

By = —4n*TC + 10nTi— 4

Therefore, the sign diy and, consequently, the roaps andys,
depend on the value of. Let 3, be the discriminant oy = 0,
a quadratic equation in. Hence3,, = 9r?, which is positive.
The two roots oBy are J/2mand 2/1t Thus,

. . 2
if [ or By<O if ne]ﬁ,+°°[

=R\

)

=R

BlJJ>0

By =0

nel

if n=

=N\

We now study the roots m"p according to the value of.
en € [1/m2/m: By > 0, and the polynomidP has two rootsp,
andys, so that, has three roots:

Yp=Tm (26a)
W2 = T+ /—4n2T2 + 10nTT— 4 (26b)
Ws = TT— /—4n2m@ + 10nTi— 4 (26¢)

o 1 €]2/T, +oo[: By < 0, and the polynomidP has no real roots,
so thatk, has only one rootp; =Tt
e n =2/t By =0, and the polynomiaP has one double root
equal tort, so that}, has one triple rood; = Tt

To decide whether these roots correspond to minima or max-
ima, we need to know the sign of the second derivatiyef k,
with respect ta), for the corresponding values ¢f If the sec-
ond derivative is negative, the stationary value is a marimu
if positive, a minimum. The expressions for the second @eriv
tives were computed with Maple, for the valuesuofgiven in

Kp

0.04) 0.021%
) / .
0.0 0.02
U (rad) 0.02: W (rad)
2 6 6 0 3 3 6

(@n=1/m (byn=2/mt

Figure 10. Pitch-curve curvature for p=50mm

Egs. [2ba-c):

an(nm—2)
pl2nm— 13 (2nm—1)

" Y/ _ 8”(““- 2)
Kp(l-lJZ) - Kp(l-lJ3) - 9p(2r]T[— 1)\/m

e If n e [1/m2/m, K(W1) > 0 andkj(Wz) = Kp(W3) <O,
the curvature of the pitch curve has one local minimumdigr
and two maxima, fop, andys. Hence, the value ®fpmax is

Kp(W1) =

4n

3pyonm—3

Figurea shows a plot of the pitch-curve curvature wijth
1/mand p =50 mm. Since is taken equal to the convexity
limit 1 /11, the curvature remains positive and only vanishes for
w=TL

e If n €]2/m +oof, K(W1) < 0, the curvature of the pitch
curve has a maximum fap;. Hence, the value ofpmax is

Kpmax1= Kp(Y2) = Kp(P3) = (27)

4t (20 —3nm+-1)

p (4n2T@ —4nT+1)3/2

Kpmax2 = Kp(l-lJl) = (28)

Figure[pd shows a plot of the pitch-curve curvature wjti 0.7
(n > 2/m andp =50 mm.

e If n =2/1 K}y(W1) = 0, we cannot tell whether we are in
the presence of a maximum or a minimum. We solve this un
certainty graphically, by plotting the curvature of thechiturve
forn=2/mandp =50 mm. Figurd 1]0b reveals that the curva-
ture has a maximum fap;. The value of this maximum can be
obtained by substituting by 2/mtinto eitherk pmaxi O Kpmax2
expressed in Eqsl]Z?) armZS), respectively.

In summary, to have a fully convex cam profile, taking the
geometric constraints on the mechanism into considergban
rameten must obey the condition givenin E§.[288.n > 1/m
We combine the condition oy to avoid undercutting, as given
in Eq. ), with the geometric constraints on the mechanésm
given in Egs. [§9) and (10), which are, respectively/p < 1/2
andas/p<n-—b/p:

p
K pmaxl, 2

if r]e[l g], a4<min{ ,r]p—b} (29a)

T Tt
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p
Kpmaxz, 2’

2
ian[ﬁ,+°°[, a4<min{ npb} (29b)

wherek pmax1andk pmaxoare given in Eqs[(27) anfl (28), respec-
tively.

4 Optimization of the Roller Pin

We concluded in previous section that the lowest values of
parameters] and a4 led to the lowest values of the pressure
angle. Nevertheless, we must take into consideration tieat t
smaller the radius of the roller, the bigger the deformatibthe
roller pin, and hence, a decrease of the stiffness and the acc
racy of the mechanism. In this section we formulate and solve
an optimization problem to find the best compromise on param-
etersn anday to obtain the lowest pressure angle values with an
acceptable deformation of the roller pin.

4.1 Minimization of the Elastic Deformation on the
Roller Pins
Here we find the expression for the maximum elastic defor-
mation on the pin, which will be minimized under given con-
straints. Figur§ 11 displays the free part of the jig, the part
not fixed to the roller-carrying slider, as a cantilever beaimere

the loadF = ,/f2+ f)? denotes the magnitude of the forte

transmitted by the cam. This force is applied at a single tpoin
at the end of the pin in the worst loading case. Although the di

exerted by the cam onto the roller, denotedfby [fx fy]T
passes through the center of the rolleg,, its line of action
passes through points, andC, as depicted in Figﬂ 3. With

a constant torque provided by the motor, we have= ||f||d,
whered denotes the distance from the center of the input axis tc
the line of action of the forcé Moreover, we have = b, sind.
Hence, 1= ||f||(b2sind) = by(]|f||sind) = by fy. Finally, since

b, = 211/ p we obtain the expression fdy sought:

(31)

Sincet is constantfy is also constant throughout one cycle. Con-
sequently we only have to consider tkeomponent off, and
henceyy for the minimization problem:

43

3Em

CIRIL 4RI I
- 3El - EmME Cad’

(32)

X

[ thus being a constant factor. The objective functzpto be
minimized, is thus defined as

f2 )
%‘ min
as n,24.85

z= —

(33)

where fmax is the maximum value ofy throughout one cycle.

mensions of the pin are not those of a simple beam, we assumeSince

below that the pin can be modelled as such, in order to obtain a
explicit formula for its deflection. This assumption wastiduo
be plausible by testing it with FEA][9].

y f f\‘y
Z X

‘as

L

Figure 11. Approximation of the roller pin as a cantilever beam

The displacemeny; at the free end of the pin turns out to be

VL= Vg4V =

whereE is the Young modulus and= mag/4, with as denoting
the radius of the pin, is the polar moment of inertia of thessro
section. Moreoveny andvy are the pin elastic displacements in
thex- andy-directions, respectively, at the free end.

Before proceeding, we prove that the vertical comporignt
of the transmitted force is constant, and hence, we will ickans
only the magnitude of the-component of/_. Since we assume
that the mechanism undergoes a pure-rolling motion, theefor

FL3

3EI (30)

7

= —— = 4
*“tand  tand (34)
we obtain
1 2 1 F2 Fe 1
z= gmwax{ fe} = %mwax{tan?é} = 2 M) o

with 8, a function ofy, given in Eq. K|70). Moreover, the sys-
tem operates by means of two conjugate mechanisms, which &
ternately take over the power transmission. We establighed
Eq. (15) that when one mechanism is in positive actigris
bounded betweery; = 1— A and Qs = 2rt— A, which corre-
sponds tad bounded betweed; andds with 0 < & < & < TL
Moreover, functions Atarfd and codd are both unimodal in
—1<3<0 andin 0< 8 < 1, their common maxima finding
themselves at-1;, 0 andrt. Since co$3 is better behaved than
1/tar? 8, we redefine as

1
7= % 52152)& {cog 5}
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Furthermore, the function c®8 attains its global minimum of 0 a®

. . . . . . B 20 o 0 x o Series 1
in [0, 17, its maximum in the intervdb;, &¢], included in[0, T, 215 K T v * Series 2
. : E o ais v o Series 3
occurring at the larger of the two extremes of the interSagr S0 s St
o¢. It follows that the objective function to be minimized be- , S5 gt v Series 5
Figure 12. Geometric 0 D (mm)
comes . 10 20 30 40 50 60 70
constraint on the roller-
pin radius Figure 13. Dimensions of the SKF bearings

7= 14 max{cog &;, cos &y}
% in terms of the outer radiud and the inner radiud, as shown

in Fig. . We divide these bearings into five series, from 3.to
Hence, each series can be represented by a continuousofuncti
We chose series 2, in which the basic dynamic load r&itigs
between 844 and 7020 N. Furthermore, for series 2, theoalati
betweerD andd can be approximated by a linear functiorvs.

d, D ~1.6d+ 10 (in mm). Sincéd = 2a4 andd = 2as, the above

with & andds the values ob for 5 = m— A ands = 2T— A,
respectively. Using the expression fogiven in Eq. ﬂ?c) and the
trigonometric identity

cogarctarx) =
< ) V1+x2 equation leads to
we obtain the expression for ¢as as~1.6as+5 inmm (39)
_1\2
025 — M —1) (35) . o _
(2m — 1)2+ (g —m)? We define now two non-dimensional parametefsindas:
Hence, a4 =a/p Oas=as/p (40)
(2m -1) whereas can be derived from Eq[ (39) as
cog s = 36a 5 q
' m -1 (362
025 — (2m — 1) (36b) as = (5/8)a4— 25/(8p) with pin mm. (41)

(2m — 1)2+ (wr —1)?
The optimization problem is now expressed as
Furthermore, since); = m— A, Ys = 2n—A andA < 0, we

haveW; > Y > 1, Y5 — TT> Y — 11> 0 and, consequently, from 025
(|

Egs. & b), cdd; > co£d; and the objective function to Z(n,a4) = — min (42)
minimize becomes as N:Ga
cogd, ) Moreover, we recall the geometric constraint defined in Ez@).
=T ,min (37) and (29) that can be rewritten as
1
with co€ §; given in Eq. [36a) ands; = m—A. Gi=_-"N <0 (43a)
1
4.2 Geometric Constraints g2 =0a— 2 <0 (43b)
Two neighboring pins cannot be tangent to each other, as s <0 (43¢)
depicted in Fig[ 2, and hence the radiyf the pin is bounded s = da PK pmax
as b
g4=0(4—n+—p§0 (43d)
as/p<1l/4 38 1
5/p<1/ (38) 95:0(5_‘_1<0 (43e)

Furthermoreas andas are not independent. From the SKF cat-
alogue, for example, we have information on bearings avigila  with co3; andas given in Egs.[(36a) and (1), respectively.
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4.3 Results of the Optimization Problem n a as , Vimax | [Hmin| [Pmax] service
We solve the foregoing optimization problem with an algo- (mm)) _(mm) tm | O O factor (%)
rithm implemented Matlab, using = 50 mm andb = 9.5 mm. 069 | 24.99 1250 249 0.09 | 4211 | 8068 | O
One solution is found, corresponding tp= 0.69 anda; = 0.5 | 155 656 | 2968 050 | 2859 | 69.81 | 6.85
24.9992 mm, with a value of = 249. The algorithm finds the 04 | 105| 344 | 32183 | 432 | 20.31 | 57.99 | 46.68
values of anda4 as big as possible considering the constraints. | 039 | 10 | 3.12 | 45490 | 6.07 | 19.46 | 56.42 | 50.68
For this solution, constraintg (43d & e) are active. Newvalehs, 038 | 95 | 2.81 | 66659 | 887 | 1861 | 5478 | 54.68
as we saw in subsection 3.3. about the influence of parameters | 037 | 9 250 | 102171 | 13.63| 17.75 | 53.04 | 58.69
h andas, we want these parameters to be as small as possiblein | 036 | 85 | 2.19 | 165896 | 22.31| 16.89 | 5122 | 62.69
order to have low pressure-angle values. For the solutiondo 0.35 | 8 1.87 | 290765 | 39.71| 16.03 | 49.31 | 66.70
above, the service factor is equal to 0%. Consequently, wst mu 034 | 75 | 1.56 | 566521 | 79.18| 15.17 | 47.31 70.72
find a compromise between the pressure angle and the rafier-p 033 | 7 125 | 12916 | 186.08 1431 | 4521 | 74.73
elastic deformation. Tablf 1 shows solutions found by the op yn | 641 088 | 46816 | 71019 1331 | 42.64 | 79.43
timization algorithm upon reducing the boundariesof Each
time the algorithm finds the corresponding valuegts big as Table 1. Results of the optimization problem, with p = 50 mm, b =

possible, constrain@?:d) becomes active. Recorded stéhi

ble is also the corresponding maximum elastic deformatifon o
the roller pinvimax (its expression is derived below), the min-
imum and the maximum absolute values of the pressure angle,
|Umin| @and|umax|, respectively, and the service factor, as defined
in section 2.4. From Eqq. (B0) affd [32) we have

VL = % fxz + f)?
Using Egs. [31) and (4), the above equation leads to

BFo 1

VL= aé 1+m

Which can be simplified by means of the expression fof 8os

given in Eq. [36p) as

BFo \/(2m — 1)2+ (Y — )2

Vimax= —7
Al |y — g

(44)

with B, Fp andas given in Egs.[(3R),[(31) and (B9), respectively,
andy; = 1—A. In Table[}L we record the value of max With

L =10 mm,t = 1.2 Nm (according to the Orthoglide specifica-
tions recalled in section 1) arifl= 2 x 10° MPa. We conclude
from Table[ll that for this cam profile we cannot find an accept-
able compromise between a low deformation of the roller pin,

and hence a high stiffness and accuracy of the mechanism, and

low pressure-angle values. Indeed, for an acceptable ™afor
tion of the roller pin,v max = 8.87 um, obtained withn = 0.38,
the service factor equals 54.68%, which is too low. On theioth
hand, for an acceptable service factor of 79.43%, obtairtd w
n = 1/m, the deformation of the roller pin is equal to 710}&8.

9.5mm,L=10mm, T=1.2Nmand E = 2 x 1P MPa

P XU

s(2m/3) S(41/3
b2 ™ &
N
A% O:l & 2
o ed N
SRR S s e B
Y12
Y13
Figure 14. Layout of the non-coaxial conjugate-cam mechanism

5 A Non-Coaxial Conjugate-Cam Mechanism

This Section describes a new mechanism, based on Slid
O-Cam, that enables us to decrease considerably the peessl
angle while meeting the Orthoglide specifications. This mec
anism is composed of three conjugate cams mounted on thre
parallel shafts, the rollers being placed on one single cidbe
roller-carrying slider. One motor provides the torque te tien-
tral camshaft, this torque then being transmitted to thedther
camshafts through a parallelogram mechanism coupling ,then
whose detailed design is reported[lO]. We denote by 142 an
3 the three cams, as shown in 14. The profile of each cam
described in Section 2. The cams are mounted in such a way th
the angle between theaxis of cam 1 and cam 2 is 12(nd the
angle between the-axis of cam 1 and cam 3 is 240According
to the configuration of the mechanism depicted in I@ 14, anc
denoting byy;> andy; 3 the distance between the origin of 1 and
2, and between the origin of 1 and 3, respectively, we have

yi2=p/2+p+s(21/3), yi13=p/2+2p+s(41/3)

Using the expression of the input-output functisrgiven in
Eq. (1), we obtain
y12=4p/3, y13=8p/3 (45)
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Figure shows the pressure angle variation for each cam vs.

wherel, 2 and3 denote the plot of the pressure angle for cams

1, 2 and 3, respectively. Moreover, cathand3 are rotated by
angles 21/3 and 4t/3, respectively, from cam. We can also
consider that the plot for cam 3 that drives the follower befo
cam 1 in a previous cycle, refereed to3isn Fig. [15, is a trans-
lation of —211/3 from cam1. As we saw in Eq.[(14), cam 1 can
drive the follower withinrt < g < 21— A, which corresponds in
Fig. [L§ to the part of the pldt between point® andD. Conse-
quently, cam 2 can drive the follower within

T+ 2/3< P <2n—A+21/3 ie 5m/3<yP<8m/3—A
and cam 3 within
T+ 41/3< P <2n—A+41/3 ie 7/3<yP<10m/3—A

‘which is equivalent to saying that cam 3 can drive the followe
in a previous cycle, within

m—21m/3< Y <2n—A-21/3 ie T/3<YP<4/3—A

The above interval corresponds in Fg] 15 to the part of the

plot 3' between point®\ andC. Consequently, there is a com-
mon part for cams 1 (plat) and 3 (plot3’) during which these
two cams can drive the follower, namely, between poBitend
C, which corresponds tot < Y < 4r/3— A. Moreover, dur-

ing this common part, cam 3 has lower absolute pressure angle
values than 1, and hence, we consider that only cam 3 drives

the follower. Consequently, cam 1 drives the follower only
within 41/3— A < ¢ < 2n—A. These boundaries allow us to

no| A mm) | as(mm) | e inl ) | imaxl ) | Etor (06)
0.5 | 155 6.56 0.26 28.59 49.41 10.49
0.4 | 105 3.44 2.88 20.31 37.20 70.02
0.39| 10 3.12 4.14 19.46 35.81 76.02
0.38| 9.5 2.81 6.20 18.61 34.39 82.02
0.37] 9 2.50 9.76 17.75 32.95 88.03
0.36| 85 2.19 16.39 16.89 31.48 94.04
0.35| 8 1.87 29.89 16.03 29.98 100

0.34| 7.5 1.56 61.07 15.17 28.47 100

0.33| 7 1.25 147.02 14.31 26.93 100

1m| 6.41 0.88 576.95 13.31 25.12 100

Table 2. Design parameters, roller pin deformation and pressure angle

for the non-coaxial conjugate-cam mechanism, with p = 50 mm, b=

9.5mm,L=10mm, T=1.2Nmand E = 2 x 10° MPa.

record the values afl, a4, as, Vimax |Umin|, |Umax and the ser-
vice factor for the non-coaxial conjugate-cam mechanistme T
best compromise is to use the non-coaxial conjugate-carhanec
nism withn = 0.37, whence the radius of the rollerdg=9 mm
and the roller-pin deformation g max = 9.76 um with a good
service factor of 88.03%.
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