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Abstract. The ignoring problem refers to the fact that some actions
may be infinitely postponed by a state space search algorithm that makes
use of partial order reduction (POR). The prevention of this phenomenon
is mandatory if one wants to verify more elaborate properties than the
deadlock freeness, e.g., safety or liveness properties. We present in this
work some solutions to this problem. In order to assess the quality of our
propositions, we included them in our model checker Helena. We report
the result of some experiments which show that our algorithms yield bet-
ter reductions than state of the art algorithms like those implemented in
the Spin tool.
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Model checking [5], or state space analysis, is a formal method to prove that
finite state systems match their specification. Given a model of the system and
a property, usually expressed in a temporal logic such as LTL, it explores all the
possible configurations, i.e., the state space, of the system to check the validity
of the property. Despite its simplicity, its practical application is limited due to
the well-known state explosion problem: the state space can be far too large to
be explored in a reasonable time.

Partial-order reduction (POR) [18,16,11] is an approach to cope with this
problem by tackling one of its main source, the concurrent execution of several
components. It is based on the following observation: due to the interleaving
semantic of concurrent systems, a set of different executions can have exactly
the same effect on the system and be only a permutation of the same sequence.
Thus, an efficient way to reduce the state explosion would be to explore only a
single or some representative executions and ignore all the others permutations
that are equivalent to the chosen ones.

On the basis of this principle, several authors proposed the idea of a selective
search algorithm: at each state visited by the algorithm, a set of transitions is
computed and only the transitions of this set are used to generate the immediate
successors of the state. The execution of the other transitions is postponed and
delegated to a future state. Consequently some states may never be explored. In
the best case, the state space is reduced in an exponential way.

The ignoring problem, first identified in [18], is a pathological situation that
may arise if one does not choose sets carefully: a transition may be infinitely



delayed. This means that the transition selection function can be totally un-
fair with respect to some process of the system. Though the prevention of this
phenomenon is not mandatory if one wants to check if the system deadlocks, it
must be resolved for “higher level” properties, e.g., safety or liveness properties.
The idea is to enforce an additional condition, called proviso, which ensures that
the selection function will never forget a transition. By strengthening the accep-
tance conditions of a set, the proviso may unfortunately cause new states to be
generated. It is thus crucial to have an efficient proviso that introduce the least
number of states.

We propose in this paper two new versions of this proviso which show good
results as our experimentations attested it. The first one, designed for safety
properties, can be seen as an optimization of the Spin model checker [12] proviso
while the second one targets liveness properties.

The paper is structured as follows. Section 1 contains some basic elements on
model checking and partial-order reduction that are needed for the understand-
ing of this paper. The next section introduces different approaches proposed to
deal with the ignoring problem. In section 3 we explain our motivations and
we show why, in our sense, there is still a need for other algorithms. Our con-
tribution is the two new versions of the proviso presented in sections 4 and 5.
We report in section 6 the results of some experiments done with our model
checker Helena [8] which implements our propositions as well as state of the art
algorithms. At last, section 7 summarizes our contribution.

1 Formal background

1.1 State transition graphs

We will develop our ideas in the frame of state transition graphs (STG). An
STG is a directed graph that describes all the possible evolutions of a system.

Definition 1 (State transition graph). A state transition graph (STG), is a
4-tuple (S, s0, A,→) where S is a finite set of states; s0 ∈ S is the initial state
of the system; A is a set of actions; →⊆ S×A×S is the transition relation,
which is such that (s, a, s′) ∈→ ∧(s, a, s′′) ∈→⇒ s′ = s′′.

Let (S, s0, A,→) be an STG. If (s, a, s′) ∈→ then we note s
a
→ s′ and we say that

s′ is a successor of s. An action a ∈ A is enabled for s ∈ S, denoted s
a
→, iff there

exists s′ ∈ S such that s
a
→ s′. We can also note s → s′ if there exists a ∈ A

such that s
a
→ s′. The set of enabled actions at a state s ∈ S, denoted en(s), is

defined by en(s) = {a ∈ A | s
a
→}. A state s is a dead state iff en(s) = ∅. For

any natural number n ∈ N, states si ∈ S and actions ai ∈ A with i ∈ {1 . . . n},

s1
a1→ . . . sn−1

an−1

→ sn is called an execution sequence of length n iff si
ai→ si+1 for

all i ∈ {1..n − 1}. State sn is said to be reachable from s1. A state is reachable
iff it is reachable from s0.



1.2 Partial-order reduction

Partial-order reductions [18,16,11] restrict the part of the state space that needs
to be explored during verification in such a way that all properties of interest
are preserved. The reduction is achieved on-the-fly, i.e., during the state space
exploration to avoid the construction of the full state space. The underlying
principle is to select for each state some enabled actions that will be executed
while the others are postponed and delegated to a future state. This selection
mechanism is formalized through the notion of reduction function.

Definition 2 (Reduction function). Let (S, s0, A,→) be an STG. A reduc-
tion function r is a mapping from S to 2A such that ∀s ∈ S, r(s) ⊆ en(s).

When en(s) = r(s) for some state s the function does not provide any reduction.
We say that s is fully expanded. Otherwise, it is partially expanded. An action a
is ignored in s iff a ∈ en(s) \ r(s).

By applying such a reduction function, one can build a reduced graph.

Definition 3 (Reduced STG). Let (S, s0, A,→) be an STG and r be a reduc-
tion function. The reduced STG (Sr, s0r, Ar,→r) is defined by:

– s0r = s0, Ar = A.

– s ∈ Sr iff there is a finite execution sequence s0
a0→ . . .

an−1

→ sn such that
s = sn and ai ∈ r(si), ∀si ∈ {s0 . . . sn−1}.

– (s, a, s′) ∈→r iff s ∈ Sr, (s, a, s′) ∈→ and a ∈ r(s).

Partial-order reduction for dead states detection It is clear that a selec-
tion function has to respect some rules to preserve properties of interest. This led
to several variations of the reduction according to the kind of property specified.
However, since the general principle of the partial-order reduction theory is to
exploit the commutativity of concurrent actions to limit useless interleavings, all
are based on the key notion of independence of actions. Intuitively, two actions
a and b are independent if they cannot disable each other and if they commute
in any state of the system.

Definition 4 (Independence). An independence relation is a symmetric and
anti-reflexive relation I ∈ A×A satisfying the two following conditions for each
state s ∈ S and for each (a, b) ∈ I.

Enabledness if a, b ∈ en(s) and s
b
→ s′ then a ∈ en(s′).

Commutativity if a, b ∈ en(s) then s
a
→ s′′

b
→ s′ and s

b
→ s′′′

a
→ s′.

Two actions a and b are independent iff (a, b) ∈ I. Otherwise, they are dependent
and (a, b) belongs to the relation (A × A) \ I.

This independence relation is usually computed at compile time, i.e., before
the exploration of the state space, on the basis of a static analysis of the model.
An action that only manipulate local variables, e.g., an assignment to a local
variable will be typically considered as independent from any other action.

We are now able to enumerate the two following conditions which allow us
to compute a persistent set (PS) of transitions for a state s.



C0 r(s) = ∅ iff en(s) = ∅.
C1 an action that is dependent on an action of r(s) cannot be executed without

a transition in r(s) occurring first.

A reduction function that compute persistent sets preserves all the dead states
of the system [11] and can thus be used for the detection of such states. The
only purpose of C0 is to guarantee that the search algorithm with reduction
progresses if the normal one does. The intuition behind condition C1 is that
after the execution of any sequence that only includes transitions outside r(s)
all the transitions of r(s) will still be executable. Thus we can execute them
immediately and delay the execution of the others.

Partial-order reduction for safety properties A search algorithm that
compute persistent sets may infinitely delay the execution of some transitions
and miss states of interest. The following additional constraint, called proviso,
can prevent this phenomenon, called action ignoring problem [18].

C2S For any state s ∈ Sr, a ∈ en(s) there is s′ reachable from s in the reduced
graph such that a ∈ r(s′).

This condition ensures that any enabled action will be executed in a state reach-
able from s. If the reduction function satisfies this condition, it can be showed
that the reduced graph is, what Godefroid called, a trace automaton. Trace au-
tomata have the nice property to preserve the reachability of local states: if a
process can reach a given state in the initial graph, then it will also be able to
reach this state in the reduced graph. Trace automata can therefore be used to
verify a large range of safety properties that include, for example, assertions on
local variables.

Partial-order reduction for liveness properties To preserve liveness prop-
erties we must ensure that any cycle of the graph does not contain an enabled
transition that is never executed (in the states of the cycle). This leads to a
strengthened version of the proviso, denoted C2L.

C2L A cycle is not allowed if it contains a state in which some action a is
enabled, but never included in r(s) for any state s on the cycle.

This condition is usually replaced by the following one, implied by the C1 con-
dition, that can be more easily implemented.

C2L’ Along each cycle of the reduced graph, there is some state s that is fully
expanded.

Coupled with another condition (see [5]) that preserves the interleavings of some
interesting actions (the visible actions), the C2L proviso can be used to compute
ample sets [16]. A selection function that computes such sets builds a reduced
graph that is equivalent to the initial one with respect to LTL-X formulae.



2 Related works

The safety and liveness provisos are stated as properties of the reduced STG
whereas we may want to perform the reduction on-the-fly. Therefore they are
usually reformulated as conditions that can be efficiently checked during the
construction of the reduced STG and, hence, are tightly linked to the way the
search algorithm proceeds and the data structures it handles.

For depth first search (DFS), we can use the fact that every cycle contains
a transition that reached the search stack at some point during the search. It
is then sufficient to forbid to partially expanded states to reach the stack. This
gives a first version of the liveness proviso, denoted C2L

s [17]. This proviso is the
one implemented by the Spin model checker [12].

C2L
s If r(s) 6= en(s) then no action in r(s) may reach a state of the stack.

For safety properties a weaker condition can be defined. We may indeed let a
transition reach a state on the stack, provided that another transition leads to
a state outside this stack [11].

For breadth first search (BFS), a similar version has been recently introduced
in [3].

C2L
q If r(s) 6= en(s) then all the actions of r(s) reach a state of the queue.

The intuition behind this condition is that we do not have to worry about ig-
noring some actions of s since we delegate the problem to the successors of s
which all belong to the queue and will be processed later. Once again, the weaker
version of this proviso for safety proviso denoted C2S

q requires that at least one
action leads to a state of the queue.

This idea has been generalized in [4] to general state exploring algorithms,
that is, any explicit algorithm that partitions the state space into three mutually
disjoint sets: the open states that have been met but not expanded yet, the closed
states that have been met and expanded (and can potentialy be reopened),
and the unmet states. This new proviso can, for example, be used in directed
model checking [7]. An open (or unmet) state is safe in the sense that it can be
reached by a partially expanded state without risking to introduce some ignoring
phenomenon: the resolution of this problem is delegated to this state that will
be explored later. On the other hand, closed states are dangerous destinations
since they have already been explored.

In [13], a new technique is proposed which aim is to set up the entire reduction
mechanism at compile time. The method is then independent from the search
algorithm and can be used, for example, in symbolic model checking. Considering
a concurrent system, which is a composition of sequential processes, the authors
exploit the fact that a cycle in the state space results from some cycle(s) in the
sequential processes of the model. The idea is to statically choose an action in
each of these cycles and to mark it as sticky. The proviso can then be reduced
to the following condition: a persistent set that does not include all the enabled
actions may not contain a sticky action.



The two-phase algorithm presented in [14] uses an alternative to the in-stack
check to verify both safety and liveness properties. It alternates phases in which
it fully expand states and phases of expansion of deterministic states, i.e., states
in which singleton persistent sets can be computed. For some models the two-
phase algorithm can achieve significantly better results than a depth first search
that uses the C2L

s proviso.

3 Motivations

Partial order methods can drastically reduce the verification requirements by
eliminating redundant interleavings. In the best case the reduction factor is
exponential. However, in many cases they are not as efficient as one would expect.
This is mainly due to two factors.

First of all, the computation of persistent sets relies on a static analysis of the
model that sometimes produces coarse approximations. Dynamic partial order
reduction, a proposition to cope with this problem, has been recently introduced
by Flanagan and Godefroid [9].

Another source of inefficiencies can come from the resolution of the ignoring
problem. Indeed we can identify models for which the use of the “historical”
proviso based on an in-stack check yields poor results. We will illustrate this
problem with the help of the Petri net depicted on figure 1(a). This net models
a solution to the dining philosophers problem in which a philosopher takes two
forks atomically. Some places have been duplicated for the sake of clarity. They
are drawn as dashed circles. Places i1, i2, i3 and i4 model the idle state of the
4 philosophers while the eating state is modeled by e1, e2, e3 and e4. Place fi

models the state of the fork of philosopher i. To seat at the table (transition ti),
the philosopher i must take his fork fi and the fork of its neighbor, i.e., fj with
j = i mod n + 1. Once is meal finished he goes back to the idle state and puts
back his forks (transition ri).

We have drawn on figure 1(b) the state space of this net built with the
C2L

s proviso. Fully expanded states are double circled1 and states are numbered
according to the order they are visited by the algorithm. It appears that this
combination does not reduce the number of states but can only save the execution
of two transitions. Indeed, the in-stack check often succeeds and this leads to a
full expansion of most states. However, it is clear that an optimal proviso (see
figure 1(c)) would not introduce any state since all the cycles of the state space
reduced with PS contains the initial state which is fully expanded.

With four philosophers this optimal proviso only saves two states but if we
generalize the problem to n philosophers the reduction is much more impressive.
Indeed, the full state space and the state space reduced with proviso C2L

s both
have a size in O(2n) while the state space reduced with an optimal proviso has
n + 1 states.

1 We will adopt this graphical convention throughout the paper.
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Fig. 1. An example that illustrates our motivations.

Our intuition is that the ignoring problem is a phenomenon that seldom oc-
curs in practice. By taking a too defensive approach traditional implementations
of the cycle proviso such as those based an in-stack check can introduce much
more states than necessary. Though our example is not representative as it cor-
responds to the worst case we can think of, it still illustrates the fact that the
C2L

s proviso is not adapted for some classes of models.

The static proviso [13] may overcome this problem if the sticky transitions
are chosen appropriately, e.g., transitions t1, t2, t3 and t4 in our example, but
since it is based on a static analysis of the model its performances may vary
according to the input formalism of the model checker. For example, since there
is no clear notion of process or loop in high-level Petri nets, the language of our
model checker Helena [8], a detection of sticky transitions may produce a coarse
approximation containing many useless transitions.

The two phase algorithm [14] also achieves an optimal reduction on this ex-
ample, but it is based on a principle - always selecting singletons - that can,
for some models, be too much strong. For instance, it does not behave very well
when processes can act indeterministically. Moreover, it prevents the use of some
elaborated techniques that refine the dependency relation, e.g., [2].

Our objective is therefore to devise a proviso that (1) can be an interesting
alternative when others fail to efficiently reduce the state space; (2) is not linked
to a particular formalism and can be implemented by any model checker.



4 A proviso for safety properties

We propose in this section a new version of the safety proviso that is based on a
depth-first search algorithm. This one also performs checks in the stack to avoid
an infinite postponement of actions but it considerably relaxes the conditions
under which a transition is acceptable.

Figure 2 gives the POR algorithm in a pseudo-code form. The principle of
our proviso C2S

e is to associate to each state s of the stack an integer expanded
that records the number of fully expanded states on the stack below s, i.e.,
between s0 and s. The global variable expanded keeps track of this number.

k+1

k

DFS Stack

0

s0

s′

s′′

s

a k

Then, when an action a leads from a state s to a state s′ on the
stack we compare the number of fully expanded states currently
on the stack, i.e., the value of s.expanded, to the number asso-
ciated to s′, i.e., s′.expanded. If the first one is strictly greater
then this obviously means that there is a fully expanded state
s′′ on the stack between s′ and s. Hence, s′′ is reachable from
s and the enabled actions of s will necessarily be executed at a
state on the path from s to s′′. This can be illustrated with the
help of the opposite figure. Enclosed in each state is the value
of its expanded attribute.

Proviso C2S
e is clearly better than C2S

s , in the sense that it will always com-
pute smaller persistent sets (but not necessarily smaller graphs). Indeed it can
be viewed as an optimization of C2S

s : by removing the expanded attribute and
by changing the condition of function C2

S

e we obtain the same proviso. The price
to pay is a slight increase of the memory requirements. Our proviso requires an
additional integer per state (typically 32 bits) for the expanded attribute. How-
ever, some savings can be done by removing the expanded attribute of the states
that leave the stack. Indeed, once popped from the DFS stack this attribute is
not used anymore by the algorithm. In addition, the space required to store this
information is usually small compared to the size of states in a large system.
Lastly, we will see in section 6 that this extra memory consumption should, in
most cases, be largely compensated by the reduction achieved.

To show the correctness of our proviso we prove that the reduction function
has a witness [1]. This notion is defined below.

Definition 5 (Witness function). Let T = (S, s0, A,→) be an STG, r a
reduction function of T and T r = (Sr, s0r, Ar,→r) be the reduction of T with
respect to r. A mapping W : Sr → N is a witness for r iff:

∀s ∈ Sr, r(s) 6= en(s) ⇒ ∃(s, a, s′) ∈→r such that W (s′) < W (s)

The intuition behind this idea of witness function is that for any state s of the
reduced graph that is partially expanded we can find a successor s′ of s with
W (s′) < W (s) and to which we delegate the execution of the actions ignored
at s. By reitering this operation on s′ we obtain a sequence W (s), W (s′), . . . of
decreasing numbers. As the state space is finite, we will necessarily find a state



dfs (s)
1 H ← H ∪ {s}
2 s.expanded← expanded
3 s.inStack ← true
4 let P be a persistent set that
5 satisfies C2S

e (s, P ) or en(s)
6 if there is no such set
7 if P = en(s) then

8 expanded← expanded + 1
9 for a ∈ P do

10 let s
a

→ s′

11 if s′ /∈ H then dfs(s′)
12 if P = en(s) then

13 expanded← expanded− 1
14 s.inStack ← false

C2
S
e (s, P )

1 for a ∈ P do

2 let s
a

→ s′

3 if

4 s′ /∈ H or

5 ¬s′.inStack or

6 s.expanded > s′.expanded
7 then

8 return true
9 return false

search ()
1 H ← ∅
2 expanded← 0
3 dfs(s0)

Fig. 2. A depth first search algorithm that implements our safety proviso

s′′ which is such that W (s′′) ≥ W (s′′′) for any of its successors s′′′. Obviously
in such state, r(s′′) = en(s′′) and all the actions ignored in s that haven’t been
selected on the path from s to s′′ belong to r(s′′). It is therefore sufficient to
prove that the reduced STG has a witness [1].

Lemma 1. Proviso C2S

e implies the safety cycle proviso C2S.

Proof. Let W : Sr → N be a function that enumerates the states of the re-
duced STG (Sr, s0r, Ar,→r) in the order they are removed from the stack : s0

is mapped to |Sr| − 1 while the first state to be popped is mapped to 0. Let FW

be the states of Sr that violate the witness conditions, i.e., defined by
FW = {s ∈ Sr | r(s) 6= en(s) ∧ ∀(s, a, s′) ∈→r, W (s′) ≥ W (s)}

Let us observe the algorithm when it processes a state s ∈ FW . It holds for all
the successors s′ ∈ Sr of s that s′ ∈ H∧s′.inStack. Otherwise s′ leaves the stack
before s and W (s′) < W (s) (⇒ s /∈ FW ). In addition there must be a state s′

such that s
a
→r s′ for some a ∈ r(s) and s′.expanded < s.expanded. Otherwise,

r(s) = en(s) (⇒ s /∈ FW ).
Hence, there is a path s1 →r s2 →r . . . →r sn such that s′ = s1, s1.inStack ∧
· · ·∧sn.inStack and r(sn) = en(sn). We can define a new function W ′ such that
1 − W ′(s1) < W (s) and W ′(s1) < W (s1)
2 − ∀si ∈ {s2, . . . , sn}, W ′(si) < W ′(si−1) and W ′(si) < W (si)
3 − ∀s /∈ {s1, . . . , sn}, W ′(s) = W (s)
Let us compare FW ′ and FW . Point 1 implies that s /∈ FW ′ . In addition, it triv-
ially follows from the three points that FW ′ \FW = ∅, i.e., W ′ does not introduce
a new “violating state”. Thus we have |FW ′ | < |FW |.
By reitering the same operation on W ′ until FW = ∅ we obtain a witness W . ⊓⊔



The different steps of the construction of
the witness function are illustrated with
the help of the opposite figure. States
are numbered according to function W .
At each step, the gray state corresponds
to the state s of the proof that violates
the witness function conditions.
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5 A proviso for liveness properties

The conditions that ensure a sound reduction are stronger when one wants to
analyze liveness properties, e.g., LTL-X formulae. The reduction must indeed
ensure that for any cycle, an action enabled at one of its states will be executed
at some state of the cycle. We have seen that a sufficient way to proceed is to
fully expand a state on each cycle of the graph.

We would like to adapt the idea of the C2S
e proviso, presented in the previous

section, to the verification of liveness property. Unfortunately, a direct adapta-
tion does not guarantee the desired behavior. We illustrate this problem with
the simple graph depicted below.

s1s2 s0

s

Let us assume that the algorithm first processes state s0, then pushes s1 that
is fully expanded and finally reaches s2. Since s1 is on the stack between s0 and
s2 the persistent set which consists of the single action that leads from s2 to s0 is
valid. Now let us suppose that later the algorithm backtracks to s0 and executes
a sequence s0 → . . . → s such that none of the states of this sequence is fully
expanded. According to the C2S

e proviso, the singleton {s → s2} is a valid set.
Hence, we close a cycle that does not contain any fully expanded state and in
which an action may be ignored: s0 → . . . → s → s2 → s0.

In order to prevent such situations we will have to perform some additional
checks possibly leading to less reductions. We will in particular forbid that state
s reaches state s2 without being fully expanded.

The pseudo-code of our algorithm is given in figure 3. In addition to the
expanded attribute of proviso C2S

e the new proviso C2L
c , the color proviso, as-

sociates some extra information to each state. A state will thus be marked as
green, red or orange. This color gives us crucial informations when we want to
determine whether an action is allowed or not (see function C2

L

c).

green states are safe states. These ones may be reached by any other state
without risking of closing an invalid cycle. Intuitively, if a state is green then
either it is fully expanded either all its successors are green.

red states are dangerous states. A state may not reach a red state without being
fully expanded. This could indeed close a “bad” cycle as in our example. Red
states do not belong to the stack anymore.



orange states are potentially dangerous states. An orange state is a state of the
stack that can be reached by a partially expanded state under the condition
of the C2S

e proviso: a fully expanded state appears between the two in the
DFS stack.

Colors are then attributed as follows.
When a new state is generated and pushed onto the stack we mark it as

green if it is fully expanded or orange otherwise. The orange color is attributed
in function push state before the computation of the persistent set P to resolve
the case where P contains a self-loop transition. Orange states are therefore all
the partially expanded states which are in the stack.

An orange state leaving the stack is colored in green if all its successors are
green or red otherwise. Hence, while red and green are final states, i.e., the color
of a green or red state can not change, orange is a transitory color: once the
search terminated, the stack is empty and all states are marked as red or green.

The purpose of lines 13-18 of procedure dfs is to deal with the situation
where the state s is partially expanded and reaches a red state s′ that was not
in H when the persistent set of s was computed. We must then fully expand s,
assign it the green color and restart its expansion. In practice we found out that
this situation is very unusual.

Let us go back to our previous example and see how our algorithm will pro-
ceed on this one. As state s2 is popped from the stack we color it in red since its
only successor, state s0, is orange, i.e., partially expanded and on the stack. We
then backtrack to state s0 and reach later s. Since s2 is a red state the action
leading from s to s2 is not allowed if s is not fully expanded. Consequently, we
will have to select another set or to fully expand s.

In order to prove the correctness of our proviso we proceed in two steps. We
first show that the reduced STG cannot contain a cycle of red states.

Proposition 1. Let T = (S, s0, A,→) be an STG and T r = (Sr, s0r, Ar,→r)
be its reduction obtained using the algorithm of figure 3. Then, there is no cycle
of red states in T r, i.e., ∀s1, . . . , sn ∈ Sr,

s1 →r s2 →r . . . →r sn →r s1 ⇒ ∃i ∈ {1..n} | si.color = green

Proof. Let us suppose that there is a cycle s1 →r s2 →r . . . →r sn →r s1

with si.color = red, ∀i ∈ [1..n] and such that s1 is the first state visited by the
algorithm, i.e., pushed onto the stack.
Necessarily during the search we reached a configuration in which

1. States s1, . . . , si are on top of the stack.
2. s1.color = · · · = si.color = orange.
3. There is a ∈ r(si) such that si

a
→ sj and sj ∈ H .

From now on, we observe this configuration. By assumption, sj .color 6= green,
hence, sj .color ∈ {orange, red}. Let us look at these two possibilities.



dfs (s)
1 H ← H ∪ {s}
2 push state(s)
3 let P be a persistent set that
4 satisfies C2L

c (s, P ) or en(s)
5 if there is no such set
6 if P = en(s) then

7 expanded← expanded + 1
8 s.color ← green
9 search_loop:

10 for a ∈ P do

11 let s
a

→ s′

12 if s′ /∈ H then dfs(s′)
13 elsif s.color = orange
14 and s′.color = red
15 then

16 s.color ← green
17 P ← en(s)
18 goto search_loop

19 if P = en(s) then

20 expanded← expanded− 1
21 pop state(s)

search ()
1 H ← ∅ ;; expanded← 0 ;; dfs(s0)

push state (s)
1 s.inStack ← true
2 s.color ← orange
3 s.expanded← expanded

pop state (s)
1 s.inStack ← false
2 if s.color = orange then

3 if ∀a ∈ r(s), s
a

→ s′,
4 s′.color = green
5 then

6 s.color ← green
7 else

8 s.color ← red

C2
L
c (s, P )

1 for a ∈ P do

2 let s
a

→ s′

3 if

4 s′ ∈ H and

5 (s′.color = red or

6 (s′.color = orange and

7 s′.expanded = s.expanded))
8 then

9 return false
10 return true

Fig. 3. A depth first search algorithm that implements our liveness proviso

sj .color = red (⇒ sj has left the stack)
We again consider two different cases.
sj ∈ H when r(si) is computed

Necessarily, sj .color = red when r(si) is computed. Otherwise, sj is on
top of si in the stack and sj .color = orange when we reach sj from
si. It trivially follows from the condition of the if statement at line 3
of C2

L

c that sj ∈ H ∧ sj .color = red ⇒ r(si) = en(si), and hence
si.color = green after the assignment at line 8 of dfs.

sj /∈ H when r(si) is computed
Then, when sj is reached at line 11 of dfs it holds, by assumption, that
sj ∈ H , sj .color = red and si.color = orange. So, si is colored in green
at line 16.

sj .color = orange (⇒ sj is on the stack)
State sj was pushed on the stack before si. Thus we had sj .color = orange

when r(si) was computed. From function C2
L

c , if sj ∈ H∧sj .color = orange
then sj .expanded < si.expanded. Otherwise, we would have r(si) = en(si)
and si would be colored in green at line 8 of dfs. Since sj .expanded <
si.expanded then there exists sk with j < k < i such that r(sk) = en(sk).
Consequently, sk.color = green from the line 8 of dfs.

So in both cases there is a green state in the cycle. ⊓⊔



Secondly, we prove that if a cycle of the reduced STG contains a green state
then it contains a fully expanded state.

Proposition 2. Let T = (S, s0, A,→) be an STG and T r = (Sr, s0r, Ar,→r) be
its reduction obtained using the algorithm of figure 3. In any cycle s1 →r s2 →r

. . . →r sn →r s1, if there is si such that si.color = green then there is sj such
that r(sj) = en(sj).

Proof. We consider in this proof a cycle s1 →r s2 →r . . . →r sn →r s1 such that
si.color = green for some i ∈ {1..n}.
Let us first suppose that there is a red state in the cycle. If there exists si with
si.color = red then, necessarily, there are sj and sk such that sj .color = green,
sk.color = red and sj →r sk (otherwise, the cycle would only contain red states).
Since it trivially holds that a green state with a red successor is fully expanded
our claim is proved for this first case.
Now let us suppose that ∀i ∈ {1..n}, si.color = green. Necessarily, during the
search a state si reached a state sj on the stack. Since sj .inStack = true then
sj .color ∈ {orange, green}. Let us look at these two possibilities.

sj .color = green - It holds for any green state s of the stack that r(s) = en(s).
sj .color = orange - When si leaves the stack (before sj) it becomes red as it

has a non green successor. This goes against our initial assumption that all
the states of the cycle are green.

So in both cases there is a fully expanded state in the cycle. ⊓⊔

It is then straightforward to prove the correctness of our liveness proviso.

Lemma 2. Proviso C2L

c implies the liveness cycle proviso C2L.

Proof. This lemma is a direct consequence of propositions 1 and 2.

Anticipation of the backtrack phase The red color appears in the graph
when some partially expanded state s reaches an orange state. Indeed, once s is
popped from the stack it becomes red and this color will be propagated to its
predecessors in the stack. This way to proceed is very careful since we assume
that the orange states reached by s will be later colored in red. However, there are
situations in which we can directly color orange states in green by anticipating
the backtrack phase.

We will illustrate the principle of this optimization with the help of figure
4. The letters correspond to the colors of states. Without optimization when
state s is processed it reaches the orange state s’ and thus becomes red when
popped. However, since all the outgoing arcs of s’ have been visited and its only
successor is green, we know that it will become green when leaving the stack.
We can therefore immediately color s’ in green. As a direct consequence, state s
only reaches green states and can be marked as green.
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Fig. 4. Illustration of the optimization

The implementation of this optimization requires one extra boolean variable
per state of the stack which specifies if all the outgoing arcs of the state have
been visited. We also introduce an additional color: purple. States colored in
purple are states of the stack that will be marked as red when popped. The only
purpose of this new color is to ease the implementation of this optimization:
purple states are treated as orange states when checking the proviso.

With the optimized proviso, denoted C2L
c⋆, the algorithm proceeds as follows.

When it assigns the green color to the current state or when it executes an
action that leads to a green state, the stack is scanned from top to bottom until
it meets a green or purple state or an orange state of which some outgoing arcs
have not been visited. The green color is assigned to all the states scanned.

Alternatively, when an action leads to a purple or an orange state, the algo-
rithm scans the stack until it meets a green or purple state and colors all the
states scanned in purple.

We believe that this optimization has a strong potential insofar as the per-
sistency condition C1 often leads to compute singletons, e.g., with a single tran-
sition that only operates on local variables, or to fully expand states. In such
situations our optimization is very useful since it allows to assign the green color
to most of the states of the stack: as soon as a fully expanded state is met, the
green color propagates from top to bottom to all the states of the stack.

If it is clear that our safety proviso outperforms the in-stack check based one,
we cannot draw such a conclusion for the color proviso. Proviso C2L

s and C2L
c are

both based on the notion of dangerous and safe states. With the C2L
s proviso,

dangerous states are all the states of the stack (or more generally, all the closed
states [4]) while, on the contrary, with the color proviso, dangerous states do not
belong to the stack anymore. It is therefore crucial to experiment these provisos
in order to determine which one achieves the best reduction in practice.

6 Experiments

We implemented the algorithms proposed in our model checker Helena [8]. The
tool takes as input a high-level Petri net and can verify reachability properties
or the presence of dead states. In order to assess the quality of our provisos we



also implemented the in-stack and in-queue check based provisos for DFS and
BFS which are part of the Spin model checker.

We considered several families of models. Some are simple “toy” examples.
Others are communication protocols or mutual exclusion algorithms of which
some can be found on the BEEM web portal [15]. We also translated some
concurrent Ada software to high-level nets with the help of the Quasar tool
(http://quasar.cnam.fr). Some of these models can be found in Helena dis-
tribution (http://helena.cnam.fr).

We observed, as it was the case in [3], that BFS based provisos tend to be
less efficient that those based on a DFS. Indeed, on the ten models considered we
only found one model (the slotted ring protocol) for which they achieved a better
reduction. In addition the difference was pretty insignificant. On other models
there were sometimes huge differences. Therefore, we decided not to report the
results obtained with BFS based provisos to focus on a comparison between the
in-stack check based provisos and our algorithms.

The result of the experimentations are reported in table 1. We performed
several searches: without partial order reduction at all (column No POR); with-
out action ignoring resolution (column PS); with a safety cycle proviso (columns
C2S

s and C2S
e ); with a liveness proviso (columns C2L

s , C2L
c and C2L

c⋆). The num-
bers reported in columns No POR and PS must therefore be seen as upper and
lower bounds when comparing the different provisos.

For each run we report the number of states of the reduced graph and the
amount of memory consumed to store the state space. In some cases, we ran out
of memory and could not complete the search. This is indicated by a “oom”.

For safety properties, a comparison of columns PS and C2S
e shows that our

proviso performs an excellent reduction. On eight models it did not introduce
states that were not visited by an algorithm without action ignoring prevention.
For Lamport’s algorithm, it caused the exploration of a few thousands states
which is quite low with respect to the size of the state space of this model. It also
doubled the graph size of the resource allocation system. In this model, a process
may potentially diverge and perform an infinite sequence that does not include
any synchronization. So there actually is some risk of ignoring problem and it is
thus obvious that any proviso will necessarily cause the visit of additional states.
Nevertheless C2S

e behaves much better than C2S
s and on this model.

These results confirm our initial expectations: a DFS seldom closes a cycle
that does not contain any fully expanded state. In any concurrent system, there
are usually some points of synchronization, e.g., an access to a global variable,
the acquisition of a lock. When the processes reach these points it is likely that
the algorithm fully expand the state. It seems to us that a weak point of the
C2S

s proviso is that it does not exploit such information on the past of the search
that the stack can provide us. Our proviso should therefore be nearly optimal in
the sense that it will only disallow the algorithm to close a cycle when this one
does not actually contain a fully expanded state.

http://quasar.cnam.fr
http://helena.cnam.fr


We also observe that C2S
s and C2L

s sometimes brutally increase the graph
size. This confirm our initial intuition that these provisos are not adapted to
some systems. We can find several models for which these provisos cause the
algorithm to visit much more states than really needed. For some examples, e.g.,
the slotted ring protocol, the resource allocation system, a look at column No
POR shows that they even almost cancel the reduction.

Table 1. Comparison of the different provisos implemented in Helena.

No POR PS PS + Safety proviso PS + Liveness proviso

C2S
s C2S

e C2L
s C2L

c C2L
c⋆

Simple models

Load-balancing system (7 clients, 3 servers)

1 574 530 72 093 631 056 72 093 630 997 211 012 72 194
26.4 MB 1.2 MB 10.7 MB 1.5 MB 10.7 MB 4 MB 1.3 MB

A peer-to-peer communication protocol (8 processes)

743 580 163 72 852 163 72 852 884 830 252 315
12.1 MB 0.1 MB 1.2 MB 0.1 MB 1.2 MB 15.6 MB 5.2 MB

Resource allocation system (4 processes)

2 550 759 72 637 1 449 206 151 531 1 783 881 754 878 607 004
49.9 MB 1.5 MB 28.7 MB 3.6 MB 35.2 MB 23.2 MB 15.6 MB

Protocols and mutual exclusion algorithms

Lamport’s mutual exclusion algorithm (4 processes)

1 914 784 1 052 518 1 282 950 1 055 985 1 455 606 1 304 311 1 304 310
41.02 MB 22.5 MB 27.4 MB 26.7 MB 31.3 MB 31.6 MB 31.6 MB

Peterson’s mutual exclusion algorithm (4 processes)

3 407 946 259 942 356 068 259 942 356 698 292 622 260 608
49.3 MB 3.7 MB 5.1 MB 4.7 MB 5.1 MB 4.8 MB 4.3 MB

Production cell (8 plates)

oom
396 931 1 024 422 396 931 1 138 954 495 543 451 355

18.2 MB 46.3 MB 19.1 MB 51.4 MB 24.2 MB 21.9 MB

Slotted ring protocol (7 processes)

439 296 287 508 413 321 287 508 437 579 401 803 304 417
6.1 MB 4 MB 5.8 MB 5.1 MB 6.1 MB 6.5 MB 4.9 MB

Models extracted from programs

The chameneos (4 tasks)

oom
415 361 899 295 415 361 899 295 733 654 494 123
4.7 MB 10.4 MB 6.4 MB 10.4 MB 10.2 MB 6.9 MB

The dining philosophers (6 tasks)

10 888 070 109 222 174 354 109 222 174 354 115 333 110 190
136 MB 1.3 MB 2.1 MB 1.7 MB 2.1 MB 1.7 MB 1.6 MB

A client-server program (4 clients, 2 servers)

oom
87 129 99 430 87 129 99 430 159 202 108 659

1.4 MB 1.6 MB 1.7 MB 1.6 MB 2.8 MB 1.9 MB



By comparing columns PS and C2L
c⋆ we can evaluate our proviso in term

of number of states it introduces. The results are rather convincing. On seven
models out of ten the reductions achieved are very close. For the peer-to-peer
protocol and the resource allocation system, the introduction of this additional
condition involves an important increase of the graph size. As we mentioned it
earlier this fact is not very surprising for the resource allocation system. For the
peer-to-peer protocol we will see that our proviso is not adapted to its graph
structure.

On the whole, C2L
c⋆ seems to achieve better reductions than C2L

s . For some
models the difference is quite impressive. We can cite the load balancing system
or to a lesser extent the production cell. There also are some examples, e.g.,
Lamport’s mutual exclusion algorithm, for which the difference is slighter. We
only found two models out of ten for which C2L

s behaves better: the client-server
program and the peer-to-peer communication protocol. For the first one the dif-
ference is hardly perceptible. A closer look at the graph structure of the peer-to-
peer protocol explains the bad results obtained by C2L

c⋆ with respect to the C2L
s

... ...

C2
L

c⋆ C2
L

s

s

s′

s

s′

s′′ s1 s′′ s1 snsn

proviso. We found out that the sit-
uation depicted by the opposite fig-
ure often occurred. With the C2L

c⋆

proviso, when s is processed it may
be partially expanded since the
fully expanded s′′ is between s and
s′ in the stack. Later, when states
s1, . . . , sn are reached, the algo-
rithm expands them fully since s
has become red. On the other hand, with the C2L

s proviso state s may not reach
s′ without being fully expanded. States s1, . . . , sn can then be partially ex-
panded since they lead to s that has left the stack. This can explain why, on this
example, C2L

c⋆ fully expands much more states than C2L
s .

Let us conclude this section with some observations about memory usage. We
notice that despite the additional memory it requires per state, C2L

c⋆ generally
outperforms C2L

s . There is only one model - Lamport’s algorithm - for which
C2L

c⋆ achieves a better reduction than C2L
s but consumes more memory. Even in

this case, the difference is insignificant. Moreover, as we already pointed it out,
memory usage could be optimized by suppressing the expanded attribute of the
states that leave the stack.

7 Conclusion

The contribution of this paper is the two new versions of the cycle proviso that
resolves the ignoring phenomenon that may arise when applying partial order
reduction. The algorithms introduced are simple, easy to implement and can be
integrated in any explicit state model checker since they do not rely on any spec-
ification language. As a counterpart they assume a DFS exploration of the state



space and require the storage of some additional informations. Nevertheless, we
have seen that this extra memory consumption is usually compensated by the
reduction achieved. A set of experiments revealed that our proviso outperforms
state of the art algorithms, like those implemented by the Spin model checker,
on many models.

We still plan to perform a more thorough experimentation in order to identify
graph structures or classes of models for which our proviso outperforms the
others or, on the contrary, is not adapted.

It should also be instructive to compare it with the two-phase algorithm [14]
that also seems to outperform the standard proviso on many models - mainly
those in which process act in a deterministic way.

At last we have the intuition that the color proviso could be optimized further
by weakening the acceptance conditions of a persistent set. When the execution
of an action a leads from an orange state o to a red state r the basic question
we have to answer is the following one: is there a path leading from r to o or,
otherwise stated, is there a path leading from r to a state of the stack? If not,
then no cycle of partially expanded states may include the transition o

a
→ r, and

a may be executed without risking of closing an invalid cycle. Such a question
can be answered by performing Tarjan’s algorithm to detect strongly connected
components or one of its variations for LTL model checking [6,10]. However, a
comparison of columns PS and C2L

c⋆ of table 1 shows that it is not obvious if
this further reduction will compensate the extra memory consumed by Tarjan’s
algorithm (an additional stack plus at least one integer per state). On several
models proviso C2L

c⋆ introduces a very little number of states and it is likely that
this will not be the case for these.
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