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Classification of resonant equations

Augustin Fruchard and Reinhard Schäfke

Abstract: Consider a singularly perturbed equation of the form

εy′′ − f(x, ε)y′ + g(x, ε)y = 0 , (1)

where x, y ∈ CI , ε > 0 is a small parameter, and f and g are two analytic functions in a
neighborhood of (0, 0), real for real values of x, ε, f(0, 0) = 0, f ′(0, 0) > 0; this means that
x = 0 is a turning point. Equation (1) is called resonant in the sense of Ackerberg-O’Malley, if
there is a solution, analytic for x in some neighborhood of 0 and ε in some sector, which tends
to a non-trivial solution of the reduced equation f(x, 0)y′ = g(x, 0)y as ε → 0.

The article presents a classification of such resonant equations with respect to analytic
transformations ỹ = a(x, ε)y + b(x, ε)εy′. First of all, f0(x) = f(x, 0) is a formal invariant
considered fixed below. Furthermore, to each resonant equation are associated three formal
series in ε, which are Gevrey of order 1 and invariant under analytic transformations. It is
shown that this correspondence between equivalence classes of resonant equations and triples of
Gevrey series is essentially bijective, and that each equivalence class contains an equation of a
particular form: f(x, ε) = f0(x) and g(x, ε) = f1(x) + εf2(x) with f1(0) = 0.
Key-words: Ackerberg-O’Malley resonance, Gevrey asymptotics, singular perturbation.
AMS Classification: 34E.

1 Introduction

In this article we consider the singularly perturbed equation (1) with the above assump-
tions. Throughout the whole article, the prime will denote differentiation with respect to
x.

Let V be a neighborhood of x = 0 and S a sector in ε with vertex 0, with a finite
radius and containing real positive numbers.

A resonant solution of (1) on V × S is a function y = y(x, ε) analytic and bounded
on V × S that is a solution of (1) for all ε ∈ S and tends to a non trivial solution of the
reduced equation

f(x, 0)y′ = g(x, 0)y (2)

uniformly on V as ε→ 0, ε ∈ S.
Equation (1) is called resonant if it possesses a resonant solution. It is known [3, 4] that

a necessary condition for (1) to be resonant is that n = g(0, 0)/f ′(0, 0) is a nonnegative
integer; this is an important quantity for the formal series (3): the multiplicity of x = 0
as a zero of its leading term y0(x). As shown in section 7, the derivative y(n) satisfies a
second order equation analytically equivalent to (1) such that this integer is zero. These
equations will be called 0-resonant; for them, y0(0) 6= 0.
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It is well known, too [4, 5], that equation (1) is resonant if and only if it admits a
formal solution

ŷ(x, ε) =
∑
n≥0

yn(x)εn (3)

with coefficients yn analytic in a neighborhood of 0. Such a formal solution will also be
called resonant. The key idea to prove this latter result is to show that the series ŷ (except
for a factor that is a formal series in ε, i.e. independent of x) is of Gevrey order 1, i.e. its
coefficients yn satisfy

∃A,C, ρ > 0 ∀n ∈ IN ∀|x| < ρ, |yn(x)| ≤ A Cn n! . (4)

Unfortunately the only known explicit examples of resonant equations are particularly
simple equations having (non-trivial) convergent formal solutions. In [4], a method is
given which allows to construct, using the fixed point theorem, resonant equations with
divergent (of Gevrey order 1) formal solutions. It is therefore natural to link resonant
equations and Gevrey-1 series.

The purpose of the present article is to characterize equivalence classes of resonant
equations by means of some “invariants”. A weak and a strong equivalence relation are
considered, depending on whether all transformations analytic near x = ε = 0 are allowed
or only those which reduce to the identity for x = 0. To each resonant equation (1), we
associate as invariants the function f0(x) = f(x, 0) and a certain triple of Gevrey-1 series.
We show that two 0-resonant equations are strongly equivalent if and only if they have
the same invariants and that two general resonant equations are weakly equivalent if and
only if their invariants satisfy a simple equivalence relation.

We hope that our work will contribute to a better description of resonant equations;
it shows that formal solutions of these equations are naturally divergent and that the
framework of Gevrey theory reintroduced by Ramis [7] is the natural framework for the
local theory of singular perturbations.

Only resonant equations are considered in this article. A classification of all second
order linear equations with turning point would be important. We hope that the study
of the special case of resonant equations will give ideas for the more general problem.

We would like to mention a different (unpublished) approach to the classification
of resonant equations with f(x, 0) = 2x by Sibuya [8]: It involves the Stokes matrices
for a collection of transformations defined on ε-sectors reducing (1) to its normal form
εy′′ − 2xy′ + 2ny = 0; the ε-sectors have to be a good covering (see subsection 3.1) of a
neighborhood of ε = 0.

The structure of the article is as follows. In the next section, we present the main
results. Section 3 introduces two auxiliary tools. The first one is the construction of a
right inverse of the variation operator; this operator was already used in [4] in a special
context. The second one is due to Y. Sibuya; roughly speaking, it says that if a (vectorial)
formal series solution of a singularly perturbed system of first order differential equations
converges for one value of x, then it converges for any x. In the following three sections,
we consider the special case of 0-resonant equations (1) with f(x, ε) = 2x. Section 4
contains several preliminary results concerning the invariants and characterizing weak
and strong equivalence. The proofs of the main statements in the special case are done
in sections 5 and 6. In section 5, we show that in this case the triples of Gevrey-1 series
we introduced are indeed invariant with respect to analytic transformations and that
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such equations having the same invariants are equivalent. We prove in section 6 that
any (admissible) triple of Gevrey-1 series can be attained as invariant of some resonant
equation with f(x, ε) = 2x. In section 7 finally, we extend the results to general 0-resonant
and resonant equations.

2 Statement of the main results

Before presenting the main results in detail, we make a preliminary reduction and in-
troduce some notation. First of all, substitution of ε = cε̃ allows to reduce to the case
f ′(0, 0) = 2; this will be assumed throughout the article. We denote by R the set of
resonant equations of the form (1), by R0 the set of 0-resonant equations of the form
(1) (i.e. with g(0, 0) = 0). By identifying a resonant equation to its coefficient functions
(f, g), we identify R to a subset of the space H2

0, H0 := CI {x, ε}, of pairs of germs of
holomorphic functions in a neighborhood of (0, 0) ∈ CI 2.

Using matrix notation, equation (f, g) can be rewritten

(R) εy′ = Ry ,

with y =
(
y
εy′

)
and R : (x, ε) 7→

(
0 1

−εg(x, ε) f(x, ε)

)
.

Remark: For simplicity, we will often omit the variables x and ε, and write for instance

R =
(

0 1
−εg f

)
. Another way to read this kind of formula is to see an identity be-

tween functions, the letters x, ε being the canonical projections and 1 being the constant
function.

Definition 1 . — We say that (R) and (R̃) are weakly equivalent, and we write (R) ∼
(R̃), if there exists a two by two matrix T with entries in H0 whose determinant does not
vanish identically such that the change of unknowns ỹ = T (x, ε)y transforms equation
(R) into equation (R̃), i.e. ỹ is a solution of (R̃) if y is a solution of (R).

We say that (R) and (R̃) are strongly equivalent, and we write (R) ≈ (R̃), if moreover T
satisfies T (0, ε) = 1 (for all ε in a neighborhood of 0), where 1 is the identity matrix of
M(2,CI ).

If ỹ = T (x, ε)y transforms (R) into (R̃), then for some fundamental solution Y of (R),
the matrix function Z(x, ε) = T (x, ε)Y (x, ε) is a solution of (R̃). Thus, if Ỹ denotes a
fundamental solution of (R̃), there exists a matrix D(ε) of functions analytic at ε = 0

independent of x such that Z(x, ε) = Ỹ (x, e)D(ε). Therefore, if e
∫ x

0
f(t,0)dt/εw(x, ε) and

e
∫ x

0
f̃(t,0)dt/εw̃(x, ε) denote the Wronskian determinants of the equations (w, w̃ ∈ H0 and

w(0, 0), w̃(0, 0) 6= 0), we must necessarily have f(x, 0) = f̃(x, 0) and also detT (x, ε) =
w̃(x,ε)
w(x,ε)

detD(ε). Hence S(x, ε) = detD(ε)(T (x, ε))−1 has entries in H0 and transforms (R̃)

into (R). This shows that ∼ is indeed symmetric and that f(x, 0) is an invariant, i.e. the
same for all weakly equivalent equations.
We call a scalar second order equation (f, g) weakly or strongly equivalent to another
one (f̃ , g̃) if the corresponding systems (R) and (R̃) are weakly or strongly equivalent.
Thus an equivalence between two scalars equations is realized by change of unknowns
of the form ỹ = a(x, ε)y + b(x, ε)εy′; the remaining entries of the corresponding T can
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then be determined. Clearly, a, b resp. T have to satisfy restrictive properties, because
(f̃ , g̃) resp. (R̃) must be exactly of the same form as (f, g) resp. (R). In the case of
f(x, ε) = f̃(x, ε) = 2x, g(0, 0) = g̃(0, 0) = 0, this will be studied in details in subsection
4.2.
A priori for the weak equivalence, it is possible that detT (x, ε) = 0 on some nonempty
subset of a neighborhood of (0, 0), but we will see in subsection 4.2 that T (0, 0) is neces-
sarily invertible in the case f(x, ε) = f̃(x, ε) = 2x, g(0, 0) = g̃(0, 0) = 0.

For any equivalence relation, it is a natural problem to look for invariants; we first
focus on invariants for the relation ≈ on the set R0 of 0-resonant equations. As a first
invariant besides f(x, 0), we choose a formal series in ε:

I(ε) = ŷ′(0, ε)

where ŷ is the only formal resonant solution of (f, g) which satisfies ŷ(0, ε) = 1. To
simplify notation, we omit the hats on the invariants. As ŷ(x, ε) is known to be Gevrey-1
uniformly with respect to x, Cauchy’s formula implies that this invariant is also Gevrey
of order 1.

Our second invariant, denoted by J , is the expansion in powers of ε1/2 of the formal
expression

J(ε) =
∑
n≥0

α̂n(ε)
∫ δi

0
eF (x,ε)/εxndx

where F (x, ε) =
∫ x
0 f(t, ε) dt, δ > 0 is sufficiently small, ŷ is the above formal resonant

solution and α̂n ∈ CI [[ε]] are given by

ŷ(x, ε)−2 =
∑
n≥0

α̂n(ε)xn . (5)

The choice of this second invariant is motivated by the solution of (f, g), denoted by
Zy, which satisfies Zy(0, ε) = 0, (Zy)′(0, ε) = 1; this solution can be expressed using
any resonant solution y with y(0, ε) = 1 and J is the right hand side of the asymptotic
expansion of the value of Zy(x, ε)/y(x, ε) at x = iδ for δ sufficiently small. See subsection
4.1 for details. Furthermore, it will be shown in subsections 4.1, 7.1, 7.2 that J =
J1 + ε1/2J2 where J1, J2 are Gevrey-1 series. The series I, J1, J2 are the three Gevrey-1
series mentioned in the abstract and in the introduction. Of course, we have to prove that
these are actually invariant with respect to ≈. This will be done in section 5 together
with subsections 7.1, 7.2.

We denote by G1 the set of Gevrey-1 series in ε (this is sometimes written G1 := CI [[ε]]1),
by G the set G := CI {x} × G1 × (G1 + ε1/2G1) and by K the set

K :=
{
(h, I, J) ∈ G ; h′(0) = 2, J(ε) = i

2

√
πε+O(ε)

}
. (6)

Theorem 2 . — Denote by Φ0 the mapping

Φ0 : R0 → K, (R) 7→ (f(x, 0), I, J) , (7)

which associates to each 0-resonant equation its invariants.
Then Φ0 induces a bijection Φ≈ between R0/≈ and K; in other words:
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(i) two 0-resonant equations are strongly equivalent if and only if they have the same
invariants;
(ii) for all (h, I, J) in K there exists a 0-resonant equation with invariants h, I and J .

This theorem classifies the ≈-equivalent classes of 0-resonant equations by their invariants.
For a general resonant equation (f, g) with g(0, 0) = 2n, n ∈ IN, we define its invariants
to be the invariants of the 0-resonant equation satisfied by y(n); this equation is weakly
equivalent to (f, g) (cf. subsection 7.3). We denote by Φ(f, g) the vector of invariants of
a general resonant equation (cf. (7)). The weak equivalence ∼ between equations yields
an equivalence relation between invariants (h, I, J), denoted by the same ∼ sign; it turns
out to be the following, see again section 5:

Definition 3 . — Two elements (h, I, J) and (h̃, Ĩ , J̃) of K are called weakly equivalent if
h = h̃ and there are four functions A,B,C,D holomorphic in a neighborhood of ε = 0 ∈ CI
satisfying AD − εBC ≡ 1, A(0) = D(0) = 1, such that

Ĩ =
C +DI

A+ εBI
, J̃ = (A+ εBI)2J − εB(A+ εBI) , (8)

where ε has been again omitted (see remark above definition 1).

Remark: 1. As a straightforward calculation shows, this is indeed an equivalence relation.
2. Observe that for two elements (h, I, J) and (h, Ĩ, J̃) of K, there are uniquely deter-
mined formal series A(ε), B(ε), C(ε), D(ε) satisfying the equalities of the definition;
the elements are weakly equivalent if all these series are convergent. Indeed, separat-
ing J = J1 + ε1/2J2 and J̃ = J̃1 + ε1/2J̃2 with J1, J2, J̃1, J̃2 ∈ CI [[ε]], we obtain four
equations for the four series A,B,C,D. Omitting again the argument ε, these are

(A+ εBI)Ĩ = C +DI, AD − εBC = 1,

J̃1 = (A+ εBI)2J1 − εB(A+ εBI), J̃2 = (A+ εBI)2J2 .
(9)

The last line uniquely determines A and B; then the first one is a 2 by 2 system of linear
equations with determinant A+ εBI 6= 0 for C and D.

Using this equivalence relation for the “invariants”, we present a result similar to
theorem 2 concerning the weak equivalence of resonant equations. Furthermore, the
method used to prove surjectivity yields a more precise result, which is stated below.

Theorem 4 . — The mapping Φ defined above definition 3 induces a bijection Φ∼ between
R/∼ and K/∼. Moreover, each equivalence class of the relation ∼ contains a 0-resonant
equation (f, g) with f independent of ε and g linear in ε. More precisely, given (h, I, J) ∈
K, there exist ϕ = ϕ(ε) and g0 = g0(x), g1 = g1(x) holomorphic in a neighborhood of
0 ∈ CI such that the equation (h, g0 + εg1) is 0-resonant and has invariants (I + ϕ, J).

Remarks: 1 – By misuse of language, we call invariants the vectors (h, I, J) associated to
an equation (f, g), even if they are not properly invariant under ∼.
2 – In each equivalence class of R/∼, there exist several resonant equations (h, g) for
which g is linear in ε.

Sections 5 and 6 are devoted to the proofs of theorems 2 and 4 in the special case of 0-
resonant equations with f(x, ε) = 2x; section 7 extends these results to general 0-resonant
and resonant equations.
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3 Auxiliary tools

In this section, we introduce several tools that will be useful in subsequent sections.

3.1 A right inverse of the variation operator

The first tool is a continuous right inverse of the ∆-operator described below (see (10)).
It will be used in section 6. This inverse was already used in [4] in a simpler context.

We denote the sector of direction θ, opening |S| := 2δ and radius r by

S(θ, δ, r) = {ε ∈ CI ; 0 < |ε| < r, | arg ε− θ| < δ}

Given r, µ > 0 small enough, we consider, for j ∈ {0, ..., 2h}, the sectors

Sj = S
(
j 2π

2h+1
, π

2h
− µ, r

)
.

where µ is chosen in such a way that these sectors form a good covering of 0, i.e. intersec-
tions Dj := Sj ∩ Sj+1 (with S2h+1 := S0) of consecutive sectors are non empty and triple
intersections Dj ∩Dj+1 (with D2h+1 := D0) are empty. We choose

µ :=
π

4h(2h+ 1)
.

In this way, |Sj|/2 = π
2h+1

+ µ and |Dj|/2 = µ.

Let U be the Banach space of (2h + 1)-tuples ~y = (y0, ..., y2h) of holomorphic and
bounded functions yj : Sj → CI , endowed with the norm ||~y|| = max(||y0||∞, ..., ||y2h||∞).

Denote by D the Banach space of (2h + 1)-tuples ~d = (d0, ..., d2h) of holomorphic
functions dj : Dj → CI such that dj(ε)/ε is bounded, with the norm

||~d|| = max
j∈{0,...,2h}

sup
ε∈Dj

∣∣∣∣∣dj(ε)

ε

∣∣∣∣∣ .
The space D can be identified to the space of holomorphic functions d on D0 ∪ ... ∪D2h

that are bounded with respect to the norm supε |d(ε)/ε|.
We consider the variation operator ∆ defined by

∆~y = ~d := (y1 − y0, ..., y2h − y2h−1, y0 − y2h) . (10)

This defines a mapping ∆ : U0 → D, where U0 is the subset of all ~y ∈ U such that
∆~y ∈ D, i.e. (yj+1 − yj)(ε) = O(ε) as ε → 0 for all j ∈ {0, ..., 2h}. Given ~d ∈ D, to find

~y = (y0, ..., y2h) ∈ U0 such that ∆~y = ~d, it seems natural to use the classical formula

yk : Sk → CI , ε 7→ 1
2πi

2h∑
j=0

∫ εj

0
dj(z)

dz

z − ε
(11)

with

εj := reiαj ∈ Dj and αj :=
(2j + 1)π

2h+ 1
,

where the path of integration is the straight line from 0 to εj if j 6= k and j 6= k − 1, on
the left of ε if j = k and on the right of ε if j = k − 1.
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Actually it is well-known that the above ~y satisfies ∆~y = ~d with yk analytic in Sk.
However, this does not yield an operator from D into U , because yk has logarithmic
singularities at ε = εk and ε = εk−1. We overcome this difficulty by considering some
average of integrals similar to (11), namely, with δ := µ/2:

Σ~d (ε) = 1
2δ

∫ δ

−δ
~yθ(ε)dθ (12)

with ~yθ = (yθ,0, ..., yθ,2h), yθ,k : Sk → CI , ε 7→ 1
2πi

2h∑
j=0

∫ εjeiθ

0
dj(z)

dz

z − ε
, εj and the paths

of integration as above. Since Dj = S(αj, µ, r), εje
iθ remains on Dj and sufficiently far

away from the sides of Dj.

Theorem 5 . — 1 – The operator Σ : D → U0 given by (12) is bounded and satisfies

∆Σ = id : D → D .

2 – We have ker ∆ = Hε0, the space of holomorphic and bounded functions on D(0, ε0).

3 – For all ~g ∈ U0 we have Σ∆~g − ~g ∈ Hε0.

4 – Consider the operator L defined from D into U0 by

L~d := εΣ(~d )− Σ(ε~d ) . (13)

Then for all ~d ∈ D, the function L~d is constant with respect to ε. Thus we use L as
mapping D into CI . .

5 – More generally, for all ~d ∈ D and all n ∈ IN, εnΣ(~d )−Σ(εn~d ) is polynomial in ε of
degree at most n− 1.

Remark: As above definition 1, ε denotes the identity function in the above theorem.
Proof. 1 – By construction, we have (Σ~d )j+1 − (Σ~d )j = dj, j = 0, ..., 2h. The fact

that Σ~d ∈ U will shown below. It is then clear that Σ~d ∈ U0 since ∆Σ~d = ~d ∈ D. In
order to establish an upper bound of ‖Σ‖, we first estimate ~yθ defined below (12) in a
way similar to the proof of lemma 20 in [4]. We could refer to [4] for more details, but we
prefer include a proof for completeness.

Let us look at the first coordinate yθ,0; the estimate will be the same for the other
ones. We furthermore focus on ε ∈ S0 with arg ε ∈ [0, α0 + 2δ]; the case arg ε < 0 is
similar.

If arg ε ≤ α0 − 2δ we simply use

|z − ε| ≥ |z| sin δ (14)

for any z on any segment [0, εje
θi] and obtain

|yθ,0(ε)| ≤ 2h+1
2π

r

sin δ
‖~d‖ .

If arg ε > α0 − 2δ (notice that only the integral involving d0 poses a problem) we
distinguish two cases:
In the case arg ε ≤ α0 + δ we use a path of integration γθ arbitrarily close to the segment
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[0, ei(α0+2δ)] and the arc of circle Cθ = (ei(α0+2δ), ei(α0+θ)). On the first piece, the same
inequality (14) holds. On the remaining one, we have∣∣∣∣∣

∫
Cθ

d0(z)
dz

z − ε

∣∣∣∣∣ ≤ ‖d0(z)‖
∫

Cθ

|z|
|z − ε|

|dz| . (15)

In the case arg ε > α0 + δ we first use Cauchy’s formula which shows that∫
γθ

d0(z)
dz

z − ε
= 2πid0(ε) +

∫
γ̃θ

d0(z)
dz

z − ε

where now the path of integration is on the right of ε, arbitrarily close to [0, ei(α0−2δ)] and
the arc (ei(α0−2δ), ei(α0+θ)). We still have (14) on the segment and (15) on the arc.

Therefore it remains to show that I =
∫ δ

−δ
dθ
∫

Cθ

|z|
|z − ε|

|dz| is bounded, where Cθ

is either the arc (ei(α0+2δ), ei(α0+θ)) if arg ε ≤ α0 + δ, or the arc (ei(α0−2δ), ei(α0+θ)) if
arg ε > α0 + δ. This is done exactly as in [4]: by splitting the exterior integral in two
parts at θ = arg ε − α0, we show that the double integral assumes its maximum for

arg ε = α0. Hence it suffices to estimate 2
∫ δ

0
dθ
∫ 2δ

θ

ds∣∣∣esi − |ε|
r

∣∣∣ . As the denominator is at

least sin s, the theorem of Fubini-Tonelli yields I ≤ 2
∫ 2δ

0

s

sin s
ds.

2 – If ~y satisfies ∆~y = 0, then ~y is a single valued function, hence holomorphic on
D(0, ε0) \ {0}. As this function is also bounded in a neighborhood of 0, the singularity at
ε = 0 is removable and ~y is holomorphic at ε = 0. Conversely, a function holomorphic on
D(0, ε0) is clearly identified to a triple of U with differences equal to zero.

3 – For ~g ∈ U0, we have ∆(Σ∆~g − ~g) = (∆Σ)∆~g −∆~g = 0; then use item 2.

4 – Denote by S : D → U0 the operator given by

S(~a(µ)) := 1
2δ

∫ δ

−δ

2h∑
j=0

(
1

2πi

∫ εjeiθ

0
aj(µ)dµ

)
dθ ,

δ = π
8h(2h+1)

, εj = reiαj , αj = (2j+1)π
2h+1

. We have Σ(~a)(ε) = S
(

~a(µ)
µ−ε

)
, therefore (13) reads

L~d (ε) = S
(

(ε~d (µ)− µ~d (µ))
1

µ− ε

)
= −S(~d (µ)) .

This shows that L~d (ε) does not depend on ε.

5 – Let Ln : D → D, ~d 7→ Ln
~d = εnΣ(~d )−Σ(εn~d ) (here the letter ε denotes multiplication

by the variable). We have Ln(~d ) = εLn−1(~d ) + L(εn−1~d ) with L given at item 4; hence
the statement follows by induction.

3.2 Convergence of formal solutions

The second tool is due to Y. Sibuya [9]. It will be used in section 5 (proof of proposition
12). For completeness, a proof is included.
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Let Ω be a domain (i.e. connected open subset) of CI and ε0 > 0. We denote by
D = D(0, ε0) the closed disk of radius ε0 around the origin and by H the Banach space
of holomorphic bounded functions on Ω×D endowed with the usual norm. Let d and h
be positive integers and A ∈M(d,H) be a d×d-matrix with entries in H.

Theorem 6 . — Suppose that the differential equation

εhy′(x, ε) = A(x, ε)y(x, ε) , y ∈ CI d (16)

admits a non trivial formal solution ŷ =
∑

n≥0 zn(x)εn whose coefficients zn are analytic
on Ω.

If there exists x0 ∈ Ω such that ŷ(x0, ε) converges for ε ∈ D, then ŷ converges for all
x ∈ Ω and ε ∈ D.

Proof. For CI d, we can use any norm, for instance the maximum norm, for M(d,CI ) we
use the associated matrix norm both denoted by |.|. On M(d,H) we introduce the norm

‖A‖ := sup
(x,ε)∈Ω×D

|A(x, ε)| .

Let R > 0 be such that D(x0, R) ⊂ Ω. We first claim that it suffices to prove that

ŷ converges for |x− x0| < ρ := min

{
εh
0

‖A‖
, R

}
and |ε| ≤ ε0. (17)

Indeed, for all x in Ω, there exists a finite sequence of points xj, j = 1, ..., N such that

xN = x and xj+1 ∈ B(xj, ρj) with ρj = min{ εh
0

‖A‖ , dist(xj, ∂Ω)} for j = 0, ..., N − 1. We
conclude by induction that ŷ converges for x.

Without loss of generality, we assume that x0 = 0. Here we prove even more.

Lemma 7 Suppose that (16) admits a nontrivial formal solution ŷ ∈ CI [[x, ε]] such that
ŷ(0, ε) converges for ε ∈ D. Then ŷ(x, ε) converges for |x| < ρ and ε ∈ D.

The idea is to expand A and ŷ in powers of x :

A(x, ε) =
∑
n≥0

An(ε)xn, An ∈M(d,CI {ε}) and ŷ(x, ε) =
∑
n≥0

yn(ε)xn, yn ∈ CI [[ε]]d .

First, Cauchy’s inequalities yield that An(ε) are holomorphic and bounded in D and

∀n ∈ IN,∀ε ∈ D, ‖An(ε)‖ ≤ ‖A‖R−n ≤ ‖A‖ρ−n .

Identification of the coefficients of xn in (16) yields

εh(n+ 1)yn+1(ε) =
n∑

k=0

Ak(ε)yn−k(ε) =: ϕn(ε) . (18)

Lemma 8 . — For all n ≥ 0, yn converges for |ε| ≤ ε0.

9



Proof. By induction on n. For n = 0, the series y0(ε) = ŷ(0, ε) converges for |ε| ≤ ε0,
by assumption of the lemma.

If the statement of the lemma is valid for all k ≤ n, then ϕn converges in D(0, ε0).
Now we already know that yn+1 is a formal series in ε, hence the left hand side of (18),
εh(n+ 1)yn+1, is a series with valuation at least h, hence ϕn has a zero of order at least h
at ε = 0. Therefore, yn+1 = 1

n+1
Sh

0ϕn, where Sh
0 is the h-th iterate of the shift operator S0

defined by S0ϕ(ε) = 1
ε
(ϕ(ε) − ϕ(0)). This operator preserves the radius of convergence.

Lemma 9 . — For all n ≥ 0 and all |ε| ≤ ε0, we have ||yn(ε)|| ≤ Mρ−n, with M :=
sup{||ŷ(0, ε)‖ ; |ε| ≤ ε0} and ρ given by (17).

Proof. Once again by induction on n. It is obvious for n = 0 since y0 = ŷ(0, ·). If it is
true for k ≤ n, then (18) gives

||εhyn+1(ε)|| ≤
1

n+ 1

n∑
k=0

‖A‖ρ−kMρk−n = M‖A‖ρ−n .

For |ε| = ε0, taking into account that ρ ≤ εh
0

‖A‖ , we obtain ||yn+1(ε)|| ≤Mρ−(n+1). Now the

function yn+1 is analytic in the open disk D = D(0, ε0), therefore this estimate remains
valid on D by the maximum modulus principle.

Statement (17) now becomes evident: ŷ converges for |x| < ρ and |ε| ≤ ε0. As shown
above, the theorem follows

4 0-Resonant equations in the special case : Prelim-

inary results

In this section and the following two, we will only consider 0-resonant equations (f, g)
with f(x, ε) = 2x; this simplifies many considerations and it seems easier to extend the
results to general equations later. As f is fixed, we denote the equation (f, g) simply by
(g) and the invariants simply by (I, J). As will be shown is subsection 4.1, I and J have
to satisfy the relation J(ε) = i

2

√
πε+ I0ε+O(ε3/2) in this case. Thus instead of the sets

R,R0 and K introduced above theorem 2, we use Ro = {g ∈ CI {x, ε} ; g(0, 0) = 0} and
Ko = {(I, J) ∈ G1×(G1 +ε1/2G1) ; J(ε) = i

2

√
πε+I0ε+O(ε3/2)}, instead of the mappings

Φ0,Φ of theorems 2 and 4, we use Φo : Ro → Ko, (g) 7→ (I, J).

4.1 The second invariant

Denote by Zy the solution of (g) that satisfies Zy(0, ε) = 0, (Zy)′(0, ε) = 1. The variation
of constant formula gives:

Zy(x, ε) = y(x, ε)
∫ x

0
eξ2/εy(ξ, ε)−2dξ .

where y is any resonant solution of (g) with y(0, ε) = 1. Define

J̃ := Zy(iδ, ε)/y(iδ, ε) =
∫ iδ

0
ex2/εy(x, ε)−2dx

10



where δ > 0 is an arbitrary constant. J̃ is defined from a resonant solution and an
arbitrary constant, but its expansion in powers of ε1/2 (as ε → 0) depends only on the
formal resonant solution ŷ ; we define J as being this expansion. Namely, if we denote by
ŷ(x, ε)−2 =

∑
n≥0 α̂n(ε)xn the expansion of ŷ−2 in powers of x, where each α̂n represents

a formal series in ε, we put

J(ε) :=
∑
n≥0

α̂n(ε) 1
2
in+1 Γ(n+1

2
) ε

n+1
2 .

We will use in sections 5 and 6 the operator K : CI [[x, ε]] → CI [[ε1/2]] which, to a formal
series u(x, ε) =

∑
m,n≥0

am,nx
mεn, associates the formal expansion

Ku(ε) :=
∑

m,n≥0

am,nΓ(m+1
2

)1
2
im+1ε

m+1
2

+n .

With this notation, the second invariant of (g) is J = K(ŷ−2).
Now we have ŷ(x, ε) = 1 + xŷ′(0, ε) +O(x2), hence the first terms of ŷ−2 are given by

α̂0(ε) = 1 and α̂1(ε) = −2I(ε). Therefore J(ε) = i
2

√
πε+ I0ε+O(ε3/2).

Furthermore, as ŷ is analytic in x and Gevrey-1 in ε then ŷ−2 is Gevrey-1, too, hence
α̂n(ε) =

∑
m≥0 αm,nε

m satisfies

∃A,C ≥ 1 ∀m,n ∈ IN, |αm,n| ≤ ACm+nm! .

Writing J in the form J = J1 +
√
εJ2:

J(ε) =
∑
ν≥1

 ∑
m+n+1

2
=ν

αm,n
1
2
in+1Γ

(
n+1

2

) εν +
√
ε
∑
ν≥0

 ∑
m+n

2
=ν

αm,n
1
2
in+1Γ

(
n+1

2

) εν

and using Γ
(

n+1
2

)
≤
(

n+1
2

)
! if n is odd, Γ

(
n+1

2

)
≤ 2

(
n
2

)
! if n is even, and

∑
m+n′=ν

m!n′! ≤ 3ν! ,

it follows that J1 and J2 are Gevrey-1 in ε.

4.2 Auxiliary statements

In terms of the scalar equations, the equivalence relations of definition 1 can be expressed
as follows: We have (g) ∼ (g̃) if and only if there exist two functions a and b ∈ H0

(i.e. holomorphic in a neighborhood of (0, 0) ∈ CI 2) such that the change of unknowns
ỹ = a(x, ε)y + εb(x, ε)y′ transforms equation (g) to equation (g̃). The corresponding
matrix transformation is given by

T =
(
a b
εc d

)
, c = a′ − gb, d = a+ εb′ + 2xb . (19)

We have (g) ≈ (g̃) if moreover the functions a and b satisfy

a(0, ε) = 1, a′(0, ε) = b(0, ε) = b′(0, ε) = 0

11



for all ε in a neighborhood of 0.
In addition to these equivalence relations, we will use the following intermediate rela-

tion. We write (g) ∼1 (g̃) if (g) ∼ (g̃) and if moreover the functions a and b which realize
the equivalence satisfy b(0, ε) = b′(0, ε) = 0 and a(0, ε) = 1.

We write (I, J) ∼1 (Ĩ , J̃) if there exists ϕ holomorphic in a neighborhood of ε = 0
such that Ĩ = I + ϕ and J̃ = J , in other words if (I, J) ∼ (Ĩ , J̃) with A = D ≡ 1 and
B ≡ 0 (C = ϕ).

We will show together with the analogues of theorems 2 and 4 for Ro,Ko that Φo

induces a bijection Φo
∼1

: Ro/∼1→ Ko/∼1. Observe that the last sentence of theorem 4
now actually means that there exists an equation that is linear in ε in each equivalence
class of Ko/∼1.

We now present two elementary results which will be very useful for the sequel. The
first one expresses the equivalences between 0-resonant equations in terms of the functions
a, b of (19). In the second one we construct functions a, b satisfying these conditions with
prescribed initial values at x = 0.

Proposition 10 . — Let (g) and (g̃) be two 0-resonant equations. Recall that H0 is
the space of functions holomorphic in a neighborhood of (0, 0) ∈ CI 2 and that we require
g(0, 0) = g̃(0, 0) = 0.

1 – We have (g) ∼ (g̃) if and only if there exist two functions a and b in H0 that
satisfy both relations below at any point (x, ε) (in a neighborhood of (0, 0)) :

(W ) a2 + ε(ab′ − a′b) + 2xab+ εgb2 = 1 , (20)

(T ) εa′′ − εg′b− 2εgb′ − ag + ag̃ − 2xa′ = 0 , (21)

as well as a(0, 0) = 1. As a consequence a′(0, 0) = −b(0, 0).
2 – We have (g) ∼1 (g̃) if and only if there exist a, b ∈ H0 satisfying (W ) and (T ) at

any (x, ε) small enough and such that a(0, ε) = 1, b(0, ε) = b′(0, ε) = 0 for all ε small
enough. As a consequence a′(0, 0) = 0.

3 – We have (g) ≈ (g̃) if and only if there exist a, b ∈ H0 satisfying (W ) and (T ) for
all x, ε small enough and such that a(0, ε) = 1, b(0, ε) = b′(0, ε) = a′(0, ε) = 0 for all ε
small enough.

Remarks: 1 – The letters x and ε in formulae (W ) and (T ) denote the canonical projections
as remarked above definition 1.

2 – The above statement has the advantage to avoid the use of the solutions y and ỹ.
Of course the equivalence between the equations is given by ỹ = ay + εby′.

3 – The transformation T of (19) satisfies the differential equation:

εT ′ = R̃T − TR . (22)

Proof of proposition 10. 1 – Assume that (g) ∼ (g̃) and denote by a, b the functions
that realize the equivalence. We can assume that a(x, 0) and b(x, 0) do not both vanish
identically; otherwise one can realize the equivalence also by 1

ε
a and 1

ε
b. Equation (22)

yields 
a′ = c+ gb
εb′ = d− a− 2xb
εc′ = gd− g̃a+ 2xc
d′ = −g̃b− c

(23)

12



The first two equations give c = a′ − gb and d = a+ 2xb+ εb′. With c and d replaced by
their expressions, the third equation yields (T ); the last one gives

εb′′ + 2xb′ + (g̃ − g + 2)b+ 2a′ = 0 . (24)

Multiplying (24) by a and (T ) by b, the difference of both equations is 2aa′ + ε(ab′′ −
a′′b) + 2ab+ 2xa′b+ 2xab′ + εg′b2 + 2εgbb′ = 0, which yields by integration

a2 + ε(ab′ − a′b) + 2xab+ εgb2 = w(ε), (25)

where w depends only upon ε. This is equation (W ) except that 1 is replaced by w(ε).
Actually, this equation can be directly obtained from the wronskians of (g) and (g̃).

Both wronskians are multiples of exp(x2/ε), hence necessarily detT depends only on ε.
Now equation (T ) with ε = 0 implies that a(x, 0) satisfies some linear first order dif-

ferential equation. As g(0, 0) = g̃(0, 0) = 0, we find that a(x, 0) = C exp
(∫ x

0
g̃(t,0)−g(t,0)

2t
dt
)

with some constant C. We claim that C 6= 0. Otherwise, a(x, 0) = 0 for all x and (24)

with ε = 0 implies as above that b(x, 0) = D
x

exp
(∫ x

0
g(t,0)−g̃(t,0)

2t
dt
)

with some constant

D. Now D = 0 would imply that also b(x, 0) = 0 for all x which had been excluded at
the beginning of the proof and D 6= 0 would imply that b(x, 0) has a pole at x = 0 which
contradicts our definition of equivalence. Thus we have shown that C 6= 0 and hence
a(0, 0) = C 6= 0.

Putting x = ε = 0 in (25) , we find that w(0) = C2 6= 0 and therefore there is a
function t(ε) analytic at ε = 0 with t(0) = C such that w(ε) = t(ε)2. Dividing a, b by t(ε)
finally yields one direction of statement 1.

Conversely, if a and b satisfy the assumptions of the theorem, then they satisfy (T )
and (24), hence the elements a, b, c, d of the matrix defined by (19) satisfy (23) and T
satisfies (22). Hence T realizes a transformation between the matrix equations associated
to (g) and (g̃), with T (0, 0) invertible.

The statement a′(0, 0) = −b(0, 0) follows by differentiation of (W ) and evaluation at
x = ε = 0 (and also directly from (24)).

The statements 2 and 3 follow from the first and the conditions imposed on T resp.
a, b.

The following proposition will be useful in the next section for finding 0-resonant
equations equivalent to a given one.

Proposition 11 . — Suppose that A,B,C,D analytic in a neighborhood of ε = 0 are
given and that A(0) = D(0) = 1, C(0) = −B(0) and AD− εBC ≡ 1. Let g be a function
analytic near x = ε = 0 with g(0, 0) = 0. Then there exist a, b analytic in a neighborhood
of x = ε = 0 satisfying condition (W ) of proposition 10 and

a(0, ε) = A(ε), a′(0, ε) = C(ε) + g(0, ε)B(ε)

b(0, ε) = B(ε), b′(0, ε) = 1
ε
(D(ε)− A(ε)) .

(26)

Proof. Let us assume first that a, b exist that satisfy (W ) and (26). Then the function
q = b

a
has to satisfy q(0, ·) = B

A
and q′(0, ·) = ab′−ba′

a2 (0, ·) = L with

L :=
1

A2

(
1

ε
A(D − A)−B(C +RB)

)
, (27)
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where R(ε) = g(0, ε). Therefore we are led to put

q(x, ε) :=
B

A
(ε) + xL(ε) +

x2

2
Q(ε)

where the coefficient Q of the “quadratic” term will be determined later.
Division of equation (W ) by a2 (non zero in a neighborhood of 0), yields

1 + εq′ + 2xq + εgq2 = a−2 , (28)

which leads to set a := (1 + εq′ + 2xq + εgq2)−1/2 and b := aq.

Now let us check that a, b defined above satisfy the conditions we want for suitably
chosen Q. (W ) is obviously satisfied. Concerning (26) :

• Formula (28) yields a(0, ·)−2 = 1+εL+εR
(

B
A

)2
= 1

A2 (A2 + A(D − A)− εB(C +RB)

+εRB2) = 1
A2 (AD − εBC) = A−2, hence a(0, ·) = A since both these holomorphic

functions take the same value 1 at ε = 0.

• We have b(0, ·) = a(0, ·)q(0, ·) = A B
A

= B.

• Differentiation of (28) yields

−2a−3a′ = εq′′ + 2xq′ + 2q + εg′q2 + 2εgqq′ ,

therefore −2A−3a′(0, ·) = εQ+ 2B
A

+ εg′(0, ·)
(

B
A

)2
+ 2εRB

A
L which is of the form εQ+ P

with P (0) = 2B(0). Thus a′(0, ·) = C +RB is satisfied, if we choose

Q :=
1

ε

(
−2A−3(C +RB)− P

)
which is holomorphic, since A(0) = 1, −2C(0) = 2B(0) = P (0) and R(0) = 0.

• Finally, b = aq gives b′ = a′q + aq′, hence b′(0, ·) = (C + RB)B
A

+ AL. Replacing L

by its value (cf. (27)), this gives b′(0, ·) = 1
A

(
(C +RB)B + 1

ε
A(D − A)−B(C +RB)

)
=

1
ε
(D − A). This completes the verification of (26).

5 Formal and analytic classification for the special

case

In this section we will show that the quotient functions Φo
∼ : Ro/∼→ Ko/∼,Φo

∼1
Ro/∼1→

Ko/∼1 and Φo
≈ : Ro/≈→ Ko analogous to those of theorems 2, 4 and just above propo-

sition 10 in the case of f(x, ε) = 2x are well defined and injective. This justifies the
definitions of ∼ and ∼1 for the invariants. In the proof, we will use the formal equivalence
≈̂ related to ≈.

For the formal equivalence, g and g̃ are still holomorphic at (0, 0) (and satisfy g(0, 0) =
g̃(0, 0) = 0), but the functions a and b which realize the equivalence are only assumed to
be in CI [[x, ε]].

Indeed, thanks to lemma 7 we have the following.

14



Proposition 12 . — If (g) and (g̃) are two analytic 0-resonant equations with (g)≈̂(g̃),
then (g) ≈ (g̃). In other words, if there exists T ∈ GL(2,CI [[x, ε]]) with T (0, ε) = 1 such
that ỹ = Ty transforms (g) in (g̃), then there exist x0, ε0 > 0 such that T converges for
all |x| < x0 and |ε| < ε0.

Proof. As already mentioned (see remark 3 below proposition 10), T is a solution of the
linear singularly perturbed equation (22), considered as a system in CI n2

and rewritten
below:

εT ′ = R̃T − TR

with the initial condition T (0, ε) = 1. Hence the statement follows from lemma 7.

This will be useful in order to prove the following result.

Theorem 13 . — Let (g) and (g̃) be two analytic 0-resonant equations with invariants
respectively (I, J) and (Ĩ , J̃).

1 – We have (g) ≈ (g̃) if and only if (I, J) = (Ĩ , J̃).
2 – We have (g) ∼ (g̃) if and only if (I, J) ∼ (Ĩ , J̃).
3 – We have (g) ∼1 (g̃) if and only if (I, J) ∼1 (Ĩ , J̃).

Before beginning the proof of this result, we need some further preliminaries.
As before, ŷ denotes the only formal resonant solution of (g) with ŷ(0, ε) = 1. Now

we set
Zŷ(x, ε) = ex2/εŷ(x, ε)v̂(x, ε)

where v̂(x, ε) =
∑
n≥0

vn(x)εn is the only formal solution of

εv′ + 2xv = εŷ−2 .

This solution is determined recursively by v0 = 0 and 2xvn+1 = zn − v′n for n = 0, 1, ...,
where zn are given by ŷ−2(x, ε) =

∑
n≥0 zn(x)εn. The function vn has a pole of order at

most 2n at x = 0.
This formal expression has the following analytic meaning. Given an analytic resonant

solution y of (g), a second (analytic) solution Zy of (g) is given by

Zy(x, ε) = y(x, ε)
∫ x

0
eξ2/εy(ξ, ε)−2dξ .

It is easily shown that v̂ is the asymptotic expansion of e−x2/εZy(x, ε)/y(x, ε) as ε→ 0 in
the domain Re(x2) > 0.

We recall the operator K : CI [[x, ε]] → CI [[ε1/2]] which, to a formal series f̂ in x, ε,

associates the formal expansion in ε1/2 of
∫ iδ

0
ex2/εf̂(x, ε)dx.

Precisely, if f̂(x, ε) =
∑

m,n≥0

am,nx
mεn, then Kf̂ is given by

Kf̂(ε) =
∑

m,n≥0

am,nΓ(m+1
2

)1
2
im+1ε

m+1
2

+n .

Recall that the second invariant of (g) is J = K(ŷ−2). The following result will be useful
in the proof of theorem 13.
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Lemma 14 . — 1 – Given f̂ ∈ CI [[x, ε]], we have Kf̂ = 0 if and only if there exists
ĝ ∈ CI [[x, ε]] such that ĝ(0, ε) = 0 and εĝ′ + 2xĝ = f̂ .

2 – More generally, for all f̂ ∈ CI [[x, ε]] there exist unique formal series ĝ ∈ CI [[x, ε]]
and â ∈ CI [[ε]] such that

εĝ′ + 2xĝ = f̂ − â .

3 – If f̂ , â, ĝ are as above then we have Kf̂ = i
2

√
πε â− εĝ(0, ·).

Proof. 2 – Let f̂ ∈ CI [[x, ε]]. Writing f̂(x, ε) =
∑

n≥0 fn(x)εn, ĝ(x, ε) =
∑

n≥0 gn(x)εn,
with fn, gn ∈ CI [[x]], and â(ε) =

∑
n≥0 anε

n, we obtain the equations

2xg0(x) = f0(x)− a0

and for n ≥ 1,

g′n−1(x) + 2xgn(x) = fn(x)− an .

The condition gn ∈ CI [[x]] uniquely determines an, and we obtain an and gn recursively:

a0 = f0(0) , g0(x) =
1

2x
(f0(x)− a0) ,

and for n ≥ 1,

an = fn(0)− g′n−1(0) , gn(x) =
1

2x

(
fn(x)− an − g′n−1(x)

)
.

3 – Straightforward computation shows that K(εĝ′ + 2xĝ) = −εĝ(0, ε) if ĝ(x, ε) = xm

for some m ∈ IN. As K apparently is CI [[ε]]-linear and continuous w.r.t. the topology of
formal series in x, ε, this proves the formula for all ĝ (one could also use the fact that

(Kf̂)(ε) is the formal expansion of
∫ iδ

0
ex2/εf̂(x, ε)dx). Now Kâ(ε) = i

2

√
πε â(ε) and

hence Kf̂(ε) = −εĝ(0, ε) + i
2

√
πε â(ε) follows from the the preceeding statement.

Statement 1 follows obviously from the 2 and 3.

Proof of theorem 13. Recall that ŷ is the unique formal solution of (g) with ŷ(0, ε) = 1
and that the equivalence relation ỹ = ay + εby′ between the equations implies (cf. also
(22) and (23)) that also

ỹ′ = (a′ − gb)y + (a+ 2xb+ εb′)y′ . (29)

Of course, ẑ = aŷ + εbŷ′ is a non-trivial formal resonant solution of g̃, but it does not
necessarily satisfy ẑ(0, ε) = 1 in the cases of ∼, ∼1.

We first prove that (I, J) is indeed an invariant for the relation ≈. If (g) ≈ (g̃) then
we have a(0, ε) = 1, a′(0, ε) = b(0, ε) = b′(0, ε) = 0, hence ỹ = aŷ + εbŷ′ is the formal
resonant solution of (g̃) with ỹ(0, ε) = 1. Thus Ĩ = ỹ′(0, ε) = ŷ′(0, ε) = I. In order to
show that J = J̃ , it suffices to prove that the formal expression Kf̂ vanishes, where

f̂ := ỹ−2 − ŷ−2 = (aŷ + εbŷ′)−2 − ŷ−2 .
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In order to show this, put ĝ := b
ŷỹ

= b
ŷ(aŷ+εbŷ′)

. A short calculation shows that εĝ′+2xĝ =

f̂ , hence by lemma 14 we have Kf̂(ε) = −εĝ(0, ε) = −εb(0, ε)/ỹ(0, ε) = 0. Note that the
formula

K(ỹ−2 − ŷ−2)(ε) = −εb(0, ε)/ỹ(0, ε) (30)

is still valid for relations ∼ and ∼1.

Suppose now that (g) ∼1 (g̃). Then we still have a(0, ε) = 1, b(0, ε) = b′(0, ε) = 0 but
not necessarily a′(0, ε) = 0. Hence we have Ĩ(ε) = ỹ′(0, ε) = a′(0, ε) + I(ε). On the other
hand, we still have (J̃ − J)(ε) = K(ỹ−2 − y−2)(ε) = 0. Thus we obtain (Ĩ , J̃) ∼1 (I, J)
in this case. Observe that proposition 10 yields that a′(0, 0) = 0; this also follows from
(I, J) ∼1 (Ĩ , J̃) and (I, J), (Ĩ , J̃) ∈ Ko.

In the case of (g) ∼ (g̃), proposition 10 still allows us to assume that (W ) holds and
a(0, 0) = 1 and a′(0, 0) = −b(0, 0). The formula ỹ(x, ε) = a(x, ε)ŷ(x, ε) + εb(x, ε)ŷ′(x, ε)
no longer gives the formal resonant solution of (g̃) reducing to 1 at x = 0; it is now given

by z̃(x, ε) = ỹ(x,ε)
λ(ε)

where λ(ε) = ỹ(0, ε) = a(0, ε) + b(0, ε)I(ε). Using (29), we find

Ĩ(ε) = z̃′(0, ε) =
1

λ(ε)
[(a′(0, ε)− g(0, ε)b(0, ε)) + (a(0, ε) + εb′(0, ε))I(ε)].

With A(ε) = a(0, ε), B(ε) = b(0, ε), C(ε) = a′(0, ε) − g(0, ε)b(0, ε) and D(ε) = a(0, ε) +
εb′(0, ε), we obtain the first part of (8). Moreover by (30), J̃ = K(λ2ỹ−2) = λ2K(ỹ−2) =
λ2 (K(ŷ−2)− εb(0, ε)/ỹ(0, ε)) = λ2(J − εB/λ), which corresponds to the second part of
(8). The conditions for A,B,C,D required in (8) follow from the statements at the
beginning of this paragraph.

Conversely, let 0-resonant equations (g) and (g̃) with I = Ĩ and J = J̃ be given. We
have to find a transformation T between the corresponding matrix equations (R) and (R̃)
whose entries are formal series in x, ε that satisfies T (0, ε) = 1. We recall that v̂ denotes
the only formal series solution of

εv′ + 2xv = εŷ(x, ε)−2

(its coefficients may have poles at x = 0). A formal fundamental solution of (R) is given
by:

Y =
(
ŷ ẑ
εŷ′ εẑ′

)
where ẑ := Zŷ = ex2/εŷv̂. A brief calculation shows that

Y =
(
ŷ 0
εŷ′ εŷ−1

)(
1 v̂
0 1

)(
1 0
0 ex2/ε

)
.

An analogous formula holds for a formal fundamental solution Ỹ of (R̃). Hence a trans-
formation between both equations, given by T := Ỹ Y −1, can be written as

T =
(
ỹ 0
εỹ′ εỹ−1

)(
1 ṽ − v
0 1

)(
y 0
εy′ εy−1

)−1

.

It remains to show that the coefficients of εn of the entries of T have no poles at x = 0.
Since K(y−2) = J = J̃ = K(ỹ−2), by lemma 14 there is h ∈ CI [[x, ε]] such that h(0, ε) = 0
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and εh′ + 2xh = ỹ−2 − y−2. Since g := 1
ε
(ṽ − v) satisfies εg′ + 2xg = ỹ−2 − y−2, too, we

conclude that u := g − h ∈ CI [[x, ε]] is a solution of εu′ + 2xu = 0, therefore u = 0. It
follows that g = h ∈ CI [[x, ε]] and g(0, ε) = 0. We obtain that

T =
(
ỹ 0
εỹ′ ỹ−1

)(
1 g
0 1

)(
y−1 0
−εy′ y

)

has entries in CI [[x, ε]] . Moreover, T (0, ε) =
(

1 0
εĨ(ε) 1

)(
1 0
0 1

)(
1 0

−εI(ε) 1

)
= 1 since

I = Ĩ. This proves that (g)≈̂(g̃) and thus by proposition 12, we obtain g ≈ (g̃).
Now let (g) and (g̃) two 0-resonant equations such that their invariants satisfy (I, J) ∼

(Ĩ , J̃) (resp. (I, J) ∼1 (Ĩ , J̃)). We show below

Lemma 15 Under the above conditions, there exists a 0-resonant equation (g) with in-
variants (Ĩ , J̃) satisfying (g) ∼ (g) (resp. (g) ∼1 (g)).

As this new equation (g) and (g̃) have the same invariants, we have shown above that
(g̃) ≈ (g). A fortiori (g̃) ∼ (g) and hence (g̃) ∼ (g) by transitivity. The proof for ∼1 is
the same.

It remains to prove lemma 15. The hypothesis of the lemma means that there exist
A,B,C,D analytic in a neighborhood of ε = 0 satisfying AD − εBC ≡ 1 and A(0) =
D(0) = 1 such that (8) is satisfied. Observe that this and (I, J), (Ĩ , J̃) ∈ Ko imply that
C(0) = Ĩ0 − I0 = −B(0). As seen above, it is sufficient to find an analytic equation
(g) ∼ (g) such that the equivalence between them is realized by a, b satisfying A(ε) =
a(0, ε), B(ε) = b(0, ε), C(ε) = a′(0, ε)− g(0, ε)b(0, ε) and D(ε) = a(0, ε)+ εb′(0, ε) as well
as the conditions of proposition 10.

By proposition 11, we can find a, b with the above initial conditions satisfying (W ).
Condition (T ) now uniquely determines a function g analytic near x = ε = 0 with
g(0, 0) = 0. Thus (g) is an equation equivalent to (g) such that the equivalence is realized
by a, b, its invariants are related to the ones for (g) by (8) and hence they are equal to
(Ĩ , J̃).

The proof for ∼1 is analogous.

6 Construction of 0-resonant equations in the special

case

In this section, we prove the surjectivity of the quotient functions Φo
∼ : Ro/∼→ Ko/∼,

Φo
∼1
Ro/ ∼1→ Ko/ ∼1 and Φo

≈ : Ro/ ≈→ Ko analogous to those of theorem 2, 4 and
below proposition 10 in the case f(x, ε) = 2x. In other words, we prove the existence of
0-resonant equations (g) with a prescribed pair of invariants.

Thus let (I, J) ∈ Ko be given, namely a Gevrey-1 series I = I0 + O(ε) and a series J
in ε1/2 of the form J = J1 + ε1/2J2, with J1, J2 Gevrey-1, whose first terms are given by
J(ε) = i

2

√
πε+ I0ε+O(ε3/2).

We first prove that there exists a function ϕ, analytic (i.e. convergent) in a neighbor-
hood of ε = 0 with ϕ(0) = 0, and an equation (g) with invariants (I + ϕ, J). In other
words, we first prove the surjectivity of Φo

∼ and Φo
∼1

. The surjectivity of Φo
≈ : Ro/≈→ Ko
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will then result from lemma 15 of section 5.
Then we show that the equation is linear in ε.

As in section 3 (with h = 1) we consider, for j = 0, 1, 2, the three sectors

Sj =
{
ε ∈ CI ; 0 < |ε| < ε0, | arg ε− j

2π

3
| < π

2
− µ

}
where ε0, µ > 0 are small enough. U denotes the Banach space of triples ~y = (y0, y1, y2)
of functions yj : Sj → CI that are holomorphic and bounded, with the norm ||~y|| =
max(||y0||0,∞, ||y1||1,∞, ||y2||2,∞), ||y||j,∞ := sup{|y(ε)| ; ε ∈ Sj}.

With Dj := Sj ∩Sj+1 (S3 = S0), D denotes the Banach space of triples ~d = (d0, d1, d2)
of holomorphic functions dj : Dj → CI such that dj(ε)/ε is bounded, with the norm

||~d|| = max
j=0,1,2

sup
ε∈Dj

∣∣∣∣∣dj(ε)

ε

∣∣∣∣∣
(identified to the corresponding space of holomorphic functions on D0 ∪D1 ∪D2).

∆ denotes the difference operator ∆ : U0 → D, ~y 7→ ~d with dj = yj+1 − yj. As in
section 3, U0 is the subset of U of all ~y such that ∆~y ∈ D. We recall the right inverse of
∆ of section 3: Σ : D → U0, ~d 7→ Σ~d defined by

Σ~d (ε) = 12
π

2∑
j=0

∫ (2j+1)π
3

+ π
24

(2j+1)π
3

− π
24

(
1

2πi

∫ ε0eiθ

0
dj(µ)

dµ

µ− ε

)
dθ .

We recall the statement of theorem 5:

1 – Σ is bounded and satisfies ∆Σ = id : D → D.
2 – We have ker ∆ = Hε0 , the space of holomorphic and bounded functions on D(0, ε0).
3 – For all ~g ∈ U we have Σ∆~g − ~g ∈ Hε0 .
4 – The operator L defined from D into U by

L~d := εΣ(~d )− Σ(ε~d ) (31)

takes its values in CI . In other words, for all ~d ∈ D the function L~d is constant with
respect to ε.

Now we set Bρ = {x ∈ CI ; |x| < ρ}, where ρ > 0 will be determined later. Uρ and Dρ

denote the spaces of functions of both variables x and ε analogous to U and D:

Uρ = {~y = (y0, y1, y2) ; yj : Bρ × Sj → CI holomorphic bounded , j = 0, 1, 2}

with the max-sup norm on j, x and ε,

Dρ = {~d = (d0, d1, d2) ; dj : Bρ ×Dj → CI holomorphic, dj(x, ε)/ε bounded , j = 0, 1, 2}

with the corresponding norm, and similarly Uρ,0 is the subset of Uρ of all ~y such that ∆~y ∈
Dρ. The operator Σ naturally induces a bounded linear operator also noted Σ : Dρ → Uρ.

The above statements naturally carry over to Uρ and Dρ. For instance, for all ~d ∈ Dρ the

function L~d = εΣ(~d)− Σ(ε~d) is constant with respect to ε.
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The following Banach space will also be useful. Fix δ > 0 and let Gρ,δ be the set of all
~u ∈ Uρ such that there exists L > 0 satisfying

|(uj+1 − uj)(x, ε)| ≤ L exp(−(ρ2 + δ)/ |ε|) for all j, x ∈ Bρ, ε ∈ Dj .

equipped with the norm ||~u||Gρ,δ
= max(||~u||Uρ

, Gρ,δ(~u)) where

Gρ,δ(~u) = sup{|(uj+1 − uj)(x, ε)|e(ρ
2+δ)/|ε| ; j = 0, 1, 2, x ∈ Bρ, ε ∈ Dj} . (32)

We recall the operator K : C[[x, ε]] → CI [[ε1/2]] that associates, to a series g =∑
n=0∞ gn(x)εn, the expansion in ε1/2 of the expression

∞∑
n=0

∫ i∞

0
ex2/εgn(x)dx εn .

As indicated in subsection 4.1, Kg can be written Kg = K1g + ε1/2K2g, where K1g and
K2g are formal series in ε, K1g without constant term. Recall also that, given a 0-resonant
equation (g), its second invariant is J = K(ŷ −2), where ŷ is a formal 0-resonant solution
of (g) satisfying ŷ(0, ε) = 1. By misuse of notation, we apply K also to functions of x, ε
having an asymptotic expansion as ε → 0 (and to triples of functions having a common
asymptotic expansion, for example elements of Gρ,δ).

Let k denote the restriction of K to functions of x only. The following properties of k
and K will be useful:

Lemma 16 . — The operator k maps CI {x} into εCI [[ε]]1 +
√
εCI [[ε]]1 and is bijective.

The linear operator k−1K maps Gρ,δ into Hρ and satisfies∣∣∣∣∣∣k−1K~u
∣∣∣∣∣∣ ≤ (

ρ2

δ
+ 1

2

)
Gρ,δ(~u) +

(
1 + 2ρ2

ε0
eρ2/ε0

)
||~u||Uρ

.

Proof. Since ∫ i∞

0
ex2/εxndx = 1

2
Γ
(

n+1
2

)
in+1ε

n+1
2 ,

we have

k

∑
n≥0

gnx
n

 =
∑
ν≥0

g2ν+1

2
Γ(ν + 1)(−1)ν+1εν+1 +

√
ε

∑
ν≥0

g2ν

2
Γ
(
ν + 1

2

)
i(−1)νεν


which clearly shows that the correspondence between convergent power series in x and
pairs of Gevrey-1 series in ε is one-to-one.

In order to prove the second statement, we first have to find a relation between a
triple ~u ∈ Gρ,δ and the right hand side û(x, ε) =

∑∞
n=0 ũn(x)εn of its common asymptotic

expansion. This is done by the well known Cauchy–Heine formula (cf. [10]); here we find

ũn(x) = 1
2πi

3∑
j=1

∫ Tj

Tj−1

uj(x, z)

zn+1
dz + 1

2πi

3∑
j=1

∫ Tj

0

uj+1(x, z)− uj(x, z)

zn+1
dz (33)

where Tj ∈ Sj∩Sj+1 have modulus ε0, and the paths from 0 to Tj are line segments, those
from Tj−1 to Tj are close to the circular arcs between the two points.
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A straightforward estimate implies for n ≥ 1

|ũn(x)| ≤ ||~u||Uρ
ε−n
0 + 3

2π
(n− 1)!(ρ2 + δ)−nGρ,δ(~u) (34)

as well as |ũ0(x)| ≤ ||~u||Uρ
+ 3

2π
Gρ,δ(~u)) for all x ∈ Bρ if ε0 ≤ ρ2 + δ.

Denote now by S : Hρ → Hρ the operator given by

S(ϕ)(x) := −2x
∫ x

0
ϕ(ξ)dξ

and by Sn its n-th iterate. With this notation, a short calculation shows that

k−1K(εnxm) = (−1)n
Γ
(

m+1
2

)
Γ
(

m+1
2

+ n
)x2n+m = Sn(xm) .

Hence k−1K(û(x, ε)) = k−1K(
∑

n≥0 un(x)εn) =
∑

n≥0 S
n(un)(x). Another short calcula-

tion shows that for all v ∈ Hρ, n ≥ 1

|Sn(v)(x)| ≤ Γ( 1
2)

Γ(n+ 1
2)
|x|2n‖v‖ ≤ 2

(n−1)!
ρ2n ||v|| . (35)

Together with (34) we obtain

‖k−1K(û)‖ ≤ ||~u||Uρ
+ 3

2π
Gρ,δ(~u)+

∑
n≥1

2
(n−1)!

ρ2n
(
||~u||Uρ

ε−n
0 + 3

2π
(n− 1)!(ρ2 + δ)−nGρ,δ(~u)

)

≤
(
1 + 2ρ2

ε0
eρ2/ε0

)
||~u||Uρ

+

∑
n≥1

(
ρ2

ρ2+δ

)n
+ 1

2

Gρ,δ(~u) .

This finally yields the wanted estimate.

Let us now consider both invariants I, J . From I we construct, by the classical trun-
cated Borel-Laplace transform, a triple ~I ∈ U (reducing ε0 if necessary) of functions

having I as common asymptotic expansion. Let ~d := ∆~I. It is known too that ~d de-
creases exponentially as ε → 0 (cf. [2] for details). Precisely there exists γ > 0 such
that

∀ε ∈ D0 ∪D1 ∪D2, |~d (ε)| ≤ |ε|e−γ/|ε| (36)

(the factor |ε| will be useful to fit with the norm of D).

Assume for the moment that some ~u ∈ Uρ exists that satisfies

~u = f + Σ(~d · Z~u)− x(Σ~d )(0) (37)

with ~d · Z~u := (dj Z uj)j=0,1,2 and where f ∈ Hρ, the space of holomorphic functions
on Bρ = D(0, ρ) (identified to the space of functions of Uρ constant with respect to ε),
satisfies f(0) = 1 and f ′(0) = I0, the first term of I. Recall that Zu is defined by
Zu(x, ε) = u(x, ε)

∫ x
0 e

ξ2/εu(ξ, ε)−2 dξ.

In that case, we have ∆~u = ~d · Z~u. We then deduce that the function

g(x, ε) := −ε~u
′′

~u
(x, ε) + 2x

~u ′

~u
(x, ε) (38)
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is holomorphic in a neighborhood of (x, ε) = (0, 0), i.e. it is single valued with respect
to ε and remains bounded as ε → 0. Indeed, we can define functions gj : Bρ × Sj → CI

by gj(x, ε) := −εu′′j
uj

(x, ε) + 2x
u′j
uj

(x, ε) . Then uj satisfy the differential equations εu′′j −
2xu′j + gj(x, ε)uj = 0 for ε ∈ Sj. On the other hand, we know that Zuj satisfies the same
differential equation as uj and thus, for ε ∈ Dj, uj and uj+1 = uj + dj(ε)Zuj satisfy the
same equation. Hence gj(x, ε) = gj+1(x, ε) for x ∈ Bρ, ε ∈ Dj; here j = 0, 1, 2. Hence the
three functions gj define one analytic function g : Bρ ×D(0, ε0) → CI .

Since ∆(~u′(0, ε)) = (∆~u)′(0, ε) = (~d · Z~u)′(0, ε) = ~d(ε) = ∆~I(ε), statement 3 of

theorem 5 implies that ϕ(ε) := ~u ′(0, ε) − ~I(ε) ∈ CI {ε}; moreover the “correction” term
in (37) yields u′(0, 0) = f ′(0) = I0.

This means, that for any analytic function f , if we find a solution ~u of (37), then the
equation (g), g defined by (38), has as first invariant the series expansion of ~u ′(0, ε) which
is equal to I(ε) + ϕ(ε) where ϕ ∈ CI {ε} with ϕ(0) = 0.

In order to solve (37), we consider it as a fixed point equation. Let us introduce the
following subsets.

U := {~u ∈ Uρ ; ‖~u− 1‖ ≤ 1/2} .
F := { f ∈ Hρ ; f(0) = 1, f ′(0) = I0, ||f − 1|| ≤ 1/4} .

Of course, we only consider ρ < 1
4|I0| ; otherwise F would be empty.

Lemma 17 . — Let γ > 0 satisfy (36) and ρ2 < γ, then for f ∈ F and ε0 small enough

the operator Ψ : ~u 7→ f + Σ(~d · Z~u)− xΣ(~d)(0) is a contraction in U .

Proof. For simplicity we omit the arrow ~ on u and d in this proof.
Given u ∈ U , we have ‖u‖ ≤ 3

2
and ‖u−2‖ ≤ 4, hence

|Zu(x, ε)| ≤ ‖u‖
∫ ρ

0
eξ2/|ε|‖u−2‖ dξ ≤ 6ρeρ2/|ε| . (39)

We obtain using (36) that ‖d · Zu‖D ≤ 6ρe(ρ
2−γ)/ε0 and ‖d‖D ≤ e−γ/ε0 . If M > 0 denotes

a bound for ‖Σ‖ given by theorem 5, then this yields

‖Ψ(u)− 1‖ = ‖f − 1 + Σ(d · Zu)− xΣ(d)(0)‖ ≤ 1
4

+ 7Mρe(ρ
2−γ)/ε0

which is at most 1
2

if |ε| < ε0 ≤ γ−ρ2

ln(28Mρ)
(in the case 28Mρ < 1, there is no restriction on

ε0). So Φo(u) ∈ U for ε0 sufficiently small.

Given u1, u2 ∈ U , we first write Zu1 − Zu2 in the form

(Zu2 − Zu1)(x, ε) = (u2(x, ε)− u1(x, ε))
∫ x

0
eξ2/εu−2

2 (ξ, ε)dξ −

u1(x, ε)
∫ x

0
eξ2/ε

(
1

u1(ξ,ε)u2
2(ξ,ε)

+ 1
u2
1(ξ,ε)u2(ξ,ε)

)
(u2(ξ, ε)− u1(ξ, ε)) dξ

and find

|(Zu2 − Zu1)(x, ε)| ≤
∫ x

0
e|ξ|

2/|ε||dξ|
(
4 + 3

2
× (8 + 8)

)
‖u2 − u1‖ ≤ 28ρeρ2/|ε|‖u2 − u1‖ .

This gives

‖Ψ(u2)−Ψ(u1)‖ = ‖Σ(d · (Zu2 − Zu1))‖ ≤ 28Mρe(ρ
2−γ)/ε0‖u2 − u1‖ .
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Hence Ψ is a contraction provided that ε0 is small enough, namely ε0 <
γ−ρ2

ln(28Mρ)
(in the

case 28Mρ > 1 only; otherwise no restriction for ε0 is needed).

Thus for f ∈ F , equation (37) has a unique solution ~u ∈ U provided ε0 is small enough.

Thus we can consider now the operator ~P : F → U which associates to any f ∈ F the
corresponding solution ~u ∈ U of (37).

In order to construct a 0-resonant equation with a pair of invariants of the form
(I + ϕ, J), it thus suffices to find f ∈ F such that K

(
(~Pf)−2

)
= J . Using the inverse

k−1 introduced above, this amounts to finding f such that(
(k−1K)(~Pf)−2

)−1/2
= g0 with g0 :=

(
k−1J

)−1/2
. (40)

We will show that N defined by Nf :=
(
(k−1K)(~Pf)−2

)−1/2
is close to the identity,

if ε0 is sufficiently small and conclude that Nf = g0 has a solution in F . Observe that
the admissibility of (I, J) implies that g0(0) = 1 and g′0(0) = I0; thus g0 ∈ F and even
||g0 − 1|| ≤ 1

16
if ρ is chosen small enough.

From now on, we fix ρ, δ > 0 satisfying additionally 2ρ2 + δ < γ. First as in the proof
of lemma 17, we show that

∣∣∣∣∣∣~Pf − f
∣∣∣∣∣∣
Uρ
≤ 7Mρe(ρ

2−γ)/ε0 . Using that ~u = ~Pf satisfies

(37), we find that (using Gρ,δ defined in (32))

Gρ,δ(~Pf −f) = Gρ,δ(~Pf) = sup{|dj(ε)(Zuj)(x, ε)| e(ρ
2+δ)/|ε| ; j = 0, 1, 2, x ∈ Bρ, ε ∈ Dj}

and hence by (36) and (39) that Gρ,δ(~Pf − f) ≤ 6ρε0e
(2ρ2+δ−γ)/ε0 for f ∈ F . As∣∣∣∣∣∣(~Pf)−1

∣∣∣∣∣∣ ≤ 2 and ||f−1|| ≤ 4/3 (we consider the multiplicative inverses here), we

find
∣∣∣∣∣∣(~Pf)−2 − f−2

∣∣∣∣∣∣
Uρ

≤ 63Mρe(ρ
2−γ)/ε0 and Gρ,δ((~Pf)−2 − f−2) = Gρ,δ((~Pf)−2) ≤

96ρε0e
(2ρ2+δ−γ)/ε0 for f ∈ F . In both estimates, we used the formula b−2 − a−2 =

(a−2b−1 + a−1b−2)(a − b). Using lemma 16 and, of course, the fact that K reduces to
k on F ⊂ Hρ, this yields∣∣∣∣∣∣k−1K(~Pf)−2 − f−2

∣∣∣∣∣∣
Hρ
≤ e(2ρ2+δ−γ)/ε0

(
63Mρ

(
2ρ2

ε0
+ 1

)
+ 96ρε0

(
ρ2

δ
+ 1

2

))
=: L(ρ, δ, ε0)

for f ∈ F . Then, for sufficiently small ε0 > 0, the right hand side L(ρ, δ, ε0) of the last
estimate is smaller than 1/9. As f ∈ F implies ||f−2 − 1|| ≤ 7/9, the above estimate

shows that
∣∣∣∣∣∣k−1K(~Pf)−2 − 1

∣∣∣∣∣∣ ≤ 8/9 and hence the square root of k−1K(~Pf)−2 can

be defined as the principal value. Furthermore, using the inequality
∣∣∣b−1/2 − a−1/2

∣∣∣ ≤
1
2
(min0≤t≤1 |a+ t(b− a)|)−3/2 |b− a|, we finally obtain that

||Nf − f ||Hρ
≤ 27

2
L(ρ, δ, ε0) <

1

16
(41)

for all f ∈ F , provided ε0 is sufficiently small.
Consider now F2 = {f ∈ F ; ||f − 1||Hρ

≤ 1/8} and the mapping ψ : F2 → Hρ given

by ψ(f) = g0 − (Nf − f) (cf. (40)). Recall that ||g0 − 1|| ≤ 1
16

if ρ is sufficiently small.
Thus ψ maps F2 into itself because of (41) if ε0 and ρ are sufficiently small. We will show
below that ψ is a contraction and hence it has a unique fixed point in F2 in this case.

In order to show that ψ is a contraction, fix f ∈ F2 and h ∈ Hρ with ||h||Hρ
= 1 for a

moment and consider the mapping Ψ(t) = ψ(f + th), t ∈ CI , |t| < 1/8. Suppose that ε0 is

23



small enough such that (41) holds for all g ∈ F . As all the elements f + th considered are
in F , (41) implies that ||Ψ(t)− g0||Hρ

< 1/16 for all t, |t| < 1/8. By Cauchy’s inequality,

we obtain ||Ψ′(0)|| ≤ 1/2, i.e. ||ψ′(f)h||Hρ
≤ 1/2 for all f ∈ F2 and ||h||Hρ

= 1. Hence

||ψ′(f)||L(Hρ,Hρ) ≤ 1/2 for all f ∈ F2 and thus ψ is indeed a contraction if ε0 is sufficiently
small.

As we have shown that ψ has a fixed point f ∈ F2, we conclude that the equation
Nf = g0 has a solution in F2 ⊂ F if ε0 and ρ are sufficiently small. With this choice of
f , the solution ~u of the fixed point equation (37) has J as second invariant, and a first
invariant of the form I + ϕ. This shows the surjectivity of the mappings Φo

∼ : Ro/∼→
Ko/∼ and Φo

∼1
: Ro/∼1→ Ko/∼1.

The surjectivity of Φo
≈ : Ro/≈→ Ko follows easily: given (I, J) ∈ Ko, the above proof

shows that there exists a 0-resonant equation (g̃) with invariants (Ĩ , J̃) ∼1 (I, J). Then by
lemma 15, there exists (g) ∼1 (g̃) with invariants (I, J). Thus the proof of the surjectivity
of Φ0

≈ is also complete.
We now prove

Proposition 18 . — Let f ∈ Hρ and let ~u be a solution of equation (37). Then the
function g (holomorphic in a neighborhood of 0) defined by (38) is linear in ε, i.e. of the
form g(x, ε) = g0(x) + εg1(x).

Proof. As in the proof of theorem 6, the idea is to expand the ingredients in powers of
x and to use induction. We have f(x) =

∑
n≥0 fnx

n , g(x, ε) =
∑

n≥0 gn(ε)xn, ~u(x, ε) =∑
n≥0 ~un(ε)xn, Z~u(x, ε) =

∑
n≥0 ~zn(ε)xn with fn ∈ CI , gn convergent, u0 ≡ 1, z0 ≡ 0 and

z1 ≡ 1.
The triples ~un are in U (triples of holomorphic bounded functions from Sj into CI ) but

the triples ~zn are not necessarily bounded near 0. However the formulae for ~zn show that
ε[n/2]~zn is bounded as ε→ 0. It follows that the products ~d~zn (with ~d = ∆~I) still decrease
exponentially as ε→ 0.

Since ~u0 = 1, equation (g) yields for n ≥ 0:

− gn = ε(n+ 1)(n+ 2)~un+2 − 2n~un +
n−1∑
j=0

gj~un−j (42)

and equation (37) gives

uj = fj + Σ(~vj), ~vj := ~d · ~zj .

By induction, if for all j ∈ {0, ...n− 1} we have gj(ε) = gj,0 + εgj,1, gj,0, gj,1 ∈ CI , then

− gn(ε) = ε(n+ 1)(n+ 2)(fn+2 + Σ~vn+2(ε))

−2n(fn + Σ~vn(ε)) +
n−1∑
j=0

(gj,0 + εgj,1)(fn−j + Σ~vn−j(ε)) . (43)

Replacing the terms of the form εΣ(~vk(µ) by Σ(µ~vk(µ))− L(~vk(µ)), where L = εΣ− Σε
(cf theorem 5, part 4), and grouping together terms of same nature, (43) can be written
in the form

− gn(ε) = C0 + εC1 + L~V + Σ ~W (ε) (44)

with C0, C1 ∈ CI and ~V , ~W ∈ U . By theorem 5, part 4, L~V is constant with respect to ε.
Applying ∆ to (44) and using that (∆f)(ε) = 0 if f(ε) converges at ε = 0, we obtain

0 = ∆Σ ~W = ~W .
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Hence gn has the form gn(ε) = gn,0 + εgn,1 (with gn,0 = −C0 − L~V and gn,1 = −C1).

Thus the analoga of theorems 2 and 4 in the case of f(x, ε) = 2x have been completely
proved.

7 Extension of the results to the general case

7.1 Extension to an intermediate class of 0-resonant equations

Suppose first that a 0-resonant equation (1) is given with f(x, 0) = 2x, i.e. f(x, ε) = 2x+
εϕ(x, ε). Then the transformation y = a(x, ε)ỹ, a(x, ε) = exp(1

2

∫ x
0 ϕ(t, ε) dt) yields the

equation εỹ′′−2x ỹ′+g1(x, ε)ỹ = 0 with g1 = g−xϕ− ε
4
ϕ2 + ε

2
ϕ′. This is also a 0-resonant

equation with formal resonant solution ỹ(x, ε) = ŷ(x, ε)/a(x, ε). Hence its invariants
are Ĩ = ỹ′(0, ε)/a(0, ε) = ỹ′(0, ε) = I − 1

2
ϕ(0, ε) and J̃ the formal series asymptotic of∫ δi

0 ex2/εỹ(x, ε)−2 dx =
∫ δi

0
ex2/ε+

∫ x

0
ϕ(t,ε)dtŷ(x, ε)−2 dx, i.e. J̃ = J . Thus (f, g) ∼1 (2x, g1)

and (2x, I, J) ∼1 (2x, Ĩ, J̃).
This immediately shows that two equations (2x+εϕ1, g1) and (2x+εϕ2, g2) are weakly

equivalent if and only if their invariants are weakly equivalent. The surjectivity statements
of the analoga of theorem 2 and 4 proved in section 6 in the case f(x, ε) = 2x immediately
imply those of the present case f(x, 0) = 2x.

Two equations (2x+εϕ1, g1) and (2x+εϕ2, g2) are strongly equivalent if and only if the
corresponding equations (2x, g̃1) and (2x, g̃2) are ∼1-equivalent and some transformation
ỹ2 = a ỹ1 + εb ỹ′1 realizing it satisfies a(0, ε) = 1, b(0, ε) = b′(0, ε) = 0 and a′(0, ε) =
1
2
ϕ1(0, ε)− 1

2
ϕ2(0, ε); the most convenient way to see this is to go over to matrix notation

in a way similar to the beginning of subsection 4.2. According to section 5, the last
statement is equivalent to Ĩ2 = Ĩ1 + 1

2
ϕ1(0, ε) − 1

2
ϕ2(0, ε) and J̃2 = J̃1. The above

calculation shows that this is equivalent to I2 = I1, J2 = J1.
Thus theorems 2 and 4 are proved in the case of f(x, 0) = h(x) = 2x.

7.2 Extension to all 0-resonant equations

Given some analytic function f0(x) vanishing at x = 0 with f ′0(0) = 2, it is easy to find
some analytic function ϕ(t) = t + O(t2) such that1 f0(ϕ(t))ϕ̇(t) = 2t; it has to be the
inverse function of Φ0(x) = x+O(x2) satisfying Φ0(x)

2 =
∫ x
0 f0(ξ) dξ.

Then any equation (f0(x)+εh(x, ε), g(x, ε)) can be transformed using x = ϕ(t), v(t) =
y(ϕ(t)) into

εv̈ − (2t+ εf1(t, ε))v̇ + g1(t, ε)v = 0 ,

where f1(t, ε) = h(ϕ(t), ε)ϕ̇(t) + εϕ̈(t)/ϕ̇(t) and g1(t, ε) = g(ϕ(t), ε)ϕ̇(t)2. The second
equation is 0-resonant if and only if the first one is. Observe that the two equations
are not equivalent according to any of our definitions. The change of variables permits,
however, to carry over the results of the previous subsection to any 0-resonant equation.

First of all, two equations (f0 +εh, g) and (f0 +εh̃, g̃) are equivalent via y = a(x, ε)ỹ+
εb(x, ε)ỹ′ if and only if the corresponding equations (2t + εf1, g1) and (2t + εf̃1, g̃1) are
equivalent via v = a(ϕ(t), ε)ṽ + εb(ϕ(t), ε)ϕ̇(t)−1 ˙̃v. This means that each of our three

1In this subsection ′ denotes differentiation with respect to x, ˙ with respect to t.
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equivalence relations for (f0 + εh, g) and (f0 + εh̃, g̃) corresponds to the same relation for
(2t+ εf1, g1) and (2t+ εf̃1, g̃1).

Furthermore, a short calculation shows that both invariants I and J for an equation
(f0 + εh, g) and its corresponding equation (2t + εf1, g1) are the same. Thus theorem 2
and the first part of theorem 4 carry over to general 0-resonant equations immediately.

Finally, suppose that a vector (f0, I, J) ∈ K is given. From the preceding section,
we know that there is a 0-resonant equation2 (2t, h0(t) + εh1(t)) having the invariants
(I+ψ(ε), J) where ψ(ε) is some convergent series. Using the transformation v = ϕ̇(t)−1/2ṽ
with the above ϕ(t), we find an equation of the form (2t+εϕ̈(t)/ϕ̇(t), h̃0(t)+εh̃1(t)) having
the invariants I + ψ(ε) + 1

2
ϕ̈(0) and J . The above calculations show that the equation

obtained using x = ϕ(t), y(ϕ(t)) = ṽ(t) is of the form (f0(x), g0(x) + εg1(x)) with some
functions g0, g1 analytic near x = 0 and that its invariants are still I + ψ(ε) + 1

2
ϕ̈(0) and

J . This proves the second part of theorem 4.

7.3 Extension to all resonant equations

Consider now a general resonant equation in its matrix form

(R) εy′ = Ry ,

with y =
(
y
εy′

)
and R : (x, ε) 7→

(
0 1

−εg(x, ε) f(x, ε)

)
. If (R) is not 0-resonant, then

by definition g(0, 0) 6= 0. Hence y1 = R(x, ε)y induces a weak equivalence between

(R) and some equation (R1), R1 : (x, ε) 7→
(

0 1
−εg1(x, ε) f1(x, ε)

)
with f1 = f + ε/g,

g1 = g − f ′ + f/g. Clearly, this new equation is satisfied by (y′, εy′′)T if (R) is satisfied
by (y, εy′)T and the quantity g1(0, 0) = g(0, 0)− 2.

This procedure can be repeated n = g(0, 0)/2 times and leads to a 0-resonant (matrix)
equation (Rn) weakly equivalent to (R) which is satisfied by (y(n), εy(n+1))T if (R) is
satisfied by (y, εy′); this means that the corresponding scalar equation has a solution y(n)

if the scalar equation (f, g) has a solution y.
By our definition (see above definition 3), the invariants of (R), i.e. (f, g), are those

of (Rn). The first part of theorem 4, our only statement concerning general resonant
equations, follows immediately.
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