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On prouve un théorème de la limite centrale avec des conditions d'indépendance asymptotique beaucoup plus faibles que les hypothèses classiques.

I Introduction

Notations 1-1 : Let {X n } be a sequence of random variables defined on a probability space ( , ,P) such that, for all n∈N , E{X n } = 0 and 0 < E{|X n | 2 } <∞ .

Let σ(n)

2 be the variance of X 1 +X 2 +...+X n . One sets S n = (X 1 +X 2 +...+X n )

/σ(n) .

______________ There is two classical ways to study the central limit theorem (CLT). One can use mixing conditions or martingales.

Strong Mixing condition 1-2 : The process {X n } is said to be strongly mixing with coefficient α if where for a<b, b a is the σ-field generated by (X a ,X a+1 ,...,X b ) .

________________

In 1962 Ibragimov has obtained a necessary and sufficient condition under which strongly mixing sequences satisfy the CLT (cf [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF] and Denker [START_REF] Eberlein | Dependence in Probability and Statistics[END_REF] p 269-274) ). Theorem 1-1 : Assume that {X n } is stricly stationary such that (I-1) holds. Assume that (n) ∞ as n ∞ .

Then, S n d → N(0,1) if and only if (S n )

2 is uniformly integrable.

In this case, σ 2 (n) = nh(n) where h is a slowly varying function ____________________

Ibragimov has deduced some results for functionals of mixing sequences. For example, Ibragimov has proved the theorem 18-6-2 of [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF].. These results have been developed by several authors , e.g. Bradley [START_REF] Bradley R | On a very weak Bernouilli condition[END_REF]- [START_REF] Bradley R | A Central limit theorem for ρ-mixing sequences with infinite variance[END_REF], Peligrad [START_REF] Peligrad M | On Ibragimov-Iosifescu conjecture for -mixing sequences[END_REF], Dehling-Denker-Philips [START_REF] Dehling H. Denker M | Versik Processes and very weak Bernouilli processes with summable rates are independent[END_REF], Davydov [START_REF] Davidov | The invariance principe for stationary processes[END_REF], Chan [START_REF] Chaan | A note on the geometric ergodicity of a Markov chain[END_REF], Tjøsteim [START_REF] Tjøstheim | Non linear times series and Martkov chains[END_REF], Liebscher [START_REF] Liebscher | Central Limit Theorems for sums of α-mixing random variables[END_REF], Utev [START_REF] Utev | On the central limit theorem for -mixing arrays of random variables[END_REF], and many others , Mervelede-Peligrad [START_REF] Merlevede | The functional central limit theorem under the strong mixing condition[END_REF], Neumeyer [START_REF] Neumeyer | A Central Limit theorem for two sample U-processes[END_REF], Dedecker-Rio [START_REF] Rio E | On the functional central limit theorem for stationary processes[END_REF], Johnson Barron [START_REF] Barron A | Fisher information inequalities and the Central Limit Theorem[END_REF] ((cf also Eberlein-Taqq [START_REF] Eberlein | Dependence in Probability and Statistics[END_REF], Hall-Heyde [START_REF] Heyde | Martingale Limit Theory and its applications[END_REF]], Ibragimov -Linnik [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF] and Doukhan [START_REF] Doukhan | Mixing. Properties and examples[END_REF] and [START_REF] Dudzinsky | A Note on the almost sure Central Limit Theorem for some dependent random variables[END_REF]- [START_REF] Szeidi | The Central Limit Theorem without the condition of Independence[END_REF]).

The CLT has been proved for martingales also cf [START_REF] Heyde | Martingale Limit Theory and its applications[END_REF]. Theses results have been developed by Chao [40], De Meyer [START_REF] De Meyer | The maximal variation of a bounded martingale and the central limit theorem[END_REF], Wang-Yang-Zhou [START_REF] Wang Y | A random functional central limit theorem for processes of product sums of liner processes generated by martingale differences[END_REF], Mervelede [START_REF] Mervelede | On the central limit theorem and its weak invariance principle for strongly mixing sequences with values in a Hilbert space via martingale approximation[END_REF], Ouchti [START_REF] Ouchti | On the rate of convergence in the central limit theorem for martingales difference sequences[END_REF]).

In the most part of these papers, the CLT is studied with the convergence in distribution. However, some authors have studied the moment's convergence (Bernstein [START_REF] Berstein | Quelques remarques sur le théorème limite Liapounoff[END_REF], Brown [START_REF] Brown | Characteristics functions, moments and the Central Limit Theorem[END_REF], Eissein-Janson [START_REF] Esseen | On moments conditions for normed sums of independent random variables and martingales differences[END_REF], Hernndoff [START_REF] Herrndorf | A functional Central Limit Theorem for ρ-mixing sequences[END_REF], Birkel [START_REF] Birkel | Moment bounds for associated sequences[END_REF], Krugov [START_REF] Krugov | The convergence of moments of random sums[END_REF] , Mairoboda [START_REF] Mairoboda | The Central limit Theorem for empirical moment generating functions[END_REF], Yokohama [START_REF] Yokohama R | Moment bounds for stationary mixing sequences[END_REF], [START_REF] Yokohama R | The convergence of moments in the Central limit Theorem for stationary -mixing processes[END_REF] , Ibragimov [START_REF] Ibragimov I | On the convergence of generalized moments in almost sure central limit theorem[END_REF], Soulier [START_REF] Soulier | Moment bounds and the central limit theorem for functions of Gaussian vectors[END_REF], Rozovsky [START_REF] Rozovsky L | An estimate of the remainder in the central limit theorem for a sum of independent random variables with infinite momernts of a higher ordrer[END_REF]). For example, Yokohama has obtained necessary conditions in order to the moments converges. Cox-Kim have studied the moments bounds [START_REF] Cox D | Moment bounds for mixing random variables useful in nonparametric function estimation[END_REF].

Then, under some assumptions (cf [START_REF] Yokohama R | The convergence of moments in the Central limit Theorem for stationary -mixing processes[END_REF] and [START_REF] Blacher R | Théorème de la limite centrale par les moments[END_REF], and [START_REF] Heyde | Martingale Limit Theory and its applications[END_REF] p 71) the MCLT holds (Moments's Central Limit theorem) : S n M → N(0,1) , that is, for all p∈N , {(S n ) p } µ p as n ∞ , where µ p is the p-th moment of N(0,1) . Now, mixing condition or martingale condition are the most used assumptions. But, theses conditions are not necessary conditions. As a mater of fact, those are strong assumptions : e.g. Strong mixing condition does not hold for some AR(1) processes (cf [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF] p 360-362, [START_REF] Eberlein | Dependence in Probability and Statistics[END_REF] p 180). However the CLT holds (cf th 18-6-5 of [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF])

Then, classical conditions are too strong. As a matter of fact, those are a tiny minority of asymptotic independence conditions which are sufficient on order that the CLT holds .

Because strong mixing condition is too strong and martingale condition is too specific, some authors have introduce weaker hypotheses : Versik Ornstein (cf [START_REF] Bradley R | On a very weak Bernouilli condition[END_REF] [5]) , Withers [START_REF] Withers | Central limit theorems for dependent random variables[END_REF], Cogburn [START_REF] Cogburn R | Asymptotic properties of statinaory sequences[END_REF] (cf also Rosenblatt [START_REF] Rosenblatt | Uniform ergodicity and strong mixing[END_REF]), Pinsker [START_REF] Pinsker | Information and information stability of random variables and processes[END_REF] Doukhan-Prieur [START_REF] Coulon-Prieur | A triangular central limit theorem under a new weak dependence condition[END_REF].

Theses conditions are more general than mixing conditions or martingale conditions but they are not necessary conditions. As matter of fact they are not founded on a measure of dependence which determines completely dependence. Then, in order to obtain a full solution, we have used a such measure : the higher order correlation coefficients ρ j 1 , j 2 ,...., j n . Theses coefficients are perfectly adapted to MCLT.

Because dependence is completely determined by the ρ j 1 , j 2 ,...., j n 's , one can ask what is their part in the MCLT. In [START_REF] Blacher R | Central limit theorem by polynomial dependence coefficients[END_REF] one has obtained necessary and sufficient conditions for MCLT . One has deduced almost minimal assumptions for the MCLT.

II Generalization of mixing conditions for MCLT

Now, this type of assumptions is different of 1.2. Then, one wants a condition whose the writing is near of that of mixing condition.

With this aim, one decomposes X 1 +X 2 +.....+X n in X 1 +X 2 +.....+X u , X u+1 +X u+2 +.....+X u+t and X u+t+1 +X u+t+2 +.....+X u+t+u , where u and t are functions of n : u = u(n), t=t(n), u+t+u = n.

Notations 2-1 :

We denote by κ(n) ∈N , an increasing sequence such that κ(1)= 0, κ(n)≤n and κ(n)/n 0 as n ∞ . We define the sequences u=u(n) and t=t(n) by : u

(1)=1, u(n) = max{m∈N * | 2m+κ(m) ≤n } and t(1)=0, t(n) = n-2u(n) if n≥2. ________________ We shall choose κ such that u(n) ∞, n/u(n) 2 and t(n)/u(n) 0 as n ∞ (cf 5- 18). Moreover, if κ(n) ∞, t(n) ∞ as n ∞.
Now, we need to normalize the associated sums. Then, one tolerates the following notations (cf 1-1). } 0 for all (p,q) as asymptotic independence condition. Indeed, if ξ u is negligible S n M → N(0,1) . Now in order to prove the MCLT for some distributions, one generalize this condition by the following way (cf [START_REF] Blacher R | Central Limi Theorem By Moment[END_REF]).

Theorem 2-1 : Assume E{X n }= 0 for all n∈N *. Let k∈N *. Assume that, for all p∈N , p<2k+1, E{(X n ) p }< ∞ for all n∈N * and that E{(ξ u ) p } 0 as n ∞ .

Assume that there exists two sequences of random variables {υ' u } and {υ' u }, E{(υ u ) p }+E{(υ' u ) p } 0 as n ∞ for all p∈N , p<2k+1, such that the following assumptions hold.

H mS (2k) : p∈N , p<2k+1, E{(S u +υ u ) p } -E{(S' u +υ' u ) p } 0 as n ∞ .

H mI (2k) : (p,q)∈N* 2 , p+q<2k+1, E{(S u +υ u ) p (S' u +υ' u ) q } -E{(S u +υ u ) p }E{(S' u +υ' u ) q } 0 as n ∞ .

Then, for all p∈N , p≤2k, E{(S n ) p } µ p .

_____________________________

If k=∞, we set H mS (∞) =H mS and H mI (∞)=H mI . Then, compare H mI and H mS with classical assumptions. Of course, if {X n } is strictly stationary, H mS holds.

Assume that {X n } is a strictly stationary φ-mixing process. By theorem 17-2-3 of [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF],

|E{(S u ) p (S' u ) q } -E{(S u ) p }E{(S' u ) q }| ≤ 2φ(t

) E{|S u | pa } 1/a E{|S u | qb } 1/b
, where a,b>1 a -1 +b -1 = 1.

Similarly, if {X n } is a strictly stationary strongly mixing process, by theorem 17-2-2 of [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], there exists a function : R 3 R + such that, for all (p,q)∈N * 2 , for all n∈N *, (β,p,q) |E{(S u ) p (S' u ) q } -E{(S u ) p }E{(S' u ) q }| ≤ α(t) 1-β , where β≥0.

Remark that it is not needed that H mI holds if {X n } is strong mixing. But it is the case if S n M → N(0,1). In this case H mI is weaker than the strong mixing assumption : no conditions are dictated to the rate of convergence of E{(S u ) p (S' u ) q } -E{(S u ) p }E{(S' u ) q }.

Example 2-3 : For example, if Θ 1 has the standart normal distribution and g i (Θ 1 ) = i -3 sin(2πiΘ 1 ), S n M → N(0,1) (cf [START_REF] Blacher R | Central Limi Theorem By Moment[END_REF]).

Example 2-4 : Let {Θ t } be an IID sequence of random variables such that Θ 1 has the uniform distribution on [-1,1]. Let {Ψ t } be a strictly stationary process independent of {Θ t }. Let X t be the process

X t = ∑ i≥0 i -3/2 L 2 i (Θ t+i )f i (Ψ t+i )
, where {L i } is the family of Legendre polynomials such that L i (x) = x i +b i-1 x i-1 +......+b 0 , and where |f i (Ψ 1 )|≤ 1. One assumes that {X t } satisfies the first assumptions of theorem 1-7 of [START_REF] Blacher R | Central limit theorem by polynomial dependence coefficients[END_REF].

Then, E{L i (Θ 1 )π(Θ 1 )} = 0 for all polynomial π such that deg(π}<i. One deduces that X t satisfies the second assumptions of theorem 1-7 of [START_REF] Blacher R | Central limit theorem by polynomial dependence coefficients[END_REF]., but is not a martingale.

Then, by theorem 1-7 of [START_REF] Blacher R | Central limit theorem by polynomial dependence coefficients[END_REF], S n M → N(0,1) .

One deduce that H mI holds.

Remark that the dependence between {X t } and {X t+h } can be strong, e.g., if ∞ and σ(n)/σ(u) 2 1/2 as n ∞ .

f i (Ψ t )=Ψ t , it is enough that |E{(Ψ t ) 2 (Ψ t+h ) 2 } -E{(Ψ t ) 2 }E{(Ψ t+h ) 2 } |≤ e(h) 0 in order that S n M → N(0,1) .

III Application to CLT

____________________

Remark that n/u 2 (cf lemma 5-18). Then, "σ(n)/σ(u) 2 1/2 " is weaker than "h is a slowly varying function", that is σ(tn) 2 /σ(n) 2 t" for all t>0 (cf [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], 18-2-3, p 325 and 394).

One can also compare H I with the other generalizations of the strong mixing condition : [START_REF] Bradley R | On a very weak Bernouilli condition[END_REF], [START_REF] Dehling H. Denker M | Versik Processes and very weak Bernouilli processes with summable rates are independent[END_REF], [START_REF] Withers | Central limit theorems for dependent random variables[END_REF], [START_REF] Cogburn R | Asymptotic properties of statinaory sequences[END_REF], [START_REF] Rosenblatt | Uniform ergodicity and strong mixing[END_REF] , [START_REF] Pinsker | Information and information stability of random variables and processes[END_REF] and [START_REF] Coulon-Prieur | A triangular central limit theorem under a new weak dependence condition[END_REF] .

Of course, in H I the uniformity of the strong mixing condition is suppressed.

Moreover, if {X n } is strongly mixing, H I holds : sup|P{A k,j B k,j }-P{A k,j }P{B k,j }| ≤ α{t(n)).
Now, in some cases, it may be simpler to use H mI than H I . k }converges to the k-th moment of N(0,a 2 +b 2 ). One deduces that (S u +υ u ,S' u +υ' u ) d → N 2 (0,I 2 ) = N(0,1)⊗N(0,1).

____________________

IV The central limit theorem for functionals.

Let {X t } be the process X t = ∑ i≥0 g i+1 (Θ t+i )f i+1 (Ψ t+i ) , where {Ψ t } is a strictly stationary process and where {Θ t } is an IID sequence independent of {Ψ t } . We assume that, for all i∈N , g i and f i are measurable, E{g i (Θ 1 )f i (Ψ 1 ) } = 0 and E{g i (Θ 1 )

2 f i (Ψ 1 ) 2 } <∞ .
Then, one can write S n =M n +r n with

M n = 1 σ(n) g s (Θ r )f s (Ψ r ) ∑ s=1 r ∑ r=1 n , r n = 1 σ(n) g s (Θ n+r )f s (Ψ n+r ) ∑ s=r+1 r+n ∑ r=1 ∞ : E{M n }= E{r n }=0 . Of course, S u(n) = M u(n) + r u(n) . Moreover, one can write S' u(n) = M' u(n) + r' u(n) with M' u = 1 σ(u) g s (Θ r+u+t )f s (Ψ r+u+t ) ∑ s=1 r ∑ r=1 n and r' u = 1 σ(u) g s (Θ n+r+u+t )f s (Ψ n+r+u+t ) ∑ s=r+1 r+n ∑ r=1 ∞ .
Under some assumptions, one can proves that H I holds. In particular that is the case if Ψ t = θ t where {θ t } is a strongly mixing process. Indeed, it is easy to prove the following proposition.

Proposition 4-1 : Assume that X t = ∑ i≥0 g i+1 (Θ t+i )f i+1 (θ t+i ) with E{g i (Θ 1 )}= 0 for all i∈N . Assume that ∑ 1≤i≤r g i (Θ 1 )f i (θ 1 ) converges in L 2 (Ω) to G such that ∫G 2 .dP > 0 with . Remark that no condition on α(n), the mixing coefficient of {θ t } is necessary.

4-3 Generalization :

For example, let X t = ∑ i≥0 f i+1 (θ t+i ) where F r (θ 1 ) = ∑ 1≤i≤r f i (θ 1 ) converges in L 2 (Ω) to F such that ∫F 2 .dP > 0 . Let e(s) = ∫( ∑ i=s ∞ f i (θ 1 )) 2 .dP .

If {θ t } is strong mixing, one can assume ∑ s=1 ∞ e(s) 1/2 < ∞ in order that H I holds.

V : Generalization of Theorem 3-1.

V-1 : Notations

In this section , one uses assumptions more general. Remark that we do not assume E{(X n )} = 0 and E{(X n ) 2 } <∞ . We also write Moreover, we write the uniform integrability of (S n +υ n ) 2 in the form :

S n = S 0,n = Ψ 0 (n) -1 (X n,1 +X n,1 +...+X n,N ) .
E |S n +υ n |≥k {(S n +υ n ) 2 } ≤ ∆ k , with ∆ k 0 as k ∞, where E |S n +υ n |≥k {(S n +υ n ) 2 } = ∫ ¶ [-∞,-k[ [k,∞[ (S n +υ n ). (S n +υ n ) 2 .dP .

_______________________

As a matter of fact, we shall decompose S 0,n in the form Then, we shall prove that theorem 3-1 holds for events A k,j = {σ*(u) -1 (S u +υ u )∈ kj } and B k,j = {σ*(u) -1 (S' u +υ' u )∈ kj } . 

(Ψ 0 (n)/ Ψ 1 (n)) S 0,n = Ψ 1 (n) -1 (X n,1 +X n,1 +...+X n,N ) = S 1,n +ξ 1,n +S' 1,n = Ψ 1 (n) -1 [(X n
ε k,h I (n) = sup n'≥n { sup '∈ k , r≤h {|P{(S r,n' ∈ ) (S' r,n' ∈ ')}-P{S r,n' ∈ )}P{S' r,n' ∈ '}|}} , ε k,h S (n) = sup n'≥n { sup ∈ k , r≤h {|P{S r,n' ∈ } -P{S' r,n' ∈ '}|}} , ε τ,h ψ (n) = sup n'≥n, 0<r≤h { 1 -ψ r-1 {N(n')} 2 τ ψ r {N(n')} } .
Moreover, one denotes by ε h ξ (n) a non increasing sequence such that P{|ξ r,n |>ε h

ξ (n)} < ε h ξ (n)
for all r=1,2,...,h.

One sets

ε k τ (n) = b 2k ε τ,k ψ (n)+ε k ξ (n) +ε 2k,k I (n) +ε 2k,k S (n) .

___________________

In paragraph V-3, we shall suppose that P{(S r,n ∈ k,j ) (S' r,n ∈ k,j' )}-P{S r,n ∈ k,j )}P{S' r,n ∈ k,j' } 0 as n ∞ for all k,j,j',r. Then, because k is finite,

ε k,h I (n) 0 as n ∞.
Moreover, we shall suppose also that, for all r∈N , there exists a decreasing sequence ε r ξ (n) such that P{|ξ r,n |>ε r ξ (n)} < ε r ξ (n) for all r=1,2,..,h. Then, ε h ξ (u) is also decreasing. These assumptions more general as those of §III will can be used for a more complete study of the part of dependence coefficients in limit distributions (in particular, for the laws of large numbers and for the convergence to the Poisson distribution). We shall study these generalizations in full detail later.

Recall also that some CLT have been obtained for triangular array of random variables or if σ(n) 2 ≥ n r , r>2 (cf [START_REF] Tjøstheim | Non linear times series and Martkov chains[END_REF], [START_REF] Liebscher | Central Limit Theorems for sums of α-mixing random variables[END_REF], [START_REF] Utev | On the central limit theorem for -mixing arrays of random variables[END_REF]). Non stationarity is studied in [START_REF] Chaan | A note on the geometric ergodicity of a Markov chain[END_REF].

V-2 : Lemmas

In this paragraph, one proves some inequalities under the previous hypotheses. Moreover, we assume that the following assumption holds.

Hypothesis 5-3 : In this paragraph V-2, we assume that, for all r=1,2,...,h,

P{S r,n ∈ k )} ≤ 4 -k (V-1). ____________
Then the following result holds.

Lemma 5-4 : For all r=1,2,...,h,

P{S' r,n ∈ k )} ≤ 4 -k + ε k,h S (n) (V-2).

____________

One proves the following inequalities by using the same way as Volkonskii and Rosanov ( [START_REF] Volkonskii V | Some limit theorems for random functions I Theory of Probability and its applications[END_REF] : condition I'. cf also [START_REF] Blacher R | New form for Central Limit Theorem II[END_REF]). 

|E{ζ(S r,n )} -E{ζ(S' r,n )}| ≤ 2Dε k,h S (n)) (V-3) , |E E{ζ(S r,n )η(S' r,n )} -E E{ζ(S r,n )}E {η(S' r,n )}| ≤ 4D 2 ε k,h I (n) (V-4) .

____________

Lemma 5-6 : Let t∈R and k and h∈N . Then, for all r=1,2,...,h, |E{e itS r,n } -E{e itS' r,n } | ≤ 6ε k,h S (n) + 4 .4 -k + 4|t|4 -k (V-5) , |E{e itS r,n +itS' r,n } -E{e itS r,n }E{e itS' r,n } | ≤ 16ε k,h I (n)+ 8ε k,h S (n) + 16 .4 -k + 16|t|4 -k (V-6). 

} -E{cos(tS' r,n )} | ≤ |E S r,n ∈ k {cos(tS r,n )} -E S' r,n ∈ k {cos(tS' r,n )} | + 2.4 -k + ε k,h S (n) ≤ |E S r,n ∈ k {C k;t (S r,n )} -E S' r,n ∈ k {C k;t (S' r,n )} |+ 2.4 -k + 2.4 -k |t| + ε k,h S (n) ≤ 2.4 -k + 2.4 -k |t| + 3ε k,h S (n) .
One uses the same way with E{sin(tS r,n )}, E{cos(tS r,n )sin(tS r,n )}, etc (cf [START_REF] Blacher R | New form for Central Limit Theorem II[END_REF]).

_____________

Lemma 5-7 : Let t∈R and k and h∈N . Then, for all r=1,2,...,h,

|E{e itψ r-1 (N).S r-1,n /ψ r (N) } -E{e itS r,n } 2 | ≤ (2+|t|)ε h ξ (n) + 16ε k,h I (n) + 14ε k,h S (n) + 20.4 -k + 20|t|4 -k (V-7) .
______________

Proof : We know that |e ib -e ia | for all (a,b)∈R 2 . Then, |E{e itψ r-1 (N).S r-1,n /ψ r (N) } -E{e itS r,n +itS' r,n } | ≤ E{|e itS r,n +itS' r,n | |e itξ r,n -1| } ≤ E{ |e itξ r,n -e 0 | } ≤ E |ξ r,n |>εh ξ (n) {2} + E |ξ r,n |≤εh ξ (n) { |t.ξ r,n -0| }≤ (2+|t|)ε h ξ (n) .
Then, it is enough to use this inequality and (V-5) and (V-6) about |E{e itψ r-1 (N).S r-1,n /ψ r (N) } -E{e itS r,n +itS' r,n } | |E{e itS r,n +itS' r,n } -E{e itS r,n } E{ 

| E{e itS r-1,n } -(E{e itS r,n / 2 t } ) 2 | ≤ b k |t|ε τ,h ψ (n) + (2+2 -τ |t|)ε h ξ (n) + 16ε k,h I (n) + 14ε k,h S (n) +4 -k (22 + 20|t|2 -τ ) (V-8) . ______________ Proof : By (V-1), one can write | E{e itS r-1,n } -E{e it2 -τ ψ r-1 (N).S r-1,n /ψ r (N) } -| ≤ E |S r-1,n |≤b k { | e itS r-1,n } -e it2 -τ ψ r-1 (N).S r-1,n /ψ r (N) | } + 2.4 -k ≤ E |S r-1,n |≤b k { |tS r-1,n -t.2 -τ ψ r-1 (N).S r-1,n /ψ r (N)| } + 2.4 -k ≤ t.b k ε τ,h ψ (n) + 2.4 -k .
The result follows from (V-7). __________________ Lemma 5-9 : For all r∈R , we set δ r = 2 -rτ . For all r∈R and all k and h∈N ,

| E{exp(itS 0,n )} -E{exp(δ h itS h,n )} 2 h | ≤ 2 h (b k+h |t|ε τ,h ψ (n) + (2+|t|)ε h ξ (n) + 16ε k+h,h I (n) + 14ε k+h,h S (n) )+4 -k (44 + 40|t|) (V-9) . ___________________ Proof : Let k'≤k. Clearly, k k' . Then, ε k,h S (n) ≤ ε k',h S (n) and ε k,h I (n) ≤ ε k',h I (n).
Therefore, by using (V-8),

| E{exp(itS 0,n )} -E{exp(δ h itS h,n )} 2 h | ≤ | ∑ r=0 h-1 [E{exp(δ r itS r,n )} 2 r -E{exp(δ r+1 itS r+1,n )} 2 r+1 ] | ≤ ∑ r=0 h-1 2 r |E{exp(δ r itS r,n )} -E{exp(δ r+1 itS r+1,n )} 2 r | ≤ ∑ r=0 h-1 2 r b k+r 2 -rτ |t|ε τ,h ψ (n) + ∑ r=0 h-1 2 r (2+2 -(r+1)τ |t|)ε h ξ (n) + 16 ∑ r=0 h-1 2 r ε k+r,h I (n) + 14 ∑ r=0 h-1 2 r ε k+r,h S (n) + 22 ∑ r=0 h-1 2 -2k-r + 20 ∑ r=0 h-1 2 -2k-r 2 -(r+1)τ |t| ≤ |t| ∑ r=0 h-1 2 r b k+h ε τ,h ψ (n) + (2+|t|) ∑ r=0 h-1 2 r ε h ξ (n) + 16 ∑ r=0 h-1 2 r ε k+h,h I (n) + 14 ∑ r=0 h-1 2 r ε k+h,h S (n) + 4 -k (44+40|t|) .

__________________

Lemma 5-10 : Let h n ∈N * be a non-decreasing sequence. Then, for all t∈R ,

| E{exp(itS 0,n )} -E{exp(δ h n itS h n ,n )} 2 h n | ≤ 2 h n (b 2h n |t|ε τ,h n ψ (n) + (2+|t|)ε h n ξ (n) + 16ε 2h n ,h n I (n) + 14ε 2h n ,h n S (n) ) +4 -h n (44 + 40|t|) (V-10) .
__________________

V-3 : Some propositions

By using the previous lemmas, we obtain the following results.

Proposition 5-11: Assume that, for all k∈N * , ε k τ (n) 0 as n ∞ and that, for all k∈N *, all τ>0, all n∈N * , P{S r,n ∉ k )} ≤ 4 -k .

Then, S 0,n converges in distribution to a random variable L if and only if there exists a non decreasing sequence k n ∈R * , k n ∞ as n ∞ , such that the two following assertions hold. We deduce that E{exp(itS 0,n )} E{exp(itL)} as n ∞.

Assume that S 0,n converges to L. It is always possible to choose an increasing sequence {k n } which increases enough slowly in order that (V-11) holds. For a such sequence, by (V-10), Assumptions 5-13 : We assume that, for all n∈N , E{X n,t } = 0 , E{(X n,t ) 2 } <∞ and σ r (n) 2 = Ψ r n,1 +X n,2 +.....+X n,u r (n) ) 2 } <∞. We assume that, for all k∈N , k is the samallest subset of N such that [-2 k ,2 k ] k . We assume also that, for all k and ∈N , ε k,h I (n) 0, ε k,h S (n) 0 and ε h ξ (n) 0 as n ∞.

E{exp(δ k n itS k n ,n )}

______________

Then, one generalizes the theorem 1-3 of [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF]. In this case, τ=1/2. 

: E |S k n ,n |>2 k n /4 {(S k n ,n ) 2 } ≤ ∆' k n .
Therefore, (V-13) holds for all sequences k n ≤ h n .

Moreover, one can choose k n which increase slowly in order that (V-11) holds. On the other hand, the proof of the necessary condition is classical (e.g. cf [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], p 339). _____________ V-4 : Proof of theorem 3-1.

In order to prove theorem 3-1, the following lemma is needed. 

Notations 2 - 2 :

 22 Let σ(u) 2 be the variance of X 1 +X 2 +...+X u . One sets S u = (X 1 +X 2 +...+X u ) /σ(u), ξ u = (X u+1 +X u+2 +.....+X u+t )/σ(u) and S' u = (X u+t+1 +X u+t+2 +.....+X u+t+u )/σ(u). If t(n)=0, we set ξ u = 0. ________________ Then, one can assume E{(S u )

Theorem 2 -Definition 3 - 1 :∞

 231 1 suggests that one can replace the strong mixing condition by the following way. We define condition H S and H I by the following way. There exists two sequences of random variables υ u and υ' u , E{υ u }=E{υ' u }=0, E{(υ u ) 2 }+E{(υ' u ) , such that H S : k∈N , j∈N , P{A k,j } -P{B k,j } 0 as n ∞ , H I : k∈N , (j,j')∈N 2 , P{A k,j B k,j' } -P{A k,j }P{B k,j' } 0 as n ∞ , where A k,j and B k,j are the events A k,j = {σ*(u) -1 (S u +υ u )∈[4 -k j,4 -k (j+1)[} and B k,j = {σ*(u) -1 (S' u +υ' u )∈[4 -k j,4 -k (j+1)[} with σ*(u) 2 = E{(S u +υ u ) 2 }. ____________________ In particular, if υ u = υ' u = 0 , A k,j = {S u ∈ [4 -k j , 4 -k (j+1)[ } and B k,j = {S' u ∈[4 -k j , 4 -k (j+1)[} . Remark also that σ*(u) 2 1. Moreover, if the CLT holds and if H S and H I hold for υ u = υ' u = 0, then, H S and H I hold also for all sequences υ u and υ' u such that E{υ u 2 }+ E{υ' u 2 } 0. Now, generally, it is complicated to prove that H I holds for υ u = υ' u = 0. Then it is simpler to use the above assumptions. For example, if Ψ t = θ t , H I and H S hold if t(n) ∞ with υ u = -r u and υ' u = -r' u .Then the following theorem holds. Theorem 3-1 : We keep the previous notations. Assume that H S and H I hold. Assume that 0,1) if and only if (S n +υ n ) 2 is uniformly integrable .In this case, σ(n)

Corollary 3 - 2 : 3 :

 323 Assume that E{|X n |4 }< ∞ and that E{(ξ u ) 4 } 0 . Assume that H S , H I , H mS (4) and H mI (4) hold. Then , S n d → N(0,1). Moreover, E{(S n ) Assume that the assumptions of theorem 2-1 hold with k=∞. Then, H I and H S hold. ____________________ Proof : By our assumptions, E{(S u +υ u ) k } µ k . By H mS , E{(S' u +υ' u ) k } µ k . ByH mI , for all (a,b)∈R 2 , E{(a(S u +υ u )+b(S' u +υ' u ))

Proposition 4 - 2 :→

 42 Θ 1 )f i (θ 1 ))2 .dP< C <∞ .Then, σ(n)∞ and E{(r n ) 2 } 0 as n ∞ . Moreover, H I and H S hold with υ u = -r u and υ' u = -r' u if t(n) ∞ . ____________ Therefore, under the assumptions of 4-1, {X n } satisfies the CLT if and only if (M n ) 2 is uniformly integrable. Now,we know that (S n +υ n ) 2 is uniformly integrable if E{|S n +υ n | 2+δ } ≤ C <∞ where δ>0 ([11], p 270). Then, one can use the following property. Assume that the assumptions of 4-1 hold. We set G r (Θ 1 ,θ 1 θ 1 ) . Then, there exists K>0 such that E{(M n ) 4 }< K if and only there exists B>0 such that n -2 ∑ Θ 1 )f i (θ 1 )| = ε(s) with ∑ s=1 ∞ ε(s) < C< ∞ . Then, there exists M* >0 such that |G r (Θ r ,θ r ) | ≤M* . Therefore, there exists K>0 such that E{(M n )4 } ≤K.4-3 Example: Assume g i (Θ 1 )f i (θ 1 ) = (1/i) 3 exp{-i(Θ 1 ) 2 }cos(2πiθ 1 ). Then, S n d

Notations 5 - 1 :

 51 Let N(n) be an increasing sequence. Let {X n,t }, n,t ∈N *, 1≤t≤N(n), be a triangular array of random variables defined on (Ω, ,P). For any r∈N *, we denote by Ψ r (n) a real sequence such that Ψ r (n)>0.For all n∈N * and all r ∈N *, such that u r (n)>1, one sets S r,n = Ψ r (n) -1 (X n,1 +X n,2 +...+X n,u r (N) ) , ξ r,n = Ψ r (n) -1 (X n,u r (N)+1 +X n,u r (N)+2 +......+X n,u r (N)+t r (N) ) , S' r,n = Ψ r (n) -1 (X n,u r (N)+t r (N)+1 +X n,u r (N)+t r (N)+2 +......+X n,u r (N)+t r (N)+u r (N) ) , where N= N(n), t r (n) = t(u r-1 (N)) , and u r (N)= u[u[....[u(N)]...]] .

  Let k,j , k∈N , be a sequence of nested partitions of R : R = j∈ k kj where the kj 's are intervals and k N . One assumes that, for all k∈N , and all bounded interval , there exists a finite set k k such that j∈ k k,j . One assumes also that | kj | ≤ e k where e k 0 as k ∞, where | kj | is the length of kj .

  ,1 +...+X n,u(N) )+(X n,u(N)+1 +...+X n,u(N)+t(N) )+(X n,u(N)+t(N)+1 +...+X n,n )] .After, we shall decompose S 1,n in(Ψ 1 (n)/ Ψ 2 (n))S 1,n = S 2,n +S' 2,n +ξ 2,n = Ψ 2 (n) -1 [(X n,1 +......+X n,u(u(N)) )+(X n,u(u(N))+1 +....;+X n,u(u(N))+t(u(N)) ) +(X n,u(u(N)))+t(u())+1 +.....+X n,n )].Moreover we replace partitions [4 -k j,4 -k (j+1)[ by more general partition kj which have the same useful properties. For example, if kj =[4 -k j,4 -k (j+1)[ , | kj | = e k =4 -k 0 as k ∞. Moreover, for all bounded interval there exists P,Q ∈ Z such that [P,Q[ . Then, [P,Q[= [4 -k j,4 -k (j+1)[ where P4 k ≤j<Q4 k .

Assumptions 5 - 2 :

 52 We assume that e k = 4 -k . Let k be an increasing sequence of bounded intervals such that k = j∈ k k,i where k k is a finite set for all k∈N and R = k∈N k . We set b k = sup{|x| | x∈ k } . We denote by k the -algebra generated by { k,j } j∈ k . Let k,h∈N and τ>0. One sets

Lemma 5 - 5 :

 55 Let k and h∈N and D>0. Let ζ = ∑ D and |β j |≤ D. Then, for all r=1,2,....,h, the following inequalities hold :

______________Proof:

  There exists C k;t = ∑ j∈ k α j k,t ¶ k,j , |C k;t |≤1, such that |cos(ts) -C k;t | ≤ 4 -k |t| if s∈ k' . Then, by (V-1), (V-2) and (V-3), |E{cos(tS r,n )

  the ∑ j n 's , j=1,2,....,2 k n , are independent random variables which have the same distribution as S k n ,n . ___________ Proof : Assume that (V-11) and (V-12) hold.By (V-12), E{exp(itL)} -E{exp(δ k n itS k n ,n )} 2 k n 0 as n ∞.By (V-10) and (V-11), E{exp(itS 0,n )} -E{exp(δ k n itS k n ,n )

Corollary 5 - 12 : 2 r

 5122 )} as n ∞. ___________ Now, by (V-9) the following result holds. Assume that all the assumptions of proposition 5-11 hold. Then, for all r∈N , E{exp(2 -rτ itS r,n )} E{exp(itL)} as n ∞. ______________In particular, if E{exp(itL)} = exp(-t 2 /2) and τ=1/2, S r,n d → N(0,1) for all r∈N . Then, we can apply proposition 5-11 for the convergence to the normal distribution. In this cas, we choose the following assumptions.

Corollary 5 - 14 :

 514 Assume that the assumptions of 5-13 hold. Then, S r,n d → N(0,1) for all r∈N , if and only if there exists a non-decreasing sequence k n ∈N * , k n ∞ as n ∞ , such that (V-11) and (V-13) hold for τ=1/2, where (V-13) is the Lindeberg condition : d>0, E |S k n ,n |>d2 k n /2 {(S k n ,n ) 2 } 0 as n ∞ (V-13). ______________ Proof : By the Bienaymé-Tschébyscheff Inequality, P{S r,n ∉ k )} ≤ 4 -k . Moreover, by the theorem of page 103 of [39], (V-12) is equivalent to (V-13) if L N(0,1) and τ=1/2 . Assume that (V-11) and (V-13) hold. By proposition 5-11, S 0,n d → N(0,1). By (V-9), S r,n d → N(0,1) for all r∈N N . Assume that S r,n d → N(0,1) for all r∈N . By (V-7), E{eitσ r-1 (N).S r-1,n /σ r (N) } exp(-t 2 /2) as n ∞ . Therefore, σ r-1 (N)S r-1,n /σ r (N) d → L' N(0,2) . Therefore, for all r∈N *, σ r-1 (N)/σ r (N) 2 as n ∞ (V-14) .

Lemma 5 - 16 : 5 - 17 : 2 . 2 .

 51651722 Assume that the assumptions of 5-13 hold. Moreover, we assume that, for all r∈N , E{(S' r,n )2 } -E{(S r,n ) 2 } = ε 2 r (n) 0 and E{(ξ r,n ) 2 } 0 as n ∞ , and that E |S r,n |>k {(S r,n ) 2 } ≤ ∆ k r 0 as k ∞ (V-16) .Then, (V-14) holds. ______________Proof : One can assume that π k r =∆ 2k r is non-increasing. We know that b k ≤2 k+1 andP{S r,n ∉ k )} ≤ 4 k | ≤ 4 k+1 such that |s 2 -I k 2 (s)| ≤ (2.2 k+1 )4 -k if s∈ k .Then, by (V-3), for r>0,|E S r,n ∉ k {(S r,n ) 2 } -E S' r,n ∉ k {(S' r,n ) 2 }| ≤ | 1 -E S r,n ∈ k {(S r,n ) 2 } -(1 + ε 2 r (n) -E S' r,n ∈ k {(S' r,n ) 2 })| ≤ |E S r,n ∈ k {I k 2 (S r,n )} -E S' r,n ∈ k {I k 2 (S' r,n ) 2 }| + 8.2 -k + |ε 2 r (n)| ≤ 2.4 k+1 ε k,r S (n) + 8.2 -k + |ε 2 r (n)| .Then, for all k∈N , |ES' r,n ∉ k {(S' r,n ) 2 }| ≤ π k r + 2.4 k+1 ε k,r S (n) + 8.2 -k + |ε 2 r n)| .Let N k r such that, for all n ≥ N k r , ε 2 r (n) ≤ 2 -k and ε k,r S (n) ≤ 8 -k . We assume N k r increasing.We define µ k r >0 by (µ k r ) 2 = max{π k r + 17.2 -k , Max n<N k r (E S' r,n ∉ k {(S' r,n ) 2 }) } . Then, the following lemma is needed. Lemma Under the previous assumptions µ k r 0 as k ∞ (V-17) . ______________ Proof : let γ>0. There exists K such that π K r +17.2 -K ≤ γ. Then, there exists K'>0 such that Max n<N K r (E S' r,n ∉ K' {(S' r,n ) 2 }) ≤ γ. Let k ≥ max(K,K') . Then, ,n ∉ k {(S' r,n ) 2 } ≤ (µ k r ) 2 and E S r,n ∉ k {(S r,n ) 2 } ≤ (µ k r ) Moreover, there exists B r >0 such that E{|S' r,n |}≤ B r and E{|S' r,n | 2 } ≤ (B r ) Then, by Schwartz Inequality, |E S r,n ∉ k {S r,n S' r,n }| ≤ B r µ k r , for example. Then, |E{S r,n S' r,n } -E{S r,n }E{S' r,n }| ≤ |E S r,n ∈ k {S r,n S' r,n } -E S r,n ∈ k {S r,n }E{S' r,n }| + |E S r,n ∉ k {S r,n S' r,n }| + B r |E S r,n ∉ k {S r,n }| ≤ |E S r,n ∈ k {S r,n S' r,n } -E S r,n ∈ k {S r,n }E{S' r,n }| + 2 B r µ k r ≤ |E {S r,n ∈ k } {S' r,n ∈ k } {S r,n S' r,n }-E S r,n ∈ k {S r,n }E S' r,n ∈ k {S' r,n }| + 2B r µ k r + 2µ k r . Moreover, there exists I k = ∑ k | ≤ 2 k+1 , such that |s -I k (s)| ≤ 4 -k and |I k (s)| ≤s if s∈ k . Then, |E {S r,n ∈ k } {S' r,n ∈ k } {S r,n S' r,n }-E S r,n ∈ k {S r,n }E S' r,n ∈ k {S' r,n }| ≤ |E {S r,n ∈ k } {S' r,n ∈ k } {I k (S r,n )S' r,n }-E S r,n ∈ k {I k (S r,n )}E S' r,n ∈ k {S' r,n }| + 4 -k |E {S r,n ∈ k } {S' r,n ∈ k } {|S' r,n |}| + 4 -k |E S' r,n ∈ k {S' r,n }| ≤ |E {S r,n ∈ k } {S' r,n ∈ k } {I k (S r,n )S' r,n }-E S r,n ∈ k {I k (S r,n )}E S' r,n ∈ k {S' r,n }| + 2B r 4 -k

  For all t∈R all k and h∈N , and all r=1,2,...,h,

	itS' r,n } |
	and
	|E{e itS r,n } (E{e itS' r,n } -E{e itS r,n } )| .
	_____________
	Lemma 5-8 :

  Then, we can use theorem 5-11 with τ=1/2 . _____________ Now, one can always build a proper sequence k n if the Lindeberg Condition holds.

Corollary 5-15 : Assume that the assumptions of 5-13 hold. Then, S r,n d → N(0,1) for all r∈N , if and only if (V-14) holds and there exists increasing sequence N k such all n≥N k , d>0, E |S r,n |>2 k/4 {(S r,n ) 2 } ≤ ∆' k for all r≤k (V-15) where ∆' k 0 as k ∞ . ______________ Proof : Assume that N k is strictly increasing. We define h n by h n if n<N 2 and h n =s if N s ≤ n <N s+1 . Then, for all m≥ N h n , E |S r,m |>2 h n /4 {(S r,m ) 2 } ≤ ∆' h n for all r≤h n . Let k n be a sequence such that k n ≤ h n and k n ∞ . Because h n+1 = h n or h n+1 = h n +1 , there exists t such that k n = h t . Therefore, for all m≥N h t , E |S r,m |>2 k n /4 {(S r,m ) 2 } = E |S r,m |>2 h t /4 {(S r,m ) 2 } ≤ ∆' h t for any r ≤ h t = k n . Moreover, n≥ N hn t ≥ N h t . Then, one can apply the previous inequality with m=n and r ≤ k n

Assume that E{(S' u )

2 } -E{(S u ) 2 } 0 and E{(ξ u ) 2 } 0 . Then, 1 = 2 2 as n ∞ . Therefore, there exists N 0 such that, for n≥ N 0 , σ(n) 2 /σ(u) 2 ≥ 5/3 and 7/3 ≥ n/u(n) . ∞ where r n = r if M r <n≤M r+1 . We set

If n≤M 1 , we define X n,t by X n,t = X t if t<n and X n,n = X n + V n .

If M 1 <n≤M 2 , we set X n,t = X t if t≠u,u+1,n and X n,u = X u + V u , X n,u+1 = X u+1 +V n -V u -V' u , X n,n = X n +V' u .

If M h <n≤M h+1 , we set X n,t = X t if t≠u r (n),u r (n)+1, for r=0,1,...,h and

for r=1,2,...,h (cf also [START_REF] Blacher R | New form for Central Limit Theorem II[END_REF]).

Then, for n>M r ,

Therefore, σ r (N) 2 = E{(σ r (N)S r,n )

Therefore, S r,n = σ*(u r (n))

-1

(S u r (n) +υ u r (n) ) and S' r,n = σ*(u r (n))

-1

(S' u r (n) +υ' u r (n) ).

Then, ε k,h I (n) 0 and ε k,h S (n) 0 .

By our assumptions, σ*(u r (n)) Then, E{(S r,n )

2 }-E{(S' r,n ) 2 } 0 .

Moreover, by lemma 5-18, σ(u r (n))

2 /σ(u r-1 (n))