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Une Nouvelle Condition
d'indépendance pour le theoreme de
la limite centrale.

René Blacher
Laboratoire LMC
BP 53
38.041 Grenoble Cedex 9 FRANCE

Résumé: On prouve un théoréme de la limite centrale avec des conditions d’'indépendance
asymptotique beaucoup plus faibles que les hypothéses classiques.

Summary : We prove a Central Limit theorem with assumptiamsch are many much weak
than the classical assumptions.

Key Words : Central Limit Theorem, strongly mixing sequence, martingale, moments.

| Introduction

Notations 1-1 : Let {X} be a sequence of random variables defined probability space
(C2,f,P) such that, for alliN, E{X,} =0 and 0 <{|X 7} <c .

Let o(n)’ be the variance of KXo+ +X . Onesets  § = (X +X,+...+X)
la(n) .

There is two classical ways to study the central limit theo(€inl'). One can use
mixing conditions or martingales.

Strong Mixing condition 1-2 : The procesg X} is said to bestrongly mixing with
coefficienta if



sup |P(A"B)-P(A)P(B] =a(h) =+ 0 as h— o (I-1),

AOMY, BOM

where for a<bJ'i"tba is theo-field generated by(X 4, X 341, Xp) -

In 1962 Ibragimovhas obtained a necessary and sufficient condition under which
strongly mixing sequences satisfy the CLT (cf [1] and Denker [11] p 269-274) ).
Theorem 1-1: Assume that {X} is stricly stationary such that (I-1) holds. Assume that

s(N) =+ casn+ o .
d

Then, $ - N(0,1) if and only if (S, )2is uniformly integrable.

In this caseg?(n) = nh(n) where h is a slowly varying function

Ibragimov has deduced some results for functionals of mixing sequencesarle,
Ibragimov has proved the theorem 18-6-2 of [13]..

These results have bedeveloped by several authors , e.g. Bradley [2]-[3], Peligrad
[4], Dehling-Denker-Philips [5],Davydov [6], Chan [7], Tjgsteim [8], Liebscher [9], Utev
[10], and many others , Mervelede-Peligrad [45], Neumeyer [46], Dedecker-Rio [47], Johnson
Barron [48] ((cf also Eberlein-Taqq [11], Hall-Heyde [12)], Ibragimov -Linnik [E3]d
Doukhan [14] and [49]-[54]).

The CLT hasbeen proved for martingales also cf [12]. Theses results have been
developed by Chao [40], De Meygtl], Wang-Yang-Zhou [42], Mervelede [43], Ouchti
[44]).

In the most part of these papers, the CLT is studied withctirerergence in
distribution. However, some authors hatedied the moment’s convergence (Bernstein [19],
Brown [20], Eissein-Janson [21], Hernndoff [22], Birkel [23], Krugov [24] , Mairoboda [25],
Yokohama [26],[27] , Ibragimov [55], Soulier [56], Rozovsky [57]). For examytd&kohama
has obtaineshecessary conditions in order to the moments converges. Cox-Kim have studied
the moments bounds [28].

Then, under some assumptions (2] and [34], and [12] p 71) the MCLT holds

M
(Moments’s Central Limit theorem) : S N(0,1) , that s, for allpN, E{(S)P} — Ky

as n—+ o , where kb is the p-th moment d4(0,1) .



Now, mixing condition or martingale conditioare the most used assumptions. But,
theses conditions are not necessary conditions. As a mater of those are strong
assumptions : e.g. Strong mixing condition does not hold for some AR{t¢sses (cf [13] p
360-362, [11] p 180). However the CLT holds (cf th 18-6-5 of [13])

Then, classical conditions are tetsong. As a matter of fact, those are a tiny minority
of asymptotic independence conditions which are sufficient on dhderthe CLT holds

Because strong mixing condition is tewong and martingale condition is too specific,
some authors have introduce weaker hypothesésrsik Ornstein (cf [2] [5]) , Withers [15],
Cogburn [16] (cf also Rosenblatt [17]), Pinsker [18] Doukhan-Prieur [62].

Theses conditions are more general than mixing conditiom&adimgale conditions but
they are not necessary condition&s matter of fact they are not founded on a measure of
dependence which determines completely dependence.ifhanaer to obtain a full solution,

we have used a such measure : tigher order correlation coefficients, j,.....j,- Theses
coefficients are perfectly adapted to MCLT.
Because dependence is completely determinatléoy; ,j.....;,, ‘S , one can ask what

is their part inthe MCLT. In [33] one has obtained necessary and sufficient conditions for
MCLT . One has deduced almost minimal assumptions for the MCLT.

Il Generalization of mixing conditions for MCLT

Now, this type ofassumptions is different of 1.2. Then, one wants a condition whose the
writing is near of that of mixing condition.

With this aim, one decomposesX;+X,+.....+X in XXt + X
Xur1 X et ot X i @Nd X i1 X Gatat - X114y - Where u and t are functions iof.
u = u(n), t=t(n), u+t+u = n.
Notations 2-1 :We denote bk (n) [N, an increasing sequence such @)= 0, k(n)<n
and k(n)/n = 0 as n—+ o . We define the sequences u=u(n) and t=t(n) by : u(1)=1, u(n) =
ma>{ MmN * | 2m+K(m)sn} and t(1)=0, t(n) = n-2u(n) ifxL.

We shall choosg such that u(R¥ e, nfu(n) =2 and t(nju(n) =0 as A*o (cf 5-
18). Moreover, ifk(n)—*oo, t(ny—c as A*co,

Now, we need to normalize the associated sums. Then, one tolerafeticiveng
notations (cf 1-1).

. 2 .
Notations 2-2 : Let o(u) be the variance of MX,+...+X, . One sets §=
(X+Xo+.. . +X)  [o(u), &y = (XyeptXyegtetXspfou) and S, =
(X a1 X g™ - Xyaray M O(U). 1 t(n)=0, we set& = 0.




Then, one can assumig{( Su)p(S’u)q} - E{( Su)p} E{( S’u)q} —0 for all (p,q) as
M

asymptotic independence condition. Indeed, jfis negligible § - N(0,1) .

Now in order to provéhe MCLT for some distributions, one generalize this condition
by the following way (cf [61]).

Theorem 2-1: Assume E{ X,,} = O for all IN*. Let kON*. Assume that, for all PN,

p<2k+1, E{(X,)"} < e for all rIN* and thatE{(£)"}— 0 asn— o |
Assume that there exists two sequences of random variabigs aind {v'},

E{(u ) +E{(v )} — 0 as n— o for all pON, p<2k+1, such that the following
assumptions hold.

Hms(2K) : ¥ pON, p<2k+1, E{(S, +0 )™} -E{(S', +U')"} = 0 asmroo .
Humi (2K) @ ' (p,q)IN*?, p+g<2k+1,

E{( Su"'Uu)p(S’u"'U’u)q} - E{( Su"'Uu)p} E{( S’u"'U'u)q} —0asn+o.

Then, for all pIN, p<2k, E{( Sn)p} —+ Hp -

If k=00, we set H g() =H,g and H,,,(©)=H,,, . Then, compare H, andH,,g with
classical assumptions. Of course, if {Xs strictly stationary, H,gholds.
Assume that {)} is a strictly stationaryp-mixing process. By theorem 17-2-3 of [13],
()"0 -EL(S)P (0 Y | < 2000 £, B
where a,b>1a&+b1=1,
Similarly, if {X} is a strictly stationary strongly mixing process, by theorem 17e2-2

, there exists a functio . —* such that, for a , , 10r a ,
[13], th ists a functiof : R3— R, such that, for all (p,g)N*2, for all N

F(B,p.0) [E{(S)°(S0)Y} - E((S)YE((S) ] < a()* P,

wherep=0.

Remark that it is not needed that,Hholds if {X} is strong mixing. But iis the case
M

if S, - N(0,1). In this caseH,, is weaker than the strong mixing assumption : no

conditions are dictated to the rate of convergenc&ffS,)" (S’ )™ - E{(S)} E{(s')}.



Example 2-3 : For example, if©®, has the standart normal distribution and ¢(9,) =
M

i3sin(2M0,), S, - N(0,1) (cf [61]).

Example 2-4 : Let {©;} be an IID sequence of random variables such t@gthas the
uniform distribution on[-1,1]. Let {¥,} be a strictly stationary process independent®f}{
Let X be the process
Xy = 2iso i_S/ZLZi Ou)fiWPu)

where {L} is the family of Legendre polynomials such thapd). = X +b._ x"1+...... +h, , and
where [f,(¥,)|< 1. One assumes that {Ksatisfies the first assumptions of theorem 1-7 of
[33].

Then, E{ Li(el)n(el)} = 0 for all polynomialrt such that degg¢<i. One deduces

that X satisfies the second assumptions of theorem 1-7 of [33]., but is not a martingale.
M

Then, by theorem 1-7 of [33f, - N(0,1) .
One deduce that/] holds.

Remark that the dependence between}{#nd {X,,} can be strong, e.g., if

f.(W)=W,, it is enough that |E{ (W)’ (W,)°} - E{ W)TFE{W,)} [keth) = 0 in
M
order that - N(0,1) .

11 Application to CLT

Theorem 2-1 suggests that one can replace the strong mixing conditiorfddiothimg
way.

Definition 3-1 : We define conditionHg andH, by the following way. There exists two
sequences of random variablggandv’,, E{v}=E{v}=0, E{( Uu)z} +E={( U'u)ﬁ —

0 as n* o , such that

Hs :'%WkON, WjON, P{A,}- P{By;} =+ 0 asn+ o ,

Hi: WkON, W (,7) ONZ, P{ANB;} - P{A, }P{By;} = 0 asn o |
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where A ; and B ; are the events A = { 0* (U)X(S+0)0[4*j,4%(+1)[} and By,
{o*WUsu+0)D[#4*G+D} witho*(u? = E{(S, +0)%}

In particular, if Uy = Uy = 0, A; = {S,0[4%,4%H+1[} and R,
{s,0[4%, 4%G+1)[} . Remark also thar* (u)? — 1.

Moreover, if the CLT holds and ifls andH, hold forv, = v', =0, then, Hs and

2 2

H, hold also for all sequenceg andu', such that={ v, } + E{v’, } = 0.

Now, generally, it is complicated to prove that Holds foru, = U’, = 0. Then it is
simpler to use the above assumptions. For examp¥e, #06, , H, andH g hold if t(n)— o
with U=-r,andV’ =-r', .

Then the following theorem holds.
Theorem 3-1: We keep the previous notations. Assume thatandH, hold. Assume that

£ - 5{S, 1= 0 and={£, 3~ 0 asm o,
d

Then, $ - N(0,1) if and only if(Sn+Un)2is uniformly integrable .

In this case,o(n) =+ © and o(n)lo(u) = 22 as n— o .

Remark that n/u=2 (cf lemma 5-18). Thengtn)/o(u) = 212" is weaker than “h is

a slowly varying function”, that is(tn)zlo(n)z—}t” for all t>0 (cf [13], 18-2-3, p 325 and
394).

One can also compakf with the other generalizations of the strong mix¢ogdition :
[2].[5],[15],[16], [17] , [18] and [62] .

Of course, inH, the uniformity of the strong mixing condition is suppressed.
Moreover, if{ X .} is strongly mixingH, holds : SUpF{Ak,jﬂBk,j}- P{A,;}P{B k,j}l <
af t(n)).

Now, in some cases, it may be simpler toldgg thanH, .

Corollary 3-2 : Assume thatz{ |Xn|4}< o and that E{( Eu)A}—* 0 . Assume thatHg ,
H,,Hms(4) andHqy (4) hold.



d
Then, § - N(0,1). Moreover,5{(S,)} = 0 and E{(S,)"} = 3.

Proposition  3-3: Assume that the assumptions of theorem 2-1 hold with k¥hen,H,
andH g hold.

Proof : By our assumptions E{( Su+Uu)k} — W - By Hps L E{( S’U+U'u)k}—} W . By

Hoy . for all (a,bIR?, E{ (a(Su+Uu)+b(S’u+U'u))k} converges to the k-th moment of
d

N(0,&8+b?). One deduces théB,+U, ,S';+U’'y) — N,(0,1,) =N(0,1)IN(0,1).

IV The central limit theorem for functionals.

Let {X} be the process X= Zizogiﬂ(@m)fiﬂ(wm) , where ¢} is a strictly
stationary process and whe@j is an 11D sequence independent 6%} . We assume that,

for all iON, g and fare measurablez{ g;(®,)f;(¥,) } =0and E{ gi(@l)zfi(wl)z} <o .

n r
Then, one can write $=M,+r, with Mn%z > %O@)fs(W) , =
r=1 s=1

X r+n

LSS gOn)fs(Wns)  E(M )= E{r}=0 .
c’(n)r=1 s=r+l
Of course,  §;ny = My + Ty - Moreover, one can write gy = M’y + 'y

r+n

n r ©
with M’ u- ()_(]'u)rzzl SZ]- gs(6r+u+t)fs(%+u+t) and r"u = O_(lu)rzzl szzﬁ-l gs(en+r+u+t)fs(wn+r+u+t)-

Under some assumptions, one can proves thablds. In particular that is the case if

W, =6, where ,} is a strongly mixing process. Indeed,steasy to prove the following
proposition.



Proposition  4-1: Assume that X= 3. gi,;(©;)fi.1(8.,;) with E{g,(©,)}= 0 for all

iON. Assume thaﬁlsisrgi(el)fi(el) converges in £(Q) to G such that_[GZ.dP > 0 with

n 00
2
S J(3 9©.)7(68))2dP< C <
s=1 i=s
Then, o(n) = « and E{ (rn)z}_; 0 as n— o . Moreover,H; andHs hold with

U=-r, andV’ =-r, if t(n)—* o .

Therefore, under the assumptions of 4-1,}{Xatisfies the CLT if and only QMH)2 is
uniformly integrable.

Now,we know that (Sn+Un)2 is uniformlyintegrable if E{| S,+U, |2+6} <C <
whered>0 ([11], p 270). Then, one can use the following property.

Proposition  4-2 : Assume that the assumptions of 4dld. We set geel,el) =

r
z 0s(©1)f4(8,) . Then, there exists K>0 such thaf (M)} < K if and only there exists B>0

s=1

such that R i =G (0,6)4} <B<w.
r=1

Assume thatSudz gi(el)fi(91)| = g(s) with Z g(s) < C< oo . Then, there exists
i s=1

I=s
M* >0 such that |Gr(@r*er) | <M* . Therefore, there exists K>0 such thaf (M, )4} <K.

d
4-3 Exampk : Assume §O,)f;(6,) = (1/i)3exp{-i(G)l)z}cos(ZT[iel). Then, § - N(0,1)

d
Then, in these twexamples, $- N(0,1) . Remark that no condition or{n), the
mixing coefficient of §,} is necessary.



4-3 Generalization : For example, let X= 3. f.,(6,,;) where F(6,) = 2 1< i(®1)
: 2 - 2
converges in £(Q) to F such thafF .dP >0. Let e(s) f(z fi(el)) .dP .
i=s

If {6} isstrong mixing, one can assume Z e(s)ll2 < oo inorder that H, holds.
s=1

V : Generalization of Theorem 3-1.

V-1 : Notations

In this section , one uses assumptions more genRemhark that we do not assume
E{ (X))} = 0 andE{ (X )%} <o .

Notations 5-1: Let N(n) be an increasing sequence. Lef {X n,t N*, 1<t<N(n), be a
triangular array of random variables defined @nft,P). For any EIN*, we denoteby W (n)
a real sequence such thét(n)>0.

For all iIN* and all rON*, such that {(n)>1, one sets

Srn= LIJr(n)_l(xn,1+Xn,2+'''-'-XFI,U"(N)) '
&= Wr(n)_l(xn,ur(N)+1+Xn,ur(N)+2+ """ +Xn,ur(N)+tr(N)) ’
S’r,n: Wr(n)'l(xn,ur(N)+tr(N)+1+Xn,ur(N)+tr(N)+2+ ...... +xn,ur(N)+tr(N)+ur(N)) )

where N= N(n), gn) = {u™1(N)) , and @(N)= u[u[....[u(N)]...]] .

We also write

SI’] = %,n: LPO(n)-l(Xn,1+Xn,1+"'+Xn,N) .
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Let], ., KON, be a sequence oésted partitions dt : R =0 J.. where the],.
K.j jON 7K ki

's are intervals andN «=N. One assumes that, for alliK, and all bounded interva{, there

exists a finite se, &Ny such thatK.c LJJ.DE Ji; - One assumeslso that [J| < &
K

where g— 0 as k= o, where [J,;| is the length off,;.

. . : - 2.
Moreover, we write the uniform integrability of {$U,,) in the form :

2 :
S +Un|2k{( Sh+Un)} <Ay , with A= 0 as k= o,

2 2
where £ A(S+0 ) _Iﬂ[_m'_k[u[k,m[(sn +0,). (5, +0,)2.dP.

As a matter of fact, we shall decomp&g, in the form

(Woln)/ W,) Son= Wy (X 1+ X 1+ X )
= S,nt€1,ntS'1n
= Wl(”)'l[(xn,ff---+Xn,u(N9+(Xn,u(N)+1+---+Xn,u(N)+t(N))+(xn,u(N)+t(N)+1+---+Xn,n)] :
After, we shall decomposeg § in
(W1 (n) Wy(n)Sy n= Sn+S2 1t€on

= l1J2(n)-1[(xn’1+ ...... +Xn,u(u(N)))+(Xn.u(u(N))+1+"--;+Xn,u(u(N))+t(u(N))
X”,"13((J(N)))+t(uo)+1+ """ +Xn,n)]'

Moreover we replace partitior{gl"‘j,4‘k(j+1)[ by more general partitioﬁkj which
have the same useful properties. For exampl,[4™,4™(+1)[, [J,;| = & =4 — 0 ask
— 00, Moreover, for all bounded intervll there exists P,@ Z such thailk.c [P,Q[ . Then,
[P.Q[= L[4%j,4,({+1)[ where Pisj<Q4.
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Then, we shall prove that theorem 3-1 holds for eventg; A {0*(u)(s,

+Uu)Dka} and g ; ={0*(u) (s, +U'u)Dka} -

Assumptions 5-2 :We assume that, e 4k Let}., be an increasing sequenaebounded
intervals suctthat ‘K| = Ujl]ﬁk]k,i where3, < N, is a finite set for allKN and R =

Uondey . We set p= suf |x|| xO'K, } . We denote by, the s-algebra generated by
g, -

Let k,HON andt>0. One sets

8II<,h(n) = SUp{ SUD {l P{(Sr,n’D:B')ﬂ(S’r,n’D:E’)}'P{Sr,n’D:E)}P{S’r,n’D:B"}|}} ’
N'2N g q0€, r<h

eSum = sup{  sup  {|P{s OB} -P{s\,08}[}} .
n'zn ROE, r<h

Y — ll—’r-l{ N(n')}
e n(n) = sup { 1 e :
" n'>n, O<kh 2" P N(n")}

Moreover, one denotes l};z(n) a non increasing sequence such B{zﬁEr n|>.s:f](n)} < sf](n)
for all r=1,2,...,h.

One sets(n) = by, £¥\ (N)+e5(n) +eby 1 (N) +e5y 1 (M) -

In paragraph V-3, we shall suppose thatP{(S; 03, ;)1(S" 03y )} -
P{ Sr,nDIIk’j)} P{ S’r,nD]k,j,} — 0 as n*o for all kjj,r. Then, becaus&, is finite,

g n(M—* 0 as mro.

Moreover, we shakbuppose also that, for allliN, there exists a decreasing sequence
e&(n) such thatP{| 3 n|>s$(n)} < &¥(n) forallr=1,2,..,h. Then—;ﬁ(u) is also decreasing.

These assumptions more general as tdgll will can be used for a more complete
study of the part of dependence coefficiantimit distributions (in particular, for the laws of
large numbers and for the convergencehe Poisson distribution). We shall study these
generalizations in full detail later.
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Recall also that some CLAave been obtained for triangular array of random variables
or if o(n)zz n', r>2 (cf [8], [9], [10]). Non stationarity is studied in [7].

V-2 : Lemmas

In this paragraph, one proves some inequalities under the preWgpstheses.
Moreover, we assume that the following assumption holds.

Hypothesis 5-3 :In this paragraph V-2, we assume that, for all r=1,2,...,h,
P{S 0K )} <45 (v-1).

Then the following result holds.

Lemma 5-4 : For all r=1,2,...,h,
P{S" 0K} < 4% + g (n) (V-2)

One proves the following inequalities by using the samay as Volkonskii and
Rosanov ([38] : condition I'. cf also [37]).

Lemma 5-5 :Let kand iJN and D>0. Lef = z Gjﬂ;k,j and n = Z Bjﬂ]k,j where
j O j Ok
lojls D and [Bj|s D. Then, for all r=1,2,....,h, the following inequalities hold :

[E{2(S 0} -E{US T} | <2068 p(m) (v-3) |

|E{2(S (S} - E{US Y E{NS, D} | < 40P ) (v-4) .

Lemma 5-6 :LettOR and k and BN . Then, for all r=1,2,...,h,
|E{r ) {1} | < 6EF (n) + 4 4K+ 4ltj4k (v-5),

|E{Srn™ Sy EfeSnm e[ 1 | < 168k n(n)+ BEF n(n) + 16 4K+ 16]t]4 (V-6).

Proof : There exists ¢, = ) G}(’tﬂ] , |C,[<1, such thafcos(ts) - G| < 4Nt if
il X kyj ’ 1
j 03k
sk .. Then, by (V-1), (V-2) and (V-3),
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|4 cos(t§ )} - E{ cos(tS; )} |

|ESr’ank{ cos(tS )} - Es, K, { costs; )} | + 2.4%+ €2 ,(n)
|Esr,nD‘-Hk{ C(S, )} ~Es, 7, { CealS' ) |+ 2.4k + 2,451 +&; 1(n)
2.4% + 2,44 + E5 n(n)

IN

IN

IN

One uses the same way will{ sin(t§ )}, E{ cos(t$ )sin(tS )}, etc (cf [37]).

Lemma 5-7 :LettdR and k and AN . Then, for all r=1,2,...,h,
it N). N its, .2
|E{6‘| qu-l( )Sr_lynllpr( )} -E{el r,n} |

< (2+[t]ER(n) + 16Ek n(n) + 14E5 n(n) + 20.4% + 20|t} (V-7) .

Proof : We know that |i8-eia| for all (a,bMR2 . Then,
| E{e itwr.1(N).S_y n/qu(N)} itSr n+itS’rn} |

{lItS’HtSrnllltErn 1|}<E{|It£rn_e0|}
3
= EIE|r,nI>c‘3ﬁ(n){2} + E|Er,n|s$ﬁ(n){ [t.& - Ol }5 (2+[t[En(n)

Then, it is enough to use this inequality and (V-5) and (V-6) about

|E{ itWr1(N)-S_q n/qu(N)} E{eitsr,n"'its,r,n} |
|tS o HtS’

|E{ rn} E{ r,n} E{ itS,r,n} |
and

(e} (E{e ) -Ef{e )| .

Lemma 5-8 :For all 1R all kand IN , and all r=1,2,...,h,

|2 - (e %) )]
< bkltls?,h(n) + (2+2T|t|)€f](n) + 16Ej n(n) + L4&Ex n(n) +4K (22 + 20[t|2) (V-8) .

Proof : By (V-1), one can write

g (R
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itS it27 TP, 1 (N). N
SElSr-l,n|5bk{ |e| r_l‘n} -el Wr 1( )Sr_l’r/lpr( )l } + 2.4k

< E|Sr-1,n|Sbk{ |tSi1 - t27 W (N).Spg fWHN)| } + 2.4

<thEVp(n) +2.4K.
The result follows from (V-7).

Lemma 5-9 :Forall R , we set, =2 . Forall IR and all k and AN ,

h
| E{ exp(it%,n)} - E exp@hitSh,n)} 2 |
< (b, HEY L) + (+IUER(N) + 16Een r(n) + 1€ r(n) )+4% (44 + 40Jt]) (V-9) .

Proof : Letk’'sk. Clearly, €, 2% . Then, Sflh(n) < Sf-yh(n) and EL,h(n) < EL-,h(n).
Therefore, by using (V-8),

| E{exp(itg) )} - E{exp@itSy, )} 2 |

h-
< | Zi [E{ exp@itS; )} z. = exp@p4itSyyq )} 2r+1] |
r=

h-1
- H 2r
< Z 2r|E{ exp@rltsr'n)} - eXp(5r+1'tSr+1,n)} |

r=

h-1 h-1
< 20 2 By 2L () +Z) 2(2+2 (X [ER(n)
r= r=
h-1 h-1 h-1 h-1
+ 12} 2€ierr r(n) + 1420 2€icer r(n) + 22; 2-2k-1y 202} 22k (T Ly
r= r= r= r=
h-1 h-1 :
g
< |t|20 2By hErn(n) + QﬂtDZ) 2€x(n)
r= r=
h-1 h-1

+ 12 2€iesn,r(n) + 142) 2€ien,r(n) + 44(44+40]t]) .
r=

r=
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Lemma 5-10 :Let hON* be a non-decreasing sequence. Then, for(ai ,t
h
. _ 2'n
| E{ exp(lt%,n)} = exp@hnltshn,n)} |

< (o, WEL (M) + @+UER, () + 165y po() + LE S ()
+4™™ (a4 + 201) (V-10) .

V-3 : Some propositions
By using the previous lemmas, we obtain the following results.

Proposition 5-11: Assume that, for alkON* , Ek(n) =0 asn —w and that, for all
KON, all t0, allnON*, P{S, 0K} <4* .
Then, Q,n converges in distribution to a random variablié &nd only if there exists a

non decreasing sequencgllR*, k,—*c as n—o , such that the two following assertions
hold.

2ER (M) =0 as nve (V-11),

(D1 D o Y ) . (V-12),

where thezjn‘s : j:1,2,....,§“, are independemandom variables which have the same
distribution as & .

Proof : Assume that (V-11) and (V-12) hold.
2kn
By (V-12), E{exp(itL)} - E{ exp(éknitskn,n)} —0 as oo,
2kn
By (V-10) and (V-11),E{exp(it$, )} - E{ exp@knitskn,n)} —0 as n—+oo.

We deduce that{ exp(it§) )} —+ E{exp(itL)} as n—oo.

Assume that &n converges to L. lis always possible to choose an increasing sequenge {k
which increases enough slowly in order that (V-11) holds. Feuch sequence, by (V-10),

2Kn
E{ exp(cSknitSkn,n)} — E{exp(itl)} as n—w.

Now, by (V-9) the following result holds.
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Corollary 5-12 : Assume that all the assumptions of propositehl hold. Then, for all

2r
rON, E{exp(Z"its, )} — E{exp(itl)} asn—o.

d
In particular, if E{ exp(itL)} = exp(-#/2) andt=1/2, S, - N(0,1) for all EIN.
Then, we can apply proposition 5-11 for th@envergence to the normal distribution. In this
cas, we choose the following assumptions.

Assumptions 5-13 :We assume thafor all nON, E{X,} =0, E{(X,)?} <w and
oy =W, () =E{( X, 1+X, ot o+ Xy )P} <e0. We assumehat, for all KIN, 3
is the samallest subsetldf such that [-'22"]-::‘.']{k. We assume also that, falt k andCN ,

& n(N)—0, & n(n)—+0 and aﬁ(n)—ro as n—+oo,

Then, one generalizes the theorem 1-3 of [13]. In this ta$&.
d

Corollary 5-14 : Assume that theassumptions of 5-13 hold. Then, ,S. N(0,1) for all
rON, if and only if there exists a non-decreasing sequepC&lk , k,—*o as n—*o , such
that (V-11) and (V-13) hold far=1/2, where (V-13) is the Lindeberg condition :

2
Yd>0, E S, Jr—=0 Moo V-13).
|S<n,n|>dz«n/2{( o § > 028 V19

Proof : By the Bienaymé-Tschébyscheff InequaliBf Sr,nD*ZI{k)} < 4K Moreover, by the
theorem of page 103 of [39], (V-12) is equivalent to (V-13)#N(0,1) andt=1/2 .
d
Assume that (V-11) and (V-13) hold. By proposition 5-13,,S. N(0,1). By (V-9),
d
Stn - N(O,1)forall £IN .

d
it N).S N
Assume that S, - N(0,1) for all N . By (v-7), E{e 1Moy

d
exp(-#/2) as n—+ . Therefore, Ur-l(N)Sr-l,r/Ur(N) -~ L'~+N(0,2) . Therefore,

forall IN*,  6,4(N)/o(N) = V2 as nsco (V-14) .
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Then, we can use theorem 5-11 vuitii/2 .

Now, one can always build a proper sequengdétke Lindeberg Condition holds.
d

Corollary 5-15 : Assume that theassumptions of 5-13 hold. Then, ,S. N(0,1) for all

rON, if and only if (V-14) holdsind there exists an increasing sequengesugh that for all
N=N,,

2 L]
‘W d>0, Elsrn|>2"4{ (S} < Ay forallsk  (V-15)

where A’ —+ 0 as k= .

Proof : Assume that [is strictly increasing. We defing, hby h=1 if n<N, and h=s if
Ne= n <Ng,;

2
{(s,)} <o, forallh,.
4L 37rm
S mP>2" ”

Let k, be a sequence such thakk, andk—+o . Because 1, =h, or h, 4=

{5} =

Then, for all = Nhn , E

hy+1, there exists t such thaf, x by . Therefore, for all eeNy, ,

| 2k 14
2
- S m|>2ht/4{ (S ) s h, fOrany r<hy =k, . Moreover, nz Nhnt = Ny, - Then, one
2
can apply the previous inequality with m=n amtlk;, : E {(Skn,n) } < Ny

/4
1S, A>2
Therefore, (V-13) holds for all sequenceg<kh,, .

Moreover, one can choosg, kvhich increase slowly in order that (V-11) holds.
On the other hand, the proof of the necessary condition is classical (e.g. cf [13], p 339).

V-4 : Proof of theorem 3-1.

In order to prove theorem 3-1, the following lemma is needed.
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Lemma 5-16 : Assume that the assumptions of 5-13 hold. Moreover, we ashatdor all
2 2 2

on, E{ (s, 0} - E{(5.)} = €)= 0 and E{ ()} = 0 as n=w , and

that

2
E {0} <D= 0askso (V-16).
Sk

Then, (V-14) holds.

Proof : One can assume thall{(:NZK is non-increasing. We know thaf k2k+1  and
P{S 0K} <4%

There existsIg= 3 By . IB]<4k* such that [s? - 1F(s)| < (2.21a* if
W

i Ok
sOk,.
Then, by (V-3), for r>0,
2 2
E S ) - E S’
| Sr,nD‘:I{k{( o)} S’r,nD‘]{k{( r’”)}l

2 2
<|1-E S - (1 +&n) -E s
= | S Dmk{( r,n) } ( +e2(n) S’r,ank{( r,n) }) |

r.n

IN

E 12(s - E
| S Dj{k{ k( r,n)} s

rnn

2 r
Ly LS+ sz ek

r,n

< 2.4*1ER (n) + 8.2K+ |E5m)| .

2
Then, for all KIN, |E {,)} |s T + 2.4*1ER (n) + 8.2K+ |E5n)| .
s 0K "

Let N such that, for all & Ni, €5(n)< 2kand€R(n)< 8% . We assumd\f increasing.

We defingU>0 by q.lrk)z: ma>{ m+ 17.2« . Max (e {(S’rn)z}) } :
n<NL R



19

Then, the following lemma is needed.
Lemma 5-17 :Under the previous assumptions

U= 0 as k= (V-17).

Proof : lety>0. There exists K such that+17.2K < y. Then, there exists K'>0 such that

Max (e {(S’r,n)z}) <y.
Vs 0K
n<NK rn

Let k= max(K,K’) . Then,

;2
Max (- {0

n<Ng fn
2 2
< maf Max (= N {2 Max (= N {2 }
neNf oK ren<Nj  © oK
<Vy.
We deduce (V-17).
2 2 2 2
Clearly, E S )t < U d E S < () .
early S’r,nD'ﬂ{_k{( r,n } < (I“lk) an " k{( r,n } < (Uk)

. 2 2
Moreover, there exists,B0 such that £{ |S’r’n|}s B, and E{ S }<®) .

Then, by Schwartz Inequalit;IE " {Sr nS’rn}l < B, M , for example.
HH

rnn
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Then,

|E{ Sr,nS1r,n B E{ Sr,n} E{ S1r,n}|

< |E S, .S - E S E1 S
< | Sr,nD“{k{ r,n= r,n Sr,nDj{k{ r,n} { r,n}l
|E {S S’ }l +B|E {S }l
r,nD‘]{k phenn ' r,nD‘]{k mh
< |E S S - E S By S 2 '
= | Sr,nD“{k{ o r,n} r,nD*:I{k{ r,n} { r,n}l " 25

N

S .S -E S E S
{ rn r,n} Sr,nDtka{ r,n} S’r,ank{ r,n}

i+ 2R

E
S, DK, OK

Moreover, there existd) = Bikﬂ] ok < 241 such that |s -1, (s)| < 4%
i O3k il
and I (s)| ss if STK,.

Then,

= s. s }-E s 1 <
{Sr,nD‘]{k}ﬁ{S’r,ank}{ rn r,n} Sr,nD“{k{ r,n} S’r,nD“{k{ r,n}l

<|

s (S, S }-E I(S )} E o
{Sr’ank}ﬂ{S’ r,ank}{ k(Srn) r,n} Sr'ank{ k( r,n)} S’r,nD‘]{k{ r,n}l

+ -&|E {Is,q}

(S, TKGYS | OKY

4K|E s |
+ S’r,nD‘J{k{ r,n}

N

[.(S )S -E I.(S E
{ k( r,n) r,n} s Df]'[k{ k( r,n)} g

r,n r,

E {s'
S, TKGs, OK 0K

4%+ 2B



21

< |e s s
s, Tgns, gt WSSl

N

-E l.(S E
sr,nmik{ (S} E

U |

rnn

* (S 4KE 1 (S 2B, 4k
+ {Sr,nD‘J{k}ﬂ{S' r,nD“{k}{l k( rn)l} + Sr’an]{k{l K rn)|} + 2B,

< 4441 (n) + 2(14B )4k

These inequalities hold for all Kherefore, by (V-17)E{ Sr,nS’r’n} converges to O.
2 2
Moreover, E{ Sr,ncir,n}2 < (S;.n }E{ G }  which converges to OTherefore,
2
= (St S ) } converges to 2. Then, (V-14) holds.

Lemma 5-18 :Under the assumptions of definition 3-1, n/(ufh)2 as n—+c. Moreover,

it ={(s)} -E{(s)} =0 and E{()}~ 0 as e, o(nPouR— 2 and
o(n)—* c as nm*o .

Proof : by notations 2-1, if n>13(u+122(u+1)+ (u+1)>n>2u+(u). Therefore, u(ny* o
as n—oo and 2+2/u#f(u+1)/(u+1)] [(u+1)/u] >n/u=2+k(u)/u. Then,by notations 2-1,
n/(u(n)— 2 as n+o,
2 2 2
Assume that E{ (S’u)} - Sy }= 0 and Ff (& }— 0. Then, 1 =

2 2 2
)} = louRomAe{ (5,+S) T} = [ouRiemAE{(S) }+o@] =
[o(u)2/a(n)?][2+0(1)] . Then, o(n)?/c(u)2—+ 2 as N+ .

Therefore, there existsyuchthat, for iz N, o(n)?/o(u)? = 5/3 and 7/3 n/u(n) .
Then, if n (7/3¥N,, uk(n)= N, . Therefore, there exists &'k such that ri(n)=N, and
uK'(N)<Ng . Let M= mir{ a(n)2| n<Ng} . Then,o(n)2 = (5/3¥M. Because,a(n)>0, a(n)— o
as n—o .

5-19 : Proof of theorem 3-1. Let M, be an increasing sequence properly choosen : e.g.

one can assumel” —o where =1 if M<nsM,,,.We set V(n) s(n)u, , V'(n) =
o(nu’,, and N(n)=n.
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If n<M,, we define Xt by Xnt = % if t<n and Xin=Xn* Vy-
If Mj<nsM,, we set X=X iftzuu+l,n and X, =X, +V,, X1 = XtV

Vu'V’u d Xn,n = Xn+V’u

If Mp<nsMy,q, we set X = X if t#U(n),u(n)+1, for r=0,1,..,h and X

nua(n) ~
XaosVarey  Xoatoy = XY wity 107 0L 20l X = X0+

Vuf-l(n) - Vuf(n)' V’ur(n) forr=1,2,...,h (cfalso [37]).

Then, for n>M,

O (M) = XX+t Xy Vi =o(u(n)(S ()t uf(n)) :

Or(n)S’r,n = xur(n)+tf(n)+1 + Xur(n)+tf(n)+2 T * )%r'l(n) +V u'(n)
=0, (u'(n)) (S’ur(n)ﬂ)’ ur(n)) ,
or(n)gr’n = xur(n)+1+ xur (n)+2 Foirinn, + )ﬁr (M) (n) + Vur_1 )" Vuf(n) + V’ur(n) :

Therefore, crr(N)2 = [ (Or(N)Sr,n)z} = G(Ur(”))ZE{ (Sur(n)+uur(n))2}
o(ur(n))ZG* (Ur(n))2 :

Therefore, §, = o*(u'(n))’ (S ))and S; = o* (u'(n)) (S

u(n) Ur(n))'

ur(n) ur(n

Then, Ekn(n) = 0 andEgn(n) = 0.

By our assumptionsg* (u'f(n))2 —= 1.
2 2

Then, E{ (S0 }-E{ (S, »} = 0.

2
Moreover, by lemma 5-18,0(ur(n))2/0(ur‘1(n))2 -2, Then,E{ G ) } — 0 Therefore,

one can assumSh(n) —+0
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r
On the other hand, by our assumptions, there aﬁr;:tsar 0 as k= o such that

2
E S
| Sr,n|2k{( o}
- E { o*(ur(n))'z(sur(n)+uur(n))2} sArk :

-1
o*(u'(n)) (Sur(n)+U ur(n)? |2 k

Then, (V-14) holds.

d
Then all the assumptions of corolldyl5 are satisfied by {§. Therefore, § - N(0,1)
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