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Bifurcation delay and difference equations

Augustin Fruchard and Reinhard Schäfke

July 10, 2002

Abstract : We prove the existence of complex analytic solutions of difference equations
of the form y(x + ε) = f(x, y(x)), where x, y ∈ CI and ε is a small parameter. We also
show that differences of two solutions are exponentially small. We apply these results to
the problem of delayed bifurcation at a point of period doubling for real discrete dynamical
systems. In contrast to previous publications, the results obtained in this article are global.
Keywords : bifurcation delay, difference equation, dynamical system, discrete ca-
nard.
AMS Classification : 39A, 34E15, 58F14.

1 Introduction

In classical bifurcation theory, the dynamical system contains a fixed parameter, the
phase portraits are studied for parameter values in some interval and the qualitative
differences for values below and above some threshold are described. The theory of
dynamical bifurcations [3] consists in studying the behavior of a one parameter family
of dynamical systems, where the parameter is not fixed but considered as a variable
and changes slowly with time. The behavior of this new system sometimes has a
bifurcation diagram different from the static one obtained for a fixed parameter.

Consider for example a family of vector fields exhibiting a Poincaré-Andronov-
Hopf bifurcation: suppose that the family has a stationary point depending contin-
uously of the parameter, that this stationary point is attractive if the parameter is
below a certain critical value but repulsive if it is above this threshold and that an
attractive invariant cycle exists close to the repulsive fixed point. In certain cases,
the behavior of the system with slowly varying parameter has been shown to exhibit
a bifurcation delay: when the critical value is passed, instead of leaving the now
repulsive curve of stationary points and approaching the attractive cycle, the system
continues to stay in the neighborhood of the curve of stationary points for some
surprisingly long time.

The same phenomenon occurs also for families of discrete dynamical systems.
We consider in the present article a real discrete system defined by the recurrence
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equation
yn+1 = f(x, yn)(1)

where x is a real parameter, as is the variable y, and where f : IR2 → IR is sufficiently
smooth. For simplicity, we assume that f is C3. Consider a bifurcation point C =
(xc, yc), i.e. a fixed point ( yc = f(xc, yc) ) that is non-hyperbolic ( |a| = 1, where
a := ∂f

∂y
(xc, yc) ). Suppose, moreover, that there exists in a neighborhood of C a

curve of fixed points y = g0(x) depending smoothly upon x (for example g0 ∈ C3 at
the point xc, g0(xc) = yc), and that this fixed point is attractive for x below xc and
repulsive for x > xc.

Static bifurcation. In the beginning of section 2, we briefly recall the classical
scenarios of possible bifurcations in the most generic cases. More precisely, we show
that in the non-oscillatory case (a = 1), generically a transcritical bifurcation oc-
curs: a second curve of fixed points intersects the first curve y = g0(x) in the point
C. In the oscillatory case a = −1, generically a period doubling bifurcation ap-
pears: either the repulsive curve of fixed points is accompanied by a double curve
of attractive 2-periodic points or the attractive part is accompanied by a double
curve of repulsive 2-periodic points, depending on the sign of ∂2f2

∂x∂y
(C)∂3f2

∂y3 (C) where

f 2(x, y) := f(x, f(x, y)); the distance of the double curve from g0 is of the order√
x− xc for x close to xc.
Even though these scenarios are well known, we find it useful to state them

precisely and reprove them in appendix A; the main reason for doing so is the com-
pleteness of the present article.

Example. In this article, we are particularly interested in the famous family of
quadratic mappings given by

f(x, y) = xy(1− y) .(2)

Usually, these mappings are considered as mappings of the interval [0, 1] into itself,
thus x has to be in [0, 4]. Here we will consider them as dynamical systems for all
y ∈ IR and x > 0.

A first transcritical bifurcation for the curve of fixed points y = 0 appears at the
critical value xc = 1. The period doubling appears for the curve y = g0(x) = 1 − 1

x

of fixed points at the critical value xc = 3.
In the sequel – and not only for the example – we are only interested in this

period doubling bifurcation. In particular, for the example, g0 always denotes the
function x 7→ 1− 1

x
.

Dynamic bifurcation. The parameter x is replaced by a variable xn that changes
slowly with each iteration. Thus a small parameter ε > 0 is introduced and the
following discrete slow-fast system is considered. xn+1 = xn + ε

yn+1 = f(xn, yn)
(3)

In the sequel, we call orbit a family (xn(ε), yn(ε))n∈IN of solutions of (3) depending
upon ε.
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There are two reasons suggesting this kind of investigation. First, the description
of this type of bifurcation in classical works often contains “dynamic” terms, for
example:

[12] p.87, l.4 “If the fixed point becomes unstable [...]”
[11] p.86, l.27 “[...] the fixed point of Pγ becomes unstable and undergoes a flip
bifurcation in which a stable orbit of period 4π/ω appears [...]”

The second reason has to do with applications to physics, in particular non-linear
optics [10, 14, 13]. Indeed, the very long time necessary for a system in physics to
reach a state of equilibrium requires sometimes to slowly increase the parameter
during an experiment.

It is therefore interesting to understand the asymptotic behavior of some orbit
when the small parameter tends to 0, and in particular to find out whether the
dynamic bifurcation reflects the static bifurcation.

In figure 1, we have chosen ε = 10−3 and as initial point x0 = 1, y0 = 1
2
. The

figures differ only in the numerical precision used to calculate the orbits.

The first observation is that with sufficiently high precision the dynamic bifurca-
tion corresponding to system (3) is completely different from the static bifurcation
of (1). In particular, the orbits follow the curve of repulsive fixed points instead of
switching to the curves of 2-periodic points. This is the so-called bifurcation delay.
The second observation is an exponential sensitivity of this phenomenon explained
by results of previous articles restated in section 2.

The best way to study the dynamical bifurcation of the orbits of (3) is to consider
invariant curves, i.e. the graphs of the solutions of the associated difference equation

ϕ(x+ ε) = f(x, ϕ(x)) .(4)

As is the case for the orbits, what we call here solution of (4) is more precisely a
family of solutions ϕε depending upon the parameter ε. The smoothness of these
invariant curves has no influence on the dynamics of the discrete solutions of (3).
Their closeness to the slow curve, however, is important. This notion of closeness is
defined in section 2.

It is easy to construct invariant curves (which are not necessarily close to the slow
curve): Define ϕε arbitrarily on some interval of length ε, e.g. ϕε = g0 on [x0, x0 + ε[,
and then use (4) to define ϕε on the intervals [x0 + nε, x0 + (n + 1)ε[. In this way,
it is even possible to construct invariant curves of class C∞. On the other hand the
existence of analytic invariant curves is not clear, but also unnecessary for studying
the discrete dynamics. The existence of any invariant curve, even not measurable, is
sufficient, provided it is close to the slow curve (in the sense of the following section)
on some appropriate interval.
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Figure 1: Successively 8, 100, 400 and 1000 digits

Ironically, the invariant curves we will construct are analytic with respect to x.
More precisely, we will show in section 3 the existence and exponential closeness of
analytic solutions of (4) close to g0 on some domain Ω satisfying certain geometrical
conditions.

Our method of proof relies on the fixed point principle. Therefore we need to
construct a linear operator solving equations of the form z(x+ε) = a(x)z(x)+εg(x).
This construction is to a large extent analogous to certain operators in [7]. Two
types of geometrical conditions are required: the domain Ω has to be “c-ascending”
for a certain positive c and “relief-functions” R0 and R1 appear as is the case for
singularly perturbed differential equations. Indeed, to some extent, equation (4)
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can be seen as the discrete analog of the differential equation εy′ = h(x, y), where
h(x, y) = f(x, y)− y.

In the applications, these geometrical conditions are verified by sketching the
level curves (in the complex domain) of the two relief functions; those can be directly
calculated from the equation. For our example, the general framework of section 3
allows us to prove in section 4 the following conjecture of Jean-Louis Callot (1987).

Theorem 1.1 Let x∗ be determined by x∗ > 2 and
∫ x∗

1
ln |2 − x|dx = 0. Put g0 :

]1, x∗[→ IR, x 7→ 1− 1
x
.

For every δ > 0, there exist ε0 > 0 and a real analytic function ϕ :]1 + δ, x∗ −
δ[×]0, ε0[→ IR, (x, ε) 7→ ϕ(x, ε), solution of the difference equation

y(x+ ε, ε) = xy(x, ε)(1− y(x, ε))(5)

such that ϕ tends to g0 as ε tend to 0, uniformly for x on ]1 + δ, x∗ − δ[.

Numerically one finds x∗ ≈ 5.65. Using the preliminary results of the following
section, our theorem implies the follwing consequence for the dynamics of the orbits.

Corollary 1.2 Let (x0, y0) an initial condition where x0 ∈ [1, 3[ and y0 ∈]0, 1[ and
let ((xn, yn))n∈IN∗the sequence defined by{

xn+1 = xn + ε
yn+1 = xnyn(1− yn) .

(6)

If x0 ∈ [1, 2] then the orbit of (6) starting at (x0, y0) follows the slow curve y =
g0(x) = 1 − 1

x
from x = x0 up to x = xs ∈]3,+∞] satisfying xs ≥ l(x0), where the

function l : [1, 3[→]3, x∗] is defined by
∫ l(x)

x
ln |2− ξ|dξ = 0.

If x0 ∈]2, 3[ and if y0 6= g0(x0), then the the exit abscissa x = xs is equal to l(x0).

2 Preliminaries

In subsection 2.1, we give precise statements for the scenario of static bifurcation
presented in the introduction and justify them. This subsection is not essential for
the proofs in the subsequent sections, but might help to better understand static
and dynamic bifurcation.

In subsection 2.2, we present the already published definitions and results con-
cerning the dynamic bifurcation of discrete dynamical systems. We reproduce these
results not only for the sake of completeness, but also because the framework of the
preceding publications had been non-standard analysis, which is not well known. We
have therefore translated them into classical terms. We also include some ideas of
the proofs; we refer to the cited references for complete proofs. One of the results
had not been completely proved; we give a complete proof in appendix B. The idea
of the proof is due to Jean-Louis Callot.

5



2.1 Static bifurcation

Let f : IR2 → IR a mapping of class C3. In this subsection, we are interested in
the bifurcations of the fixed points and 2-periodic points of the family of dynamical
systems (yn)n∈IN satisfying (1) which depend upon the parameter x.

yn+1 = f(x, yn) .

By abuse of language, we call fixed point of f a point (x, y) satisfying y = f(x, y).
We suppose that f admits a bifurcation point C = (xc, yc), i.e. a fixed point such
that |a| = 1, where a := ∂f

∂y
(xc, yc). The following well known proposition explains

the hypotheses we make in the sequel. For a sketch of the proofs see appendix A.

Proposition 2.1 (a) (transcritical bifurcation) Suppose a = 1.
If there exists, in some neighborhood of C, a C1-curve y = g0(x) of fixed points of f
passing through C, then f satisfies

∂f

∂x
(C) = 0 , ∆ :=

(
∂2f

∂x∂y
(C)

)2

− ∂2f

∂x2
(C)

∂2f

∂y2
(C) ≥ 0 .(7)

Conversely, if f verifies (7) and the “generic” conditions ∆ 6= 0 and ∂2f
∂y2 6= 0,

then there exists a neighborhood V of C such that the set of fixed points of f in V
consists of two C2-curves y = g0(x) and y = g̃0(x), passing through C. Moreover, the

derivatives g′0(xc) and g̃′0(xc) are equal to
(

∂2f
∂x∂y

(C)±
√

∆
)/

∂2f
∂y2 (C) .

(b) (period doubling bifurcation) Suppose a = −1.
Then there exists a neighborhood V of C such that the set of fixed points of f in V
consists of one C3-curve y = g0(x), passing through C.

If f also satisfies the condition ∂2f2

∂x∂y
(C) 6= 0 where f 2(x, y) := f(x, f(x, y)),

then there exists a neighborhood W of C such that the set of 2-periodic points of f
consists of some C2-curve x = p(y) passing through C. Moreover, the functions g0

and p satisfy g′0(xc) = 1
2

∂f
∂x

(C) , p′(yc) = 0 and p′′(yc) = −1
3

∂3f2

∂y3 (C)
/

∂2f2

∂x∂y
(C) .

Remark. In the non oscillatory case (a = 1), normally the generic bifurcation is the
saddle-node bifurcation: If f satisfies ∂f

∂x
(C) 6= 0, then the implicit function theorem

applied to the equation

h(x, y) := y − f(x, y) = 0(8)

proves the existence of a C3-curve x = x(y) of fixed points of f in the neighborhood
of C which has a vertical tangent at C (more precisely, the classical saddle-node

bifurcation requires also the condition ∂2f
∂y2 (C) 6= 0). We consider here a non-generic

situation as we suppose the existence of some curve of fixed points that can be
parametrized by x; this explains why the saddle-node bifurcation does not appear.
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2.2 Dynamic bifurcation

Consider now the system (3): xn+1 = xn + ε

yn+1 = f(xn, yn) .

where f is defined and C3 on IR2, with values in IR. This strong global hypothesis
is not crucial, but simplifies the presentation. As indicated in the introduction, we
suppose that f has a period doubling bifurcation at the point C = (xc, yc), i.e. we
have

(H)fy(C) = −1, f 2
xy(C) 6= 0 and f 2

yyy(C) 6= 0 ,

where the subscripts indicate partial derivatives and where f 2 : (x, y) 7→ f(x, f(x, y)).
We also suppose that the curve of fixed points of f given by proposition 2.1,

which will be called slow curve in the sequel, is attractive for x < xc and repulsive
for x > xc. In other words, we suppose that the function

a : x 7→ fy(x, g0(x))

satisfies a(x) > −1 if x < xc and a(x) < −1 if x > xc. To avoid technical difficulties,
we suppose that a′(xc) = fxy(C) > 0. The partial derivatives of f 2 introduced above
can be calculated in terms of f resulting in f 2

xy(C) = −2fxy(C) − fx(C)fyy(C) and

f 2
yyy(C) = −2fyyy(C)− 3 (fyy(C))2.

We say that some orbit (i.e. solution) ((xn(ε), yn(ε)))n∈IN of (3) follows the slow
curve y = g0(x) from the entry point xe to the exit point xs if, for every δ > 0 and
ρ > 0, there exists ε0 such that:

∀n ∈ IN, ∀ε ∈]0, ε0[, (xe + δ ≤ xn(ε) ≤ xs − δ ⇒ |yn(ε)− g0(xn(ε))| < ρ)

and if the interval [xe, xs] is maximal with this property.

The above definition concerns finite entry and exit points; it can easily be adapted
to the cases xe = −∞ or xs = +∞.

Even though this is not necessary, we have distinguished the two numbers δ and
ρ for readability. As for singularly perturbed differential equations, one could say
that the orbit ((xn(ε), yn(ε)))n∈IN has boundary layers near x = xe and x = xs.

If the initial condition (x0, y0) satisfies x0 < xc and if y0 is in the domain of
attraction of the fixed point g0(x0) (for the static system) then, because of the
attractiveness of the slow curve g0(x) for x < xc, we obtain xe = x0 and xs ≥ xc (cf
[4]). Thus, naturally, the orbit follows the slow curve at least on its attractive part.

We say that some orbit ((xn(ε), yn(ε)))n∈IN exhibits a bifurcation delay if xs > xc;
we say that system (3) exhibits a bifurcation delay if every orbit with initial point
(x0, y0), where x0 < xc and y0 is in the domain of attraction of the fixed point g0(x0),
exhibits a bifurcation delay.

In the references [4, 5, 6] these orbits are called “discrete canards”. We avoid
the word “canard” which might indicate a certain volatility. In the present context
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the phenomenon of bifurcation delay is robust in some sense, at least under the
hypothesis of analyticity.

We call invariant curve of (3) the graph of some solution (depending upon ε) of
the associated difference equation (4), i.e.

ϕε(x+ ε) = f(x, ϕε(x)) .

We say that the invariant curve y = ϕε(x) is close to the slow curve y = g0(x) on
some compact interval I if limε→0 ϕε(x) = g0(x) uniformly on I. We say that the
invariant curve is close to the slow curve on some open interval I if it is close on
every compact sub-interval.

To simplify notation, we will not indicate the ε-dependence of an orbit of (3).
Thus the notation ((xn, yn))n∈IN replaces the notation ((xn(ε), yn(ε)))n∈IN used pre-
viously. We will indicate, however, the ε-dependence of the invariant curves.

The following results have already been published. We give a complete proof of
the first one in appendix B and ideas of proof for the other ones.

1. There are orbits exhibiting bifurcation delay [4].

2. If some orbit ((xn, yn))n∈IN exhibits bifurcation delay and if ((xn, ỹn))n∈IN is an
orbit (having the same first coordinates xn) with ỹ0 in the basin of attraction
of g0(x0) then ((xn, ỹn))n∈IN also exhibits bifurcation delay.

Moreover, if n is such that xn is “properly” between xe and xs then the two
points (xn, yn) and (xn, ỹn) are exponentially close: ∀δ > 0 ∃k,M > 0 ∀n ∈
IN ∀ε ∈]0, ε0], (xe + δ ≤ xn ≤ xs − δ ⇒ |yn − ỹn| ≤M exp(−k/ε)).

3. System (3) exhibits bifurcation delay if and only if there exists an invariant
curve close to the slow curve on some open interval containing xc [4].

4. If there exists an invariant curve close to the slow curve on some open interval
containing xc then for fixed (i.e. ε-independent) x0 < xc sufficiently close to
xc and fixed y0 in the basin of attraction of g0(x0), the orbit with initial point
(x0, y0) exhibits bifurcation delay. More precisely, if y0 6= g0(x0) and if the
function a does not vanish in I then the orbit with initial point (x0, y0) follows
the slow curve on the interval ]xe, xs[, where xe = x0 and where xs > xc is

determined by the entry-exit relation
∫ xs

xe

ln |a(x)|dx = 0 [4]. (Remark: The

hypotheses on a made in the beginning of this section imply that xs is unique.
The point x0 has to be chosen close enough to xc to assure that [xe, xs] is
included in I.)
Moreover, for n such that xn is “properly” between xe and xs, the point (xn, yn)
is exponentially close to the invariant curve.

5. Conversely, if y = ϕε(x) is an invariant curve close to the slow curve on some
interval [a, b], a < xc < b and if (x0, y0(ε)) is an initial point (with fixed x0)
exponentially close to the invariant curve (i.e. there exists k > 0 such that
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y0(ε)− ϕε(x0) = O (exp (−k/ε))) then the orbit with initial point (x0, y0) fol-
lows the slow curve at least on the interval [x0, x] for every x ∈]x0, b] satisfying∫ x

x0

ln |a(ξ)|dξ < k .(9)

Similarly, if y = ψε(x) is another invariant curve exponentially close to ϕε on
some interval [x0, x0+ε[⊂ [a, b] (i.e. ∃k > 0 ∀x ∈ [x0, x0+ε[ , |ψε(x)−ϕε(x)| =
O (exp (−k/ε)) ) then the invariant curve y = ψε(x) remains close to the slow
curve on the interval [x0, x] for every x ∈]x0, b] satisfying (9).

6. If the function f is real analytic in a neighborhood of C then (3) exhibits
bifurcation delay [5, 1].

Ideas of the proofs.

1. First the existence of some orbit with points close to the slow curve at some c < xc

and some d > xc is proved. Then it is shown that this orbit remains close to the
slow curve on the interval [c, d]; this is easily shown except near the critical point xc.
For details see appendix B.
2. Using the following change of variables, the exponential closeness of two orbits is
expressed differently: Zn = εln |yn − ỹn|. This yields an equation of the form

Zn+1 = Zn + εln |a(xn)|+ εP (xn, yn, ỹn, ε)

where P is negligible compared to ln |a(xn)| if yn and ỹn are close to g0(xn). It follows

that Zn−Z0 is close to
∫ xn

x0

ln |a(x)|dx. This also shows the exponential closeness of

yn and ỹn.

The proofs of 3.,4. and 5. are analogous using Zn = εln |yn − ϕε(xn)| (where
y = ϕε(x) parametrises the slow curve). Without giving any details, we mention

that if the function a vanishes between xe and xs, the approximation
∫ xn

x0

ln |a(x)|dx
of Zn is not always valid and the entry-exit relation might be different. Note that
these results remain valid for complex y.

6. Two different methods have been used independently. Both rely on the construc-
tion of some quasi-invariant curve, i.e. satisfying equation (4) except for exponentially
small error terms. The first method [5] is an adaptation of a technique due to A.I.
Neishtadt and consists in a sequence of changes of variable. The second method, due
to Claude Baesens [1, 2], is a Gevrey analysis of the formal solution. Both results are
local. The only previous global results concerned analytical systems that are linear
non homogeneous with respect to y [6].

3 Analytic Solutions of difference equations

Below, we need the logarithm in the complex domain. For simplicity, we consider
a simply connected domain ∆ of CI ∗ and the function Log is only defined on ∆. In
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section 4, ∆ will be chosen as CI \ IR− and CI \ −iIR+.
For a subset A of CI , we denote by Cl(A) its closure; the notation A is used for the
image of A by the complex conjugation.
For simplicity, we only consider simply connected domains in the sequel without
mentioning this explicitly each time.
A path γ : [0, 1] → CI is called c-ascending, c > 0, if, denoting xi = γ(τi),

∀τ1, τ2 ∈ [0, 1] (τ1 < τ2 ⇒ Im (x2 − x1) ≥ c|x2 − x1|) .

A domain B is called c-ascending if there exist points x+, x− in Cl(B), called peeks
of B, where Im (x) is maximal (resp. minimal) and if the boundary of B consists of
two c-ascending path from x− to x+.
To simplify formulas, we sometimes omit to indicate the ε-dependence.

We consider the following difference equation in the complex domain

yε(x+ ε) = f(x, yε(x))(10)

where:

• the variable x varies in a horizontally convex domain D ⊂ CI , i.e. a domain
satisfying (x1, x2 ∈ D and Im x1 = Imx2) ⇒ [x1, x2] ⊂ D,

• the function f : D × CI → CI is holomorphic,

• the letter ε denotes as usual a small positive parameter.

We suppose there exists an analytic function g0 : D → CI verifying

f(x, g0(x)) = g0(x)(11)

for all x ∈ D. We define a(x) = ∂f
∂y

(x, g0(x)), and we suppose that, for x ∈ D,

the values a(x) are contained in the domain ∆ introduced in the beginning of this
section.

With some c ∈]0, 1/2], consider a c-ascending bounded domain Ω whose closure
is contained in D such that a does not have the values 0 or 1 on Cl(Ω). Choose
another bounded sub-domain U of D such that Cl(Ω) ⊂ U ⊂ Cl(U) ⊂ D. We
can suppose that U is c-ascending (otherwise reduce the value of c and take an
appropriate subdomain) and that a does not have the values 0 or 1 on Cl(U).

We denote by x− and x+ the peeks of Ω, i.e. the points of Cl(Ω) such that
∀x ∈ Ω, Im x− < Im x < Im x+.

Finally we denote by R0 and R1 the relief functions, defined on D by

R0 : x 7→ Re
(∫ x

x0

Log a(ξ)dξ
)

(12)

R1 : x 7→ R0(x)− Re (2πi(x− x0)) = R0(x) + 2πIm (x− x0)

where x0 is some arbitrary point of Ω.
These relief functions were already introduced in [6]. Near the end of the present

article, other possible choices can be found using more than two relief functions. This
modification permits the treat similar problems where two reliefs are not enough, but
this is beyond the scope of this article.
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Theorem 3.1 Suppose that for every x ∈ Ω there exist two c-ascending paths γ−x
from x− to x and γ+

x from x to x+ such that R0 is decreasing on γ−x and R1 is
increasing on γ+

x .

Then there exists ε0 > 0 such that for all ε ∈]0, ε0] there exists an analytic solution
yε : Ω → CI of (10) tending to g0 as ε→ 0 uniformly on Ω.

The second general result presented here concerns the exponential closeness of
solutions of (10). Here, we only present this result in a situation symmetric with
respect to the real axis; this is sufficient in our example. To simplify the statement,
we suppose that the solutions of (10) are defined on some neighborhood of Cl(Ω)
and not only on Ω (this, on the other hand, would have allowed to combine both
theorems).

Theorem 3.2 Suppose that the hypotheses of theorem 3.1 are satisfied and that the
functions f and g0 have real values on the real axis. Suppose that y1 and y2 are two
solutions of (10) defined in U , such that yj(x, ε) = g0(x) + O(ε) uniformly on U ,
j = 1, 2.

Then we have y1(x)− y2(x) = O (exp (−r/ε)) uniformly on Ω, where

r := min(R0(x
−)−R0(x), R1(x

+)−R1(x)) .

The rest of this section is devoted to the proof of the theorems. First we present two
preliminary results.

Given two functions ϕ, ψ : X×]0, ε0] ⊂ CI → CI ∗, we say that ϕ is of the exact
order of ψ on X if the two quotients ϕ/ψ and ψ/ϕ are bounded on X×]0, ε0].

Lemme 3.3 For any analytic function Aε : U → CI satisfying Aε(x) = a(x) +O(ε)
uniformly on U , there is a function hε analytic in some neighborhood V of Cl(Ω) of
the exact order exp (R0(x)/ε) on V solution of the homogeneous equation

hε(x+ ε) = Aε(x)hε(x).(13)

Proof. Since the closure of U is compact and contained in D, the closure of its
a-image is a compact subset of ∆ and hence for sufficiently small ε the function
Aε has values in ∆ and |a| is bounded below by some positive constant. Thus the
two functions LogAε and Log a are single valued and analytic on U ; moreover they
satisfy LogAε = Log a+O(ε) uniformly on U .
We choose a neighborhood V of Cl(Ω) such that its closure is a compact subset of
U and which is horizontally convex. Theorem 11 page 82 of [7] yields the existence
of a “sum” Lε of LogAε on V , i.e. an analytic solution Lε : V → CI of the equation

Lε(x+ ε)− Lε(x) = εLogAε(x)(14)

that is uniformly bounded on V with respect to ε. Moreover, by choosing Lε such
that Lε(x0) = 0, the following estimate follows (theorem 3 of [7]):

Lε(x) =
∫ x

x0

Log a(ξ)dξ +O(ε) .(15)
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uniformly on every compact subset of V .
For the sake of completeness, we indicate briefly how to construct such a “sum”.

Choose X+ and X− in Cl(U) and c ∈]0, 1/2] such that there exists a c-ascending
domain with peeks X− and X+ containing x − ε/2 for every x ∈ V . Denoting the
function LogAε by ϕ, put

L̃ε(x) :=
∫ X+

X−

ϕ(ξ)dξ

ex(ξ)− 1

where the path of integration is ascending (i.e. the imaginary part is increasing along
it) and intersects the segment ]x− ε, x[ and where ex is the function given by

ex(ξ) = exp
(

2πi

ε
(ξ − x)

)
.

The function L̃ε satisfies (14) because of the residue theorem. To prove the estimate
(15), choose a γ-ascending path for some small γ > 0 passing through x− ε/2 for ε
sufficiently small and write L̃ε in the form

L̃ε(x) =
∫ x−ε/2

X+
ϕ(ξ)dξ +

∫ x−ε/2

X−

ϕ(ξ)dξ

ex(ξ)− 1
−
∫ X+

x−ε/2

ϕ(ξ)dξ

ex(ξ)−1 − 1
.

This leads to the following estimate for x in V ( cf [9], lemma 3.3)∣∣∣∣∣ L̃ε(x)−
∫ x−ε/2

X+
ϕ(ξ)dξ

∣∣∣∣∣ ≤ ε

πγ2
sup
x∈U

|ϕ(x)| .

For x = x0, one hence has
∣∣∣∣L̃ε(x0)−

∫ x0

X+
ϕ
∣∣∣∣ = O(ε). Now put Lε(x) = L̃ε(x)−L̃ε(x0).

Equation (14) remains valid for Lε and the estimate (15) follows immediately. There-
fore ReLε(x) = R0(x) +O(ε) uniformly on V . Finally we choose hε = exp (Lε/ε).

Consider now the compact set

Ωε = {x+ εt ; x ∈ Cl(Ω), t ∈ [−1/2, 1/2]} = Cl(Ω) + [−ε/2, ε/2] .

For ε0 > 0 sufficiently small and for ε ∈]0, ε0[, Ωε is contained in the neighborhood
V of the preceding lemma.
Consider some analytic function Aε on U with Aε = a + O(ε) uniformly on U and
let hε be a function given by the preceding lemma.
Denote by E = Hb(Ωε) the Banach space of functions holomorphic and bounded on
Ωε, equipped with the maximum norm and construct a linear operator Tε : E → E
in the following way. For g ∈ E, define Tεg by

Tεg(x) = 4
∫ 1

8

− 1
8

I(g, t, x, ε) dt(16)

with

I(g, t, x, ε) =
∫ x++εt

x−+εt

hε(x)

(ex(ξ)− 1)hε(ξ)

g(ξ)

Aε(ξ)
dξ
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where again the path of integration is ascending and intersects ]x − ε, x[. This
operator is constructed using the right inverse Vε of ∆ε introduced in [8] and using
variation of constants for (17) (see below).

Lemme 3.4 For g ∈ E, the function z = Tεg is a solution of the difference equation

z(x+ ε) = Aε(x)z(x) + εg(x) (x, x+ ε ∈ Ωε) ,(17)

i.e. Tε is a right inverse of the operator Uε, Uεz(x) = 1
ε
(z(x+ ε)− Aε(x)z(x)) defined

on a subset of E.
Moreover, Tε : E → E is bounded uniformly with respect to ε.

Proof. The first statement is again an application of the residue theorem: Using
hε(x+ ε) = Aε(x)h(x), one finds for each t ∈ [−1/8, 1/8]:

I(g, t, x+ε, ε)−Aε(x)I(g, t, x, ε) = 2πi Res

(
hε(x+ ε)g(ξ)

(ex(ξ)− 1)hε(ξ + ε)
; ξ = x

)
= εg(x) .

The important second statement of the lemma requires a rather technical proof
involving appropriate integration paths, in the definition of Tεg in (16), such that the

quantity
hε(x)

(ex(ξ)− 1)hε(ξ)
can be estimated on them. These integration paths are

chosen close to the paths γ+
x and γ−x in the hypothesis of the theorem but modified

such that they are not too close to the poles x− kε, k ∈ ZZ , of this quantity.
This is possible except if x is close to the upper or lower boundary of Ωε; if x is

close to x− + εt or x+ + εt the pole at ξ = x yields a logarithmic singularity for the
integral from x−+εt to x+ +εt. Precisely, it is proved in appendix C that (uniformly
with respect to all t, x, ε under consideration)

• I(g, t, x, ε) = O(‖g‖) if |x− x− + εt| ≥ ε and |x− x+ + εt| ≥ ε,

• I(g, t, x, ε) = O
(
‖g‖ ln

(
ε

|x−x−+εt|

))
+O(‖g‖) if |x− x− + εt| < ε

• and similarly I(g, t, x, ε) = O
(
‖g‖ ln

(
ε

|x−x++εt|

))
+O(‖g‖) if |x−x+ +εt| < ε.

Next, the logarithmic singularity is overcome by “averaging” with respect to t.

Remark. Since Aε is close to a which does not have the value 1, any bounded
solution of (17) seems to be of order at most ε. This is true, except possibly on
the boundary of Ωε, and Tε has no reason to have a norm of order ε. However,
if the assumptions of theorem 3.1 are strengthened by requiring that γ±x are C1,
(R0 ◦ γ−x )′ ≤ −δ and (R1 ◦ γ+

x )′ ≥ δ, for some δ > 0, then a modification of the above
proof following the lines of [8], proof of lemma 3, would provide a norm of order ε
for Tε. We chose the weak assumptions in view of our application to theorem 1.1

Proof of theorem 3.1 It is known that (10) has a formal series solution ŷε =∑
n≥0 ε

ngn where g0 was defined at the beginning of this section, see (11). For the

following two coefficients, one finds g1 =
−g′0
1−a

and g2 = 1
1−a

(
1
2
bg2

1 − 1
2
g′′0 − g′1

)
, with

b(x) = ∂2f
∂y2 (x, g0(x)).
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Put y2ε := g0 + εg1 + ε2g2. One has f(x, y2ε(x)) − y2ε(x + ε) = ε3cε(x) with cε
analytic in U , uniformly bounded with respect to ε.

Put Aε(x) := ∂f
∂y

(x, y2ε(x)). One has Aε = a + O(ε) uniformly on U . Taylor’s

formula yields f(x, y2ε(x) + u) = f(x, y2ε(x)) + Aεu + u2gε(x, u) with gε analytic in
a neighborhood of Ωε × {0}, uniformly bounded with respect to ε. The substitution

yε = y2ε + εzε

gives the equation

zε(x+ ε) = Aε(x)zε(x) + ε2cε(x) + εzε(x)
2gε(x, εzε(x)) .(18)

In order to find a solution of (18), we consider a fixed point equation in the Banach
space E = Hb(Ωε) using the operator Tε of lemma 3.4:

zε = Fε(zε) with Fε(zε) = Tε(εcε + z2
εGε(zε))(19)

where Gε(zε)(x) := gε(x, zε(x)). Obviously, a solution of (19) satisfies (18). Because
of lemma 3.4, for sufficiently small ε, the operator Fε is a contraction in some (small)
neighborhood of 0 in E. Thus it has a (unique) fixed point zε in this neighborhood.
This completes the proof of theorem 3.1

Proof of theorem 3.2 Put yε = y1 − y2. The function yε is a solution of the
homogeneous equation

yε(x+ ε) = Aε(x)yε(x)(20)

where Aε(x) = A(x, y1(x), y2(x)) is given by f(x, y1)−f(x, y2) = A(x, y1, y2)(y1−y2).
By the hypotheses on y1 and y2, the function Aε satisfies Aε(x) = a(x) + O(ε)
uniformly on U . Applying lemma 3.3 (to the function −a instead of a), one obtains
that there exists a function hε, analytic in Ω, solution of the homogeneous equation

hε(x+ ε) = −Aε(x)hε(x)(21)

of order exp
(

1
ε
(R(x)−R(x−))

)
, where R denotes the function

R(x) =
1

2
(R0(x) +R1(x)) = R0(x) + π Im (x− x0) .

Thus zε = yε/hε is analytic on a neighborhood of Ω and satisfies

zε(x+ ε) = −zε(x) .

Hence zε is periodic with period 2ε. Moreover, zε(x) is bounded for x = x+ +O(ε)
and for x = x− +O(ε). Thus (cf formula (3.12) of [9] and the proof following it) we
can conclude that for all x in Ω:

zε(x)− zε(x̃) = O
(
exp

(
−π
ε
(Imx+ − |Im x|)

))
,

where x̃ is some point of Ω ∩ IR. Applying this estimate to x = x̃ + ε and us-
ing zε(x̃ + ε) = −zε(x̃) we obtain zε(x̃) = O (exp (−π Im x+/ε)). Thus yε(x) =

O
(
exp

(
1

ε
(R(x)−R(x−))− π

ε
(Imx+ − |Im x|)

))
.

The remark R(x−)−R(x) + π(Imx+ − |Im x|) = min(R0(x
−)−R0(x), R1(x

+)−
R1(x)) = r completes the proof.
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4 Proof of theorem 1.1

The idea is to construct (using theorem 3.1) two solutions of (5) close to 1 − 1
x

on
two domains not containing the point 2, then to show using theorem 3.2 that these
solutions are exponentially close and finally to deduce the existence of a solution of
(10) close to 1− 1

x
on some domain containing the line segment ]1 + δ, x∗ − δ[ of the

theorem. Observe that theorem 3.1 only allows to prove the existence of invariant
curves of (4) close to the slow curve on intervals not containing 2 and that theorem
3.2 yields the additional necessary ingredients.

In the sequel, the independent variable will be denoted by z and its real and
imaginary part will be denoted by x and y.

For the construction of the first solution, we choose as domain D1 the complex
plane cut along the ray [2,+∞[; this allows to choose ∆ = CI \ IR− as domain of the
logarithm (here we have a(z) = 2− z).

The point z0 (replacing x0) is chosen real, e.g. z0 = 3
2
. For convenience, we add

a constant to the function R0 given by (12) such that it vanishes at the point 1.

Thus the relief function R0 is given by:

R0(z) = Re
(∫ z

1
Log (2− ζ)dζ

)
= Re ((z − 2)Log (2− z)− z + 1) .

As this relief is symmetric with respect to the real axis, we only describe it in the
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Figure 2: Perspective view of R0.

lower half plane. The relief has a saddle point at z = 1.
For k ∈ IR, k ≥ −2, denote by Sk the level curve k in the quadrant Q = {z =

x + iy ∈ CI ; x ≥ 1 and y ≤ 0}. Thus S0 is the separatrix of the saddle point
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Figure 3: Level curves of R0.

connecting the points 1 and x∗ (in the lower half plane). We denote by B the disk
with center 2 and radius 1 and by C its boundary.

On a vertical ray parametrized by z(t) = x+ it, t ≤ 0 (where x ≥ 1 is fixed) one
has

d

dt
R0(z(t)) = −Im (ln |2− z(t)|+ i arg(2− z(t))) = − arg(2− z(t)) ≤ 0 ,

hence R0(z) decreases whenever the imaginary part y increases while the real part x
remains constant.

On a horizontal line z(t) = iy + t, we find d
dt
R0(z(t)) = ln |2− z(t)|, hence R0(z)

decreases as x increases if and only if z is in B.
As a consequence, in Q every level curve Sk is the graph y = fk(x) of some

function fk that is decreasing when the point x+ ifk(x) is in the interior of the disk
B and increasing otherwise.

We denote by Z0 = x0 + iy0 the intersection of S0 and C other than 1. Let
ak ∈ [1, 3] and bk ∈ [3,+∞[ such that R0(ak) = R0(bk) = k if k ∈] − 2, 0], and
ak = 1, R0(bk) = k otherwise. Finally let x′k ∈]1, 2[ and xk ∈ [2, 3] be the intersection
points of Sk and C (x′k only exists for 0 < k < R0(2 − i) = π

2
− 1, xk only for

−2 ≤ k < π
2
− 1), determined by |x′k − 2 + ifk(x

′
k)| = |xk − 2 + ifk(xk)| = 1. Then

we can give the following description of the relief:

• If −2 ≤ k ≤ 0 then the function fk is strictly decreasing on the interval [ak, xk]
and strictly increasing on [xk, bk].

• If 0 < k < R0(2− i) = π
2
−1 then the function fk is strictly increasing on [1, x′k]

and [xk, bk] but strictly decreasing on [x′k, xk].

• If k ≥ π
2
− 1 then the function fk is strictly inceasing on [1, bk].

We first construct a solution on some domain Ω1 satisfying the conditions of theorem
3.1 that is close to the symmetric domain whose portion below the real axis is enclosed
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1 2 3

Figure 4: The domain Ω1 for δ = 1
20

.

Z0

Z0

z+
1

z−1

C

S0

S0

S−1

S−α

S−1+α

by the two level curves S0 and S−1 (i.e. containing the points 1 and 2) and the portion
of C connecting them.

On the one hand, 1 and 2 should not be boundary points of Ω1. Thus we fix
α > 0 arbitrarily small and we choose as boundary curves of Ω1 the level curves S−α

and S−1+α. On the other hand, it must be possible to choose a path γ−z descending
the relief R0 and c-ascending for a certain c > 0; hence the level curves may not have
horizontal tangents. Therefore we complete the lower boundary of Ω1 by a circular
arc with center 2 and radius 1− α connecting S−α — at its “lowest” point denoted
z−1 — and S−1+α. Ω1 is completed by symmetry in the upper half plane.

Given z ∈ Ω1, we choose as γ−z the path consisting of the circular arc of radius
1− α connecting z−1 to the level curve of R0 passing through z (the endpoint of this
arc is denoted be c−(z) and satisfies Im c−(z) < Im z), and the portion of the level
curve between c−(z) and z. As γ+

z , we choose as path the portion of the level curve of
R0(ζ) = R0(z) (Im ζ > Im z) connecting z and the point c+(z) := c−(z), combined

with the circular arc connecting c+(z) and z+
1 := z−1 .

As the functions Im and R0 are increasing on γ+
z and R1(ζ) = R0(ζ) + 2π Im ζ,

the function R1 is also increasing on γ+
z . Thus theorem 3.1 can be applied to Ω1 and

thus, we obtain our first solution y1 = y1,ε.

Moreover because the slow curve 1− 1
z

is attractive on the disk |z − 2| < 1, the
solution y1 can be continued (analytically) to the part of the disk

Bα := {z ∈ CI ; |z − 2| < 1− α}

on the right of Ω1 and remains close to the slow curve on this region.
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Let us now construct a solution y2 on some domain Ω2 close to the domain
enclosed by the line segment [Z0, Z0] and the portions of S0 and S0 connecting Z0

(resp. Z0) to x∗.
We choose as domain D2 the halfplane Re z > 2 and ∆ = CI \ iIR−. In other

words, the cut used in the definition of R0 has been turned by π/2 and is now the ray
2 + iIR+. (Equivalently, one could define the two reliefs by R0(z) = (z − 2)Log (z −
2)− z + 1− π Im z and R1(z) = (z − 2)Log (z − 2)− z + 1 + π Im z on CI \]−∞, 2].
One could also regard R0 as the continuation of the preceding relief R0 “below” 2
and R1 as the continuation of the same preceding relief R0 “above” z = 2.)

The two reliefs R1 and R0 are now symmetric.

2 3 4 5

Figure 5: Le domaine Ω2.

z−2

z+
2

C2

C2

S−α

x∗2
x∗

As before, it easy to verify that R0(z) decreases when Im z increases while the
real part of z remains constant.

Consider the intersection point z−2 of the circle with center 2 and radius 1 + α
and the vertical ray z−1 − iIR+. Let C2 be the portion of the level curve of R0

connecting z−2 to the real axis, meeting it in a point x∗2 > x∗, x∗2 close to x∗ verifying
R0(x

∗
2) = R0(z1). For c > 0 sufficiently small, C2 is a c-ascending path.

We choose as Ω2 the symmetric domain bounded by the line segment [z−2 , z
+
2 ],

where z+
2 = z−2 , and by the two curves C2 and C2.

For each z in Ω2, we choose as γ−z the union of the vertical line segment below
z connecting z to C2 and of the portion of C2 connecting z−2 to this segment . As
γ+

z we choose the union of the vertical line segment above z connecting z to C2 and
of the portion of C2 connecting z+

2 to this segment. The preceding discussion shows
that these paths are c-ascending and that R0 is decreasing on the first, R1 increasing
on the latter.

Thus, Ω2 satisfies the conditions of theorem 3.1 and hence there exists a solution
y2 of (10) on Ω2.
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Now we apply theorem 3.2 to the above solutions y1 and y2 where U = Ω1 ∩ Ω2

is the portion of Bα right of z−1 i.e.

U = {z ∈ CI ; |z − 2| < 1− α and Re (z − z−1 ) > 0} .

For sufficiently small α and for z between 3− α− ε and 3− α we obtain:

y1(ε, z)− y2(ε, z) = O
(
exp

(
1
ε

(
R0(3− α)−R0(z

−
1 )
)))

.

Hence because of R0(3− α) = R0(3) +O(α2) = −2 +O(α2) we find:

y1(ε, z)− y2(ε, z) = O(exp((−2 + α)/ε)) .

Because of the preliminary result 5. of section 2.2, it follows that the solution
y1 remains close to 1 − 1

z
on Ω2 ∩ [3, x∗α] where x∗α is the point on ]3, x∗[ verifying

R0(x
∗
α) = −2 + α, hence also on [1 + δ, x∗ − δ] if one chooses α sufficiently small.

This completes the proof of theorem 1.1.

5 Remark

The two reliefs are symmetric on Ω2, i.e. the region where the real dynamics exhibit
oscillations, but the asymmetry on Ω1 is not very nice. It is possible to make the
situation more symmetric by considering three reliefs instead of two on Ω1.

More generally, reconsider the above notation R0, where Log denotes any branch
of the logarithm. For any integers m ≤ 0 and n ≥ 1 and for j = m, ..., n, put
Rj(x) = R0(x) + 2jπ Im x.

Then the conclusion of theorem 3.1 remains valid if we replace its hypothesis by
the following:

For each j = m, ..., n there exists xj ∈ Cl(Ω) such that for all x ∈ Ω there is some
path γx,j connecting xj to x on which Rj is decreasing; for j = m (resp. n) the
path γx,m (resp. γx,n) can be chosen such that it is additionally c-ascending (resp.
c-descending).

Indeed, we can construct as in lemma 3.3 the solutions hj of the homogeneous
equation hε(x+ε) = a(x)hε(x) which are of the order exp(Rj/ε), and withHj(x, ξ) :=
hj(x)

hj(ξ)
, we choose as operator Tε solving y(x + ε) = a(x)y(x) + εg(x) the operator

Tε = U + Im + ...+ In−1 given by

Ijg(x) =
∫ x− ε

2

xj

Hj(x, ξ)
g(ξ)

a(ξ)
dξ ,

Ug(x) = 4
∫ 1

8

− 1
8

(∫ x− ε
2

xm+εt

Hm(x, ξ)

ex(ξ)− 1

g(ξ)

a(ξ)
dξ −

∫ x− ε
2

xn+εt

Hn(x, ξ)

ex(ξ)− 1

g(ξ)

a(ξ)
dξ

)
dt .

Concerning the exponential closeness of two solutions, it is also possible to re-
place the hypothesis of theorem 3.2 by the above hypothesis. One obtains the same
conclusion as in 3.2, where r = min

j=m,...,n
(Rj(xj)−Rj(x)).
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A Proof of proposition 2.1

To simplify notation, we indicate partial derivatives as subscripts.

(a) Differentiation of (8) with respect to x where y = g0(x) yields g′0(x)−fx(x, g0(x))−
fy(x, g0(x)) g

′
0(x) = 0, hence fx(C) = 0. Therefore the point C is a critical point of

the function h, its Hessian in C is −∆. If ∆ were negative, then C would have to be
a strict local extremum of h, contradicting the fact that C is not an isolated fixed
point.

Conversely, if ∆ 6= 0 then C is a non degenerate critical point of h. By conjugating
h to its quadratic part using the Morse lemma, we obtain two C2-curves of fixed points
passing through C and the values of the derivatives are easily determined from the
quadratic part.

We mention briefly that in the case where one of the curves has a vertical tangent
in C (i.e. fyy(C) = 0) and if fyyy(C) 6= 0, a pitchfork bifurcation appears: the curve
under consideration is – in the neighborhood of C – either in the left or in the right
halfplane, according to the sign of fxy(C)fyyy(C).

(b) In the oscillatory case a = −1, the implicit function theorem applied to equation
(8) assures that f has a unique C3-curve of fixed points y = g0(x) in some neighbor-
hood of C. The 2-periodic points (together with the fixed points) of f are, of course,
the fixed points of f 2 : (x, y) 7→ f(x, f(x, y)).

If f 2
xy(C) 6= 0 then the function f 2 has a pitchfork-bifurcation in the point C (this

means that automatically f 2
x(C) = f 2

yy(C) = 0). To prove this, one can:

• observe that the curve y = g0(x) contains all the fixed points of f and hence
the other fixed points of f 2 appear in pairs, thus excluding the saddle-node
and the transcritical bifurcation for f 2.

• or simply calculate f 2
x(C) and f 2

yy(C):
f 2

x(x, y) = fx(x, f(x, y)) + fy(x, f(x, y)) fx(x, y) hence f 2
x(C) = 0, and

f 2
yy(x, y) = fyy(x, f(x, y)) fy(x, y)

2 + fy(x, f(x, y)) fyy(x, y), hence f 2
yy(C) = 0.

The value g′0(xc) is found by differentiation of (8) with respect to x using y = g0(x). In
the same way the derivatives of p are calculated by differentiating f(p(y), f(p(y), y)) =
y. Of course one finds p′(yc) = 0 because f 2 has a pitchfork-bifurcation in C.
For the second derivative of p, first differentiate f 2(p(y), y) = y: f 2

x(p(y), y)p′(y) +
f 2

y (p(y), y) = 1, thus

f 2
xx(p(y), y)p

′(y)2 + 2f 2
xy(p(y), y)p

′(y) + f 2
yy(p(y), y) + f 2

x(p(y), y)p′′(y) = 0

(this yields no information in the point C) and finally

f 2
xxxp

′3 + 3f 2
xxyp

′2 + 3f 2
xyyp

′ + f 2
yyy + 3(f 2

xxp
′ + f 2

xy)p
′′ + f 2

xp
′′′ = 0 ,

where the partial derivatives of f 2 are taken at (p(y), y) and the derivatives of p
at the point y. At the point C, using f 2

x = f 2
yy = 0 and p′(yc) = 0, we obtain

3f 2
xy(C)p′′(yc) + f 2

yyy(C) = 0, which yields the value of p′′(yc).
In the particular case g0 = 0, more details can be found in [15], 357-374, and in

[12] theorem 3.21, p.88.
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B Proof of statement 1, subsection 2.2

We choose c, d with c < xc < d such that |a(x)| < 1 if c ≤ x < xc and a(x) < −1 if
xc < x ≤ d. We first construct a finite orbit {(x̃n, ỹn) ; 0 ≤ n ≤ N(ε)} of (3) the
boundary points of which – having x-coordinates close to c and d – are close to the
slow curve. We will then show that this orbit remains always close to the slow curve.
Let us first prove:

Statement A: For sufficiently small r > 0, there exists ε0 > 0 such that for every
ε ∈]0, ε0[ there exists a finite orbit (x̃n, ỹn)0≤n≤N=N(ε) of (3) having the following
properties:

c ≤ x̃0 < c+ ε, d− ε < x̃N ≤ d, |ỹ0 − g0(x̃0)| ≤ r, |ỹN − g0(x̃N)| ≤ r .(22)

To show this, we consider the compact tubular neighborhood

Kr := {(x, y) ∈ IR2 ; a ≤ x ≤ b, |y − g0(x)| ≤ r}

of the slow curve. For r, δ > 0 sufficiently small, one has ∂f
∂y

(x, y) < 0 for all (x, y) in
Kr with x ≥ xc − δ. Consider the mapping

Fε : IR2 → IR2, (x, y) 7→ (x+ ε, f(x, y)) .

First, we need to discuss whether some point (x, y) and its image Fε(x, y) are on
the same side of the slow curve y = g0(x) or not. Thus, we compare the differences
y − g0(x) and f(x, y)− g0(x+ ε) using the formula

f(x, y)− g0(x+ ε) =
∂f

∂y
(x, η) (y − g0(x))− εg′0(ξ)

where η is between y and g0(x), ξ between x and x+ ε.
It follows that there exist ρ > 0, ε0 > 0 such that for all (x, y) ∈ Kr with x ≥ xc−δ

and all ε ∈] 0, ε0[ the following property holds: if (x, y) ∈ Kρ then Fε(x, y) ∈ Kr;
otherwise the signs of f(x, y)− g0(x+ ε) and y − g0(x) are different.

This means that if (x, y) is some point of Kr with x > xc − δ then its Fε-image
(x + ε, f(x, y)) is also in Kr or on the other side of the slow curve (Note that the
Fε-image of a point of Kr is not necessarily again in Kr).

Now we choose x0 = c and y0 = g0(x0). Denote m0 = (x0, y0) and mn = mn(ε) =
(xn, yn) (n ∈ IN such that x0 + nε ≤ d + ε) the finite orbit of (3) with initial point
m0 – these are the iterates of m0 by Fε. We construct an invariant curve by iterating
Fε on all points of the segment [m0,m1[. This curve is close to the slow curve on
[x0, xc[; we do not know anything, however, on its behavior for x ≥ xc.

We will show by induction on n that for all n ≥ 0 with x0 + nε ≤ d there exists
a point pn(ε) in Kr on the invariant curve whose x-coordinate is between that of
mn and mn+1. This is already true for n such that x0 + nε < xc − δ, where δ > 0
sufficiently small is fixed and independent of ε.

Suppose the statement is true for n− 1. If pn−1 is even in Kρ then its iterate by
Fε is in Kr proving the statement for n . Otherwise this iterate is on the other side
of the slow curve.
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If pn−1 and mn are on different sides then the invariant curve intersects the slow
curve in some point qn−1 between pn−1 and mn and thus its image pn := Fε(qn−1)
proves the statement for n.

If pn−1 and mn are on the same side of the slow curve then mn and Fε(pn−1)
are not on the same side and hence the invariant curve contains at least one point
pn ∈ Kr between mn and Fε(pn−1). Thus the above statement is proved.

We can now use the above statement for N = N(ε) such that d−ε < x0+Nε ≤ d.
The orbit (m̃n(ε))n∈IN = ((x̃n, ỹn))n∈IN — with ỹn = ϕε(x̃n) — containing pN (i.e.
m̃N := pN ∈ Kr) satisfies statement A.

It remains to be shown that this orbit exhibits a bifurcation delay, more precisely:

∀r > 0 ∃ε0 > 0 ∀ε ∈]0, ε0] ∀n ∈ {0, 1, ..., N(ε)}, |ỹn − g0(x̃n)| ≤ r .(23)

We treat only the case f 2
yyy(C) < 0 ( the case f 2

yyy(C) > 0 can be treated analogously.)
This means that the curve of 2-periodic points is attractive, to the right of C and of
nonzero curvature at C; furthermore C is attractive.

As the slow curve is attractive on [c, xc[ and repulsive on ]xc, d], (23) is true for
integers n such that x̃n is not close to xc. It remains to be shown for n such that
x̃n = xc + o(1).

Consider the subset of Kr defined by

Lr := {(x, y) ∈ IR2 ; |x− xc| ≤ r3, |y − g0(x)| ≤ r} .

The term r3 has been chosen to assure that the curve of the 2-periodic points and
the upper and lower boundaries of Lr do not intersect for sufficiently small r; these
boundaries are therefore in the attractive region of f .

Statement B : For sufficiently small r there exists ε0 such that for every positive
ε < ε0 the image (x′, y′) = F 2

ε (x, y) of some point (x, y) ∈ Lr satisfies |y′−g0(x
′)| ≤ r.

LetM = (x, y) a point of Lr, Cx := (x, g0(x)) and y = g0(x)+Y with−r ≤ Y ≤ r.
By definition of Lr and the properties of f 2 at C (pitchfork bifurcation), one finds
that f 2

y (Cx) = 1+O(r3) and f 2
yy(Cx) = O(r3). Taylor’s formula yields (with a certain

point C̃x in Lr)

f 2(M) = f 2(Cx) + Y f2
y (Cx) + 1

2
Y 2f 2

yy(Cx) + 1
6
Y 3f 2

yyy(C̃x)

= g0(x) + Y + 1
6
Y 3f 2

yyy(Cx) +O(r4)

uniformly on Lr.
Thus for sufficiently small r, the F 2

0 -image (x′, y′) = F 2
0 (x, y) of (x, y) satisfies

|y′ − g0(x
′)| ≤ r − αr3 with α = −f 2

yyy(C)/12, say. Statement B then follows from
the continuity of Fε with respect to ε.

Now, choose r > 0 such that statements A and B are true. As the slow curve is
attractive on [x0, xc− r3/2], we have |ỹn− g0(x̃n)| ≤ r for ε sufficiently small and for
n such that x̃n ∈ [c, xc − r3 + 2ε]. Statement B yields the same estimate for x̃n ∈
]xc−r3+2ε, xc+r

3+2ε] (by considering the odd and even indices separately). As the
slow curve is repulsive on [xc +r

3, d] the estimate also follows for x̃n ∈]xc +r
3 +2ε, d].

This proves (23) for sufficiently small r and hence for all r.
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C Majorization of the integral in the proof of lemma

3.4

For simplicity, we denote I(g, t, x, ε) by It(x). Recall that It(x) is given by

It(x) :=
∫ x++εt

x−+εt

hε(x)

(ex(ξ)− 1)hε(ξ)

g(ξ)

Aε(ξ)
dξ

where hε(x) is of the exact order exp(R0(x)/ε) (cf. lemma 3.3). We have to prove
(uniformly with respect to all t, x, ε under consideration):

• It(x) = O(‖g‖) if |x− x− + εt| ≥ ε and |x− x+ + εt| ≥ ε,

• It(x) = O
(
‖g‖ ln

(
ε

|x−x−+εt|

))
+O(‖g‖) if |x− x− + εt| < ε

• and similarly It(x) = O
(
‖g‖ ln

(
ε

|x−x++εt|

))
+O(‖g‖) if |x− x+ + εt| < ε.

Since Aε(ξ)
−1 is bounded (uniformly in ε) on the whole domain Ωε, this amounts to

estimating
hε(x)

(ex(ξ)− 1)hε(ξ)
.

Without loss in generality we can assume that x− ε
2
∈ Ωε. Otherwise, (x+ε)− ε

2
=

x+ ε
2
∈ Ωε and the estimate for It(x+ε) together with It(x) = 1

Aε(x)
(It(x+ε)−εg(x))

yields the estimate for It(x).
As paths of integration defining It(x), we choose paths depending on ε and having

at most a distance of order ε to the paths γ+
x and γ−x of theorem 3.1 and passing

through x− ε
2
. To simplify notation, we denote these paths again γ+

x and γ−x . Thus
we find uniformly for t on [0, 1] and for x ∈ Ωε such that also x− ε

2
∈ Ωε:

R0(x) ≤ R0(γ
−
x (t)) +O(ε) and R1(x) ≤ R1(γ

+
x (t)) +O(ε) as ε→ 0 .

Suppose at first that x is not too close to the lower and upper boundary of Ωε. More
precisely, suppose that Imx−+εc/8 < Im x < Im x+−εc/8. In this case, the paths of
integration can be modified such that they keep a sufficient distance to x− ε and x,
i.e. |γ+

x (τ)− x|−1 = O(ε−1) for all τ ∈ [0, 1]; similarly for γ−x instead of γ+
x ; similarly

for x− ε instead of x. Then, for ξ on γ−x , we find
1

ex(ξ)− 1
= O(1) and for ξ on γ+

x ,

we find
1

ex(ξ)− 1
= O

(
exp

(
2π

ε
Im (x− ξ)

))
. Using lemma 3.3 and the properties

of the paths γ±x we chose, we obtain:

• for ξ on γ−x :
hε(x)

(ex(ξ)− 1)hε(ξ)
= O

(
exp

(
1
ε
(R0(x)−R0(ξ))

))
= O(1),

• and for ξ on γ+
x :

hε(x)

(ex(ξ)− 1)hε(ξ)
= O

(
exp

(
1
ε
(R1(x)−R1(ξ))

))
= O(1).

Remark also that, if |x − x− + εt| ≥ ε and |x − x+ + εt| ≥ ε, then necessarily
Im x− + εc/8 < Im x < Im x+ − εc/8. Hence first item is proved.
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For points close to the upper or lower boundaries, one of the above estimates
remains valid. For example, if Im x ∈ [Im x−, Im x− + εc/8], the estimate for γ+

x

remains valid and it remains to estimate the integral over γ−x ; this will be done in
the sequel.

As γ−x , we choose a certain polygonal path. With the notation xt = x− + εt, we
distinguish three cases: (a) Rext ≤ Rex − ε

4
, (b) Re x − ε

4
< Rext ≤ Rex and

(c) Re x < Rext.

• In case (a), we choose as γ−x the path connecting xt,Rext + i Im x and x − ε
2
.

As Ω is c-ascending, one has Re xt > Rex− 3ε
4

and thus the above estimate remains
valid on γ−x .

• In case (b) the path is chosen to connect xt, x
∗, x− ε

4
and x− ε

2
, with

x∗ := Re (x− ε

4
) + i Im x− .

Since hε(x)/hε(ξ) and Aε(ξ)
−1 are of order at most 1 on the whole path γ−x , it remains

to estimate ∫ x−ε/2

xt

|dξ|
|ex(ξ)− 1|

.

On the segments
[
x∗, x− ε

4

]
and

[
x− ε

4
, x− ε

2

]
one has |ex(ξ)−1|−1 = O(1), whereas

on [xt, x
∗] one has for some C > 0:

|ex(ξ)− 1|−1 ≤ C|ξ − x|−1 ≤ C
(
|ξ − xt|2 + |xt − x|2

)−1/2
.

With u = xt − ξ, and using |xt − x| = O(ε), we get

∫ x∗

xt

|dξ|
|ex(ξ)− 1|

≤ C
∫ ε/4

0

du√
u2 + |xt − x|2

= C
(
ln
(

ε
4

+
√

( ε
4
)2 + |x− xt|2

)
− ln |x− xt|

)
= C ln

(
ε

|x− xt|

)
+O(1) .

Altogether this gives

∫ x− ε
2

x−+εt

hε(x)

(ex(ξ)− 1)hε(ξ)

g(ξ)

Aε(ξ)
dξ = O

(
‖g‖ ln

(
ε

|x− xt|

))
+O(‖g‖) .

• In the third case (c) one uses the residue theorem in the following form:

∫ x− ε
2

x−+εt

hε(x)

(ex(ξ)− 1)hε(ξ)

g(ξ)

Aε(ξ)
dξ =

∫
γ̃−x

hε(x)

(ex(ξ)− 1)hε(ξ)

g(ξ)

Aε(ξ)
dξ +

εg(x)

Aε(x)

where the path γ̃−x connects x− + εt with x− ε
2

above x. By choosing as γ̃−x the path
connecting x− + εt, Re (x + ε

8
) + Imx−, Re (x + ε

8
) + i(Imx− + εc

4
), Re (x − ε

8
) +

i(Imx− + εc
4
), x− ε

8
and x− ε

2
, one obtains the same estimate.

The case of x close to the upper boundary is analogous.
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