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Abstract: We study the existence of analytic solutions of the system of difference equa-
tions given by

y(e,z +¢) = F(e, z,a(e), y(e, x)),

where F' is an analytic function of €,z,a and y on a certain neighborhood V' x D, (zg) X
D,,(ag) X Dyy(yo) C C X T x €™ x €™ of the point (0, zg, ag, yo) with yo = F(0, zo, ag, yo)-
Under the assumption that the Jacobian %(O,x,ao, ¢o(z)) —I is not invertible at some
point x = x(, we first show, under some transversality condition, the existence of a unique
formal solution (a(e),9(e,x)) and establish its Gevrey-1 character. Then, we construct
a quasi-solution, (a(e),g(e,z)), in the sense that, it solves our system equation up to an
exponentially small remainder. The quasi-solution is obtained by taking the Borel-Laplace
transforms, with some corrective terms, of the formal solution. Then, we show the existence
of an analytic solution (a(e),y(e, z)), on some neighborhood of (0, zg) (to be constructed),
that is exponentially close to the constructed quasi-solution. We also show the exponential
closeness of any two quasi-solutions (and hence also of actual solutions) tending to the
same slow curve. Finally, as an application of this theory, we give two numerical examples
with some figures of canards solutions of some difference equation of second order.

Keywords: Difference equation; Difference operator; Inverse operator; Fixed point
theorem; Gevrey asymptotic; Formal solution; Quasi-solution; Over-
stable solution; Nagumo norm; Weight norm; Borel-Laplace transform;
Gronwall lemme

AMS Classification: 39A, 47B39

*Scholarship holder of the National Council of Scientific Research in Lebanon.



Overstable solutions of systems of difference equations 2

1 Introduction
We consider a system of n difference equations of the form

yle,z +¢) = F(e,x,a(e),y(e, ), (1)

where z is a complex variable, ¢ is a small complex parameter, a(¢) is a vector of additional
parameters and F' is an analytic function of €, z,a and y on a certain domain. The precise
hypotheses will be given later. We look for solutions (a(¢),y(e,z)) of equation (1) that,
as ¢ — 0, tend to some given slow curve (ag, ¢o(x)) satisfying F (0, z, ag, ¢o(x)) = ¢o(z).
Such solutions, if they exist, are so-called overstable solutions, in the sense that, as ¢ — 0,
they remain uniformly bounded with respect to z, in a full neighborhood of some point
zo. It will also be shown that this is a strong restriction for a(e): Given two solutions
(a1(e),y1(e,z)) and (a2(e),y2(e,x)) of equation (1) tending to (ag, do(x)), the difference
(a1(€) — az(e)) has to be exponentially small.
A related system of differential equations of the form

dy
60% = F(&‘, Ty a(e), y(g, .’L‘))
was considered in [2, 11]. For the existence of solutions, it is important to know whether

the Jacobian
oF

Ao(z) = 8—y(0,x,ao,¢0(ﬂ7))

is invertible at some point £ = xy or not. In the case where the Jacobian is invertible,
parameters a(e) are arbitrary and the existence of solutions is well-known (cf Sibuya [11]).
In the case where the Jacobian is not invertible at some point z = xg, a detailed discus-
sion was given in [2]. There the authors first showed the existence of a formal solution
(a(e),9(e,x)). Then its Gevrey character was studied and determined after introducing
a certain “transversality” condition and the “Nagumo” norms. Then a quasi-solution was
constructed and eventually the existence of an overstable solution (a(e), y(e, z)) was proved.

The framework of the present work will be more or less similar to that of [2]; globally,
we follow the same strategy, but we have to modify several proofs substantially to be
compatible with difference equations. The necessary modifications for the passage from
differential to difference equations are not always obvious.

Also for our system (1), the existence of the solutions y(e,z) depends on the Jacobian
Ap(z), now however, defined by

Ao(2) = 2£(0,2, a0, do(2)) — I, (2)

dy

Two cases must again be differentiated according to whether Ag(x) is invertible at
some point £ = x¢ or not. In the case where Ay(x) is invertible at some point x = xg,
no additional parameter a(e) is needed. This case was treated in some previous work
[4]. The existence of a unique formal solution was shown and its Gevrey-1 character was
established. The existence of an analytic solution was also shown separately.

Now, we discuss the case where Ag(z) is not invertible at some point z = zo. Here,
we need to introduce a parameter a(e) in our system equation and assume a transversa-
lity condition analogous to [2]. First, we show the existence of a unique formal solution
(a(e),g(e, x)) and we establish its Gevrey-1 character. Then, taking the Borel and the trun-
cated Laplace transform of the formal solution, we show that we obtain a quasi-solution.
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Finally, as a first main result of this work we show the existence of an overstable solution
(a(e),y(e, z)) close to the constructed quasi-solution; actually their difference is exponen-
tially small. We also show that any two quasi-solutions tending to the same slow curve
are exponentially close to each other. This shows in particular that our “canards” are
short-lived in the sense that the corresponding parameter values belong to an interval of
exponentially small length. As an application of this theory, we give two numerical ex-
amples with some figures of canards solutions of some difference equation of second order.
For the completeness of our work, we include, at the end, an appendix summarizing some
previous results.

We mention some related works of: Baesens [1], Canalis-Durand, Ramis, Schifke,
Sibuya [2], El-Rabih [3], Fruchard [5], Fruchard, Schéfke [6, 8], Sibuya [11], and Wasow
[12].

2 Assumptions

Consider the system (1) of difference equations; i.e.
y(e,z +¢) = Fe,x,a(e), y(e, ),

where ¢ is a small complex parameter.
We assume the following:

1. The function F is an analytic function of the variables xz,a and y in some open
neighborhood D := D, (z¢) X Dy,(ap) X Drs(y0) C € x €™ x C™ of (zo, ao, o),
where D,(z) denotes the open disk of radius » > 0 and of center z.

2. The function F is analytic in € on some open small sector V of the complex plane
with vertex at the origin. Moreover, F' is asymptotic of Gevrey order 1 to the
formal series Y ;o fx(2,a,y)e" as V 2 & — 0 uniformly for (z,a,y) € D, where the
functions f; are holomorphic on D. This means that there exist positive constants
A, C such that for all e € V and (z,a,y) € D and all N € IN*

F(e,z,a,y) kaway < CANT(N + 1)

The constant A is called the type of the Gevrey 1 expansion.

3. There exists a slow curve Cy of the reduced equation F(0,z, ag,y) = y, i.e. there exists
a holomorphic function ¢y : Dy, (z¢) — C" satisfying F (0, z, ag, $o(z)) = ¢o(x) for
|z — o] <71 .

4. The Jacobian Ay(z) = 3—1;(0 x, a9, po(x)) — I is invertible except at © = x¢ and
det Ag(z) = (z — 29)™ k(z), where m € IN and k(z) analytic near zo with k(zo) # 0.

5. The mapping
H"(Dy) x €™ — H"(D,)

defined by
(y,a) = Ao - (y — ¢o(x)) + Bo - (a — ag),
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is bijective for every r < r1. Here By(z) = %—E(O,x,ao,gbo(x)) and H(D,) denotes
the set of all functions holomorphic on D,.
This assumption is the so-called Hypothesis of Transversality (H) introduced in [2].

3 Formal solutions

Without loss of generality, we can assume that g = 0, ag = 0, and ¢g(z) = 0, for otherwise,
we replace z by zg + z, a by ag + a and y by ¢o(x) + y.
Hence we assume

1. F is analytic with respect to (z,a,y) on D, (0) x D,,(0) x D,,(0) C € x C™ x C".
2. F has a Gevrey-1 asymptotic expansion of type A in € on V.
3. F(0,z,0,0) =0 for z € D,, (0).

4. Ap(z) = %—Z(O,x,0,0) — I is invertible except at * = 0 and det Ag(z) = 2™ k(z),

where m € IN and k(z) is analytic near 0 with £(0) # 0.

5. The mapping
H"(D;) x C™ — H"(D,)

defined by
(y,a) = Ao-y+ By a

is bijective for every r < r1; here By(z) denotes %—Z(O, z,0,0).

Proposition 1 Under the above assumptions, equation (1) has a unique formal solution
ae) = 372 cjel, jle, x) = PO bj(z)e?, where ¢; € €™ and bj(z) are analytic in D,,.
Moreover, a is Gevrey-1 and § is Gevrey-1 uniformly on Di(0) for all ¥ < r, i.e. for
each 7 < T there exist numbers M, B such that |cj| < MBIT'(j + 1) and sup |bj(z)| <

2| <F

MBIT(j + 1) for all j € IN.

Proof. For simplicity, we omit the “hats” in the following proof. We first show the existence
of a formal solution. We rewrite equation (1) as an equation for formal series (except for
the term y(e,z + €) — y(e, z) at the moment)

Ao(z)y(e,z) + Bo(z)ale) = yle,z+¢) —yle,z) — edi(z) (3)
— Y @ () () €,
|7 |+ 2| +k>2
where
e ¢1 and fz4; are n-dimensional vectors, 7 = (P1,---,Pn)s q = (g1,---,qm) and
Di, i, k are non-negative integers, |?| =pi+--+ pn, |7| =q1+ -+ gm, y? =

Pty a? = al' ... a%" where y; (a;) is the jth entry of y (a respectively).

e The entries of Ao, By, ¢1 and f5 4 are holomorphic in z on |z| < r;.
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We proceed as in [2], but we also have to expand the term y(e,z + €) — y(g, z).
We have

o

1, d.,
y(&",.’l)’ + 6) - y(a,x) = ; F(F;%) y(e,a:).
This gives
1, d
Ao@)y(e,x) + Bo(@la(e) = D (e )y(e,2) — eu(2) )
r=1""
- Y fraewt ) alE)
|7 |+| | +k>2
Putting a(e) = > 72, cjel, yle,z) = PO bj(z)e’ and looking at the coefficient of
e",n=0,1,..., we note that the right hand side of the above equation has coefficient 0 for

€% and that the coefficient of ¢! is —¢;(x). Furthermore, we easily see that the coefficients
{Cj};:l’ {bj};.zl determine the coefficient of /™! on the right hand side of equation (4).
Thus, by the condition of transversality, the coefficients {c;} JEN {b;} jeN of the formal
solution can be found recursively and are uniquely determined.

Next, we show that the formal solution is Gevrey-1. To do this, we construct a majorant
equation of (4) having a unique series solution that is convergent. We rewrite equation (4)
in the form:

Ao(@)y(e,2) + Balalale) = 3% (e ) vlere) — olerz) — Blesalyle,z) — Cles)ale)
r=1""
- Y fpaleayTex)al(e), (5)
P72
where - -
$(e, ) =Y _ dp(x)e®, B(e,z) := > _ By(a)e*, and
k=1 k=1
Cle,z) =Y Cr(x)e, fpz(e,m) == fagr(z)eh;
k=1 k=0

the entries of By, Cy are those of fz - with || =1 or || =1, respectively. Note here
that Bg(z),k > 1 are n x n matrices and Cg(z),k > 1 are n X m matrices.
Before continuing the proof, we recall the modified Nagumo norms introduced in [2]:

Definition 2 Given p €)0,r[, we define a function d on the open circle D,(0) of center O
and radius r > 0 by
i(s) = { ~lel iflal 2 p

r—p iflz|<p .

Then for nonnegative integers p and holomorphic functions f on D,.(0), the Nagumo norm
of f denoted by ||f||p is defined by

1£llp = sup (If(z)] d(z)?).

|z|<r
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The Nagumo norms are compatible with the elementary operations; their most important
property is the following:

For f € #H(D,),p € N, we have ||f'| ., < e(p+1)lIf]l, (6)

We refer the reader to appendix A.1 for more details.

Definition 3 [2] We say that a series g = > o gr(2)e® is majorized ("< ") by a series
h(z) = Y 120 izt if and only if

lgill; < hjgt for j=0,1,2,...

We also recall the following two properties of < :
Given that g < h(z) and § < h(z), then

9§ < h(2)h(z), and (7)
e%g < ezh(z). (8)

The proof can be found in the appendix A.3.
Now, we denote by P; and P, the inverse of the mapping of the transversality condition
5, i.e.
P, : HYD,) - H"(D,), P, :H"(D,)—C™

are the uniquely determined linear mappings satisfying
Ao(z)(PLf)(z) + Bo(z)(Paf)(z) = f(z), for x € D,, f € H" (D).

These P; and P, are bounded linear operators with respect to the Nagumo norms:
There exists a constant K > 0 (independent of f) such that

1PLfll, < K[ f]l,, and (9)

| P2fl, < K d(0)[| £, (10)

for nonnegative integers p and f € ‘H"(D,). We mention here that the Smith normal form
of Ap(z) and the so-called shift operatorS (see appendix A.1) were involved in the proof
of these two properties, see appendix A.2 for details.

Recall that we want to find a majorant equation related to equation (5). So, we rewrite
it using the series u(e, z) := Ag(z)y(e, ) + Bo(z)a(e). We obtain

u(e, x) = Z % (a%) Piu(e,xz) — ¢(e,x) — B(e,z) Pyu(e, z)
r=1
—C(e,z)Pyu(e) — Z f77(6,x)(P1u)?(6,x) (qu)7(e). (11)

|7 |+7]|22

Once the formal series u(e, z) has been majorized, majorants of y(e¢,z) and a(e) can
be obtained using the mappings P; and Ps.
For the majorization of series of vectors, we use the maximum norm and for series of

matrices, we use a compatible matrix norm. Then by applying the ”]# to the coeflicients
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of &f of equation (11), we can find majorant (scalar) series ¢(z), B(z), C(z) and f?7(z) of
¢(e,z), B(e,x), C(e,z) and f5 (¢, z) respectively. Note here that we use the hypothesis
that F' is Gevrey-1.

It remains to treat the sum Y 52, (e )" Pu(e, ).
Assume that v < h(z), then Piu < K h(z) and Pyu < K h(z),where K is the constant
given in equations (9, 10).

By an idea of J.P.Ramis

o0

1, d 1
D =(e5-) Pru(e,x) < Y = (e2)" Cih(z) = C1(e” — 1)h(2). (12)
r!" dr 7!
r=1 r=1
By these properties and those given by equations (6, 7, 8, 9, 10) and Cauchy’s estimate
for the coeflicients of a convergent power series, all these series have a common radius of
convergence, and Z f?7(z)g|?|+|7| is convergent if |z| and |g| are small enough.
7|+ 7|>2
Then a majorant equation of (11) is given by:

N

h(z) = K(e —1)h(2) + K¢(z) + K(B(2) + C(2))h(2)

+ Y Y fpe@he)n (13)
n=2|F[+[7|=n

As ¢(0) = B(0) = 0, it is easy to see that this majorant equation has a unique formal
solution h(z) = 722, hjz?, with h; nonnegative. In the same way as in [2] (i.e. essentially
by induction), it follows that our formal solution u of equation (11) satisfies u < h(z).
By the implicit function theorem, the formal solution h(z) converges and hence h; <
MBI, j = 1,2,... where M, B are positive constants. Then u < h(z) for the formal
solution w of equation (11) and h of equation (13). This means that 3 M, B such that
lun(@)ll,, < MB"n!

By definition of || ||,,, this implies that

|un(z)| < MB"d(xz) "n! for all z with |z| <.
For all §, 0 < § < r — p, we also have
lun(z)] < MB"3 "n! for all z with |z| <r —,

i.e. u is Gevrey-1 uniformly on Dz(0) for all 7 < r.
Using P; and P, again, we obtain by equations (9, 10) that y = Piu, a = Peu are
Gevrey of order 1. 0

4 Quasi-solutions

So far, we have shown that equation (1) has a unique fomal solution a(e) = >372, cjed,
§(e,2) = 2, by(w)ed with
e < MBIT(j +1),
sup [b;(z)| < MBIT(j + 1),

|| <7
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for some numbers M, B, i.e. they are Gevrey-1.

Recall that F' is also Gevrey-1 asymptotic to ) >0 fi(z,a,y)e

Next, we take the Borel transforms &(t), b(t,z), and G(t,x,a,y) of a(e)

F(e,z,a,y) respectively, i.e. we define:

0= e i<

ét = Cj A 3 t < )
P A B

- s -1

b(t,z) := ij(x)(, T € Dy, |t| <

G(t,z,a,y) : Zf]xa,y )',

Recall that A is the constant introduced in section 3.

1
(z,0,9) € D, [t <

Y

(e,z) and

We choose T, 0 < T < min(%, &). We define a(e), §(e,z) and F(e,z,a,y) to be the
Laplace transforms (with some corrective term) of &(t), b(t, z) and G(t, z, a, y) respectively.

We put

T T
ie) == /0 d(t)etdt + e&(T)e *,

T
g(e, ) ::/ b(t,x)e_idt + eb(T, z)e
0

T
Fle,z,a,y) = folw,ay) + / G(t,z,0,9)e Ldt + G(T,z,a,9)e -
0

Then, we know that

o0

ae) ~1 Y ejel,

j=1
w .
i(e0) ~1 Y bi(@)e), and
j=1

F(e,x,a,y) ~1 Y fi(w,a,y)e

j20

_T
<, and

The notation ~; means “Gevrey-1 asymptotic to” (see section 2).

Theorem 4 As given above, a(e),y(e,x) are quasi-solutions of equation (1),

exists K > 0 such that

R(e,z) :=g(e,x +¢) — F(e,z,a(e), g(e, x))

satisfies

~ T
‘R(s,w)‘ <Ke I, ee€V,e >0, z € D;.

i.e. there



Overstable solutions of systems of difference equations 9

Proof. We use a theorem of Ramis-Sibuya [9] about the characterization of functions
having Gevrey-1 asymptotics.

As a(e), g(e,z) and F(e,z,a(e),y(e,z)) are Gevrey-1 in ¢, the theorem of Ramis-
Sibuya implies that there exist a good covering S; = S(oj,fj,€0), 1 < j < m of the
punctured disk D(0, o) and functions a;(¢), y;(e, ) and Fj(e, z,a(e),y(e, z)) defined for
e € 5j,j=1,..., m and satisfying

la51() = a(e)| = O (7H)

_
lyj+1(e,z) —yj(e,z)| = O (e \El) , and
i

IFj11(,2,0(0),4(e, 2)) — Fy(e, 7,a(e), y(e,2))| = O (77

for € € §; N Sj41 with some positive constant v and such that § = y1, @ = a; and F=F,.
Trivially, the same estimates still hold for y;(e, 2z + ¢), i.e

S——

b

|yj+1(€,x—|—€)—yj(8,m+6)|:(’)(e W) e €8N 841

Also,
(e, x+¢) =yi(e,z +e).
Note here that we have to reduce the z-domain D;(0) into Dz_.(0).
Let
Rj(e,x) :==yj(e,x +¢€) — Fj(e,z,ai(¢e),y;(e,x))-
Now, using standard estimates, it follows that the differences R; i — R; are also expo-
nentially small:

|Rj11(¢,2) — Rj(e,z)| = O (e’\‘}\)

fore € ;N Sj41, 5 =1,..,n and € Dz_.(0). The theorem of Ramis-Sibuya implies
that R;, j = 1,...m, have asymptotic expansions of Gevrey order 1 with a common right
hand side. Since one of these R; is R in question, this right hand side is §(e,z + ) —
F(e,z,a(e),j(e,z)) = 0, because &, 7 is a formal solution of equation (1). It immediately
follows that all R; are exponentially small. 0

5 Existence of analytic solutions

In this section, we want to prove our main theorem concerning the difference equation (1).

Theorem 5 Consider the difference equation (1) and suppose that the hypotheses in sec-
tion 4.2 are satisfied; moreover assume that Ag(zo) +1I = 2E(0,z0, ao, ¢(x0)) is invertible.
Then there exists a unique formal solution of equation (yl)

2) =3 b, ale) =D el
=0 i=0

where bj(x) are analytic in Dy, (x¢) and by = ¢,co = ag. Moreover these formal series are
of Gevrey order 1.

For~ € R and sufficiently small 71,8 > 0 such that W = {¢ | |¢| < 6, |arg(e) — | < 8}
is contained in V, there exists an overstable solution (y*,a*), a* : W — C™, y* : Dy, X
W — C"ofequation(1) having (9,a) as asymptotic expansion of Gevrey order 1.
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Proof. In order to find an actual solution of equation (1), we follow the strategy of [2].
As already remarked in section 4.3, we can assume without loss of generality that
zg =0, ag = 0, ¢ = 0. For simplicity, we assume that v = 0 and consider only real positive
¢ in the sequel; all considerations carry over for ¢ with small |arg(e)|.
We have already constructed the formal solution (g, a) in section 4.3 and, moreover, a
quasi-solution (g, @) having it as an asymptotic expansion of Gevrey order 1 in the previous
section. We insert a = @ in equation (1) and denote the resulting equation by

y(e,z +¢) = Ge, z,y(e, x)). (14)
We reduce equation (14) to an equation for a new unknown function A(e, z) by
y(e, .'17) = g(eﬁ :I}) + A(E’ x)

We obtain 5 5 5
Ale,z +¢) = G(e,z,A(e, 7)) (15)

where G(e,z,2) = G(e, z,z + §(e,z)) — §(e, ¢ + €). Now A(e,z) = 0 is a quasi-solution of
equation (15), i.e. G(e,x,0) is exponentially small. Note that the domain of G is slightly
smaller than that of G.

We will show that equation (15) has an analytic solution that is exponentially small.
This will imply that equation (14) has an analytic solution y(e,z) given by y(e,z) =
g(e, ) + A(e, z), i.e. it differs from the quasi-solution only by an exponentially small
function. Therefore this solution of equation (14) is Gevrey-1 since exponentially small
functions are Gevrey-1.

In order to prove theorem 5, it thus suffices to solve equations of the form (14) satisfying
|G(e,z,0)| < Ke ¢ forz € D,, (16)

with some positive constants a, K where %—5(0, 0,0) is invertible.

Before attacking this problem, we mention briefly the strategy followed in the work [2]

for the analogous differential equation
z—:% = G(e,z,Ale,2)) . (17)

There, two different methods were used in order to show that equation (17) has an
analytic solution (for small z and & with small |arg |) that is exponentially small. The first
method uses a theorem on the growth of solutions of differential equations with parameter
and the second one uses Gronwall’s lemma.

Both of these methods can not be carried over to the theory of analytic difference
equations because there is no local existence theorem for analytic solutions of difference
equations.

Our method to solve an equation (14) satisfying (16) is the following: First split the
linear part of G in several blocks, then construct a right inverse of this linear part block
by block, rewrite equation (14) as a fixed point equation and finally apply the fixed point
theorem on a certain Banach space with an exponential weight function.

We now have to prove

Proposition 6 Consider the difference equation

y(e;z +¢) = Gle, 2, y(e, ), (18)
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with G analytic with respect to x,y and continuous with respect to ¢, x,y, 0 < & < gg. We
suppose that %(0,0,0) is invertible and that there exist K, > 0 such that for x € D,
0 <e < ey,
|G(e,z,0)| < Kie % .
Then there exist a neighborhood Q of 0, e1 > 0 and a solution y : Q2x]0,e1[ of equation
(18) such that
ly(e,z)| < e c,Vz € Q,0<e<e.

The proof of the proposition needs the two theorems stated below and both taken from
[4] and lemma 7.
Theorem Given Ay, ..., Ay, € € \ {0,1}, there ezists a neighborhood Q of 0 and bounded
linear operators Ty; : Hp(Qe) — Hp(Qe) such that y; = T;i(g), g € Hp(Qe) implies that
yi(e, x +¢) = Ajyj(e,x) + g(x) whenever x € Q. and x +¢ € Q.. Here Q. = Q 4[5, 5]
and Hy(S2:) denotes the Banach space of the holomorphic bounded functions on Q..
Thus Te : Hp" () — Hp"(Qe) defined by Te(g;)7—1 = (Tej(95))7=1 is a bounded right
inverse of the operator

Ye ((W3)j=1) (6,2) = (yi(e, 2 + &) — Ajy;(e, )7, (19)

Theorem Consider a matriz function A(e,x) of the form

| Ai(e,z) As(e,z)
A(s,.’L‘) - ( A;(g,x) Ai(E,-’v) )

with the properties that A2(0,0) = A3(0,0) = 0 and that A1(0,0) and A4(0,0) are invertible
and have no common eigenvalues. Then there exists a matriz function

Ple.z) = ( Pg(.;x) Pz(? ) ) ’

such that P(e,z +¢) L A(e,z)P(e,z) = B(e, z) is block diagonal with

B(e,z) = ( Bl(g’x) B4(g,$) ) ,

and B1(0,0) = A1(0,0), B4(0,0) = A4(0,0).
The following lemma replaces Gronwall’s lemma in the theory of difference equation
with small step size.

Lemma 7 Let Q C € be a bounded, c-ascending domain with points z+ of mazimal re-
spectively minimal imaginary parts. We define

o Q. =Q+[-5,5] for each € > 0,
o D={(e,x)|0 <e<eg, z €N} and

o E={g:D — QC"|g continuous, holomorphic with respect to z,Ye €0, o[ g(e,.)
bounded}.
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Let xg € Q, g9 > 0, and f : [0,e0] X Qzy = Mpp(T) be bounded, continuous in e, holomor-
phic in x such that

, 1 1 o
SE%’V(&@ —1d| < (E + m) (20)

with some positive § < 2mc.
Then, there erists T : E — E with the properties:

1. T is linear.

2. Whenever g € E and y = Tg then for all € €]0,&¢[, Vz,z + ¢ € Qq,
y(&,l'-f-&") = f(e,a:)y(s,a:) —I—g(s,x). (21)
3. There exists L > 0 such that forg € E, y=Tg and 0 < ¢ < ¢y,

sup |y(e, z)| < Lel® %0l sup |g(e, ).
TEQ: TEN:

Observe that contrary to the analogous statement for differential equations, it is needed
that f(e,z) is not too far from the identity. Lemma 7 will be proved in section 6.
The rest of the proof of theorem 5 is analogous to [2]. Define

A(e,x) == %—j(s,x,O) .

Let Ao := A(0,0). We can assume that Ay is block diagonal, Ay = bldiag(Aoy, ..., Aou)
where each block Ag; has exactly one eigenvalue )\; and that Aq,..., A, are distinct. We
can suppose that 1 is an eigenvalue of Ay and that A\; = 1. In the case that Ay — id is
nonsingular, the proof is easier than the subsequent one.

By the second of the theorems stated above, we can find a (rhomboidal) neighborhood
Qp of g = 0,62 > 0 and a matrix valued function P :]0,e2[xQ¢ — My, (TC) continuous,
bounded, holomorphic with respect to = such that P~!(e,z) is bounded,

(P(e,x +¢)) *Ale,z)P(e,z) = B(e, z)

and
B(e, ) = bldiag(Bi (e, x), ..., Bu(e, x))

with blocks corresponding to A1, ..., Aoy, Bi(0,0) = Ag.
This suggest the transformation y(e,z) = P(e, z)z(e, ) which yields

2(e,z +¢) = (Ple,x +¢)) 'CGle,z, P(e,z)z(e, x)) =: G(e, z, 2(e, z)).
As obviously

oG 180G B
E(eaxa()) = (P(E,ZL' +€)) a—y(s,m,O)P(e,m) - B(e,x),

we can assume without loss of generality in the sequel that

A(Ea ZU) = bldia‘g(Al(ea .’IJ)), Al(07 0) = A
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We can assume without loss of generality, furthermore, that Ag, [ = 2,...,n are in
Jordan canonical form and that their off diagonal elements are of absolute value smaller
than &, where J is a certain positive constant determined later and only depending upon
the eigenvalues Ao, ..., Ay.

We rewrite equation (18) in the form

y(e,x +¢) = R(e,x) + bldiag(Ai (e, x),..., Au(e, ))y(e, ) + H(e, z,y(e, x)), (22)

2a

where R(e,z) = G(e,2,0) = O(e =) and H(e,z,y(e,z)) contains the quadratic and
higher order terms of G. As in [2] we rewrite equation (22) as a block system S

yie;z+¢) = Ai(g,2)y1(e,2) + (S1y)(e, 2) (23)
yj(é',fl‘f + 5) = )\j’yj(g, :L') + (Sjy)(gax)a J=2,...,p (24)

where
Sly(z—:,x) = Rl(E,.’L‘) —|—H1(€,.’I},y(€,.’l‘!)) (25)
Sjy(e,z) = Rj(e,z) + (4j(e, ) — Njid)y;(e,z) + Hj(e,z,y(e,z)), j =2,...,1(26)

and

H(e,z,y(e,z)) = (Hile,z,y(e,x)),..., Hule, z,y(e, x))) (27)
R(e,z) = (Ri(e,x),...,Ru(e,x)) . (28)

We choose a sufficiently small €3 €]0, £2] and a subdomain Q of Qg such that Q., C Qo
and such that the first theorem recalled above holds. It can be chosen to be c-ascending with
a ¢ > 1/2. In the sequel, we might have to reduce its size so that sup{|4;(e,z) — A;id| |
0 < e <esg,x € Q} is sufficiently small. Denote by E the vector space defined in lemma
7.

Then the operators

u— v, vez)=ule,x+e)— Ai(e, x)ule, z), respectively

u—w, wlez)=ule,z+e)—ANule,z), j=2,...,n (29)

have right inverses on E: a right inverse 77 of the first operator exists according to lemma 7
if 2 is sufficiently small; the right inverses T3, ..., T}, of the other operators exist according
to the first theorem recalled above. It is thus sufficient to solve the fixed point equation

y = (T151y, - TuSuy) = T(y) - (30)

To do so, we show that the right hand side of equation (30) is a contraction on a closed
subset of a certain Banach space. Choose 8 €]0, 27¢[ such that fdiam(Q) < a+ e3log(es)
and let B be the set of all functions y(e,x) with values in €™ that are continuous on D,
analytic for « € €, for € €]0, 3] and satisfy an estimate

ly(e, z)| < L exp(—a/e), (31)

with some L > 0. We define the norm ||y||, of y as the smallest number L such that the
above estimate of equation (31) holds. Then, B becomes a Banach space with this norm
and the usual addition and scalar multiplication of functions. There are constants Ko, K3
such that

sup |Thv(e, z)| < Kaezexp(a/e) sup |v(e, z)| (32)
TEQe TEQ,
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for 0 < & < €3, v € B™, where ny is the size of A; (cf lemma 7), and

sup |Tjw(e, z)| < K3 sup |w(e, z)| (33)
TEQ: z€Qe

for j =2,...,u, 0 <e <e3, w€ B%; here n; is the size of A;.

Next, let M be the closed subset of B™ of all y satisfying |y(e,z)| < p for all (g, z),
where p is sufficiently small so that H (e, z, z) is defined for ¢ €]0, 3],z € Q¢, and |z| < p.
Note that M is non empty.

Now we show that the right hand side of equation (30) has a fixed point in M if pand
are sufficiently small. We have

H(e,xz,20) — H(e,2,21) = (/01 %—IZ{ (e,2,21 + t(z2 — zl))dt> (22 — 21), (34)

and %—Ig(e, z,0) = 0. Thus there exist K4 > 0 such that
|H(€,.'E,22) - H(g;xazlﬂ < Ky ma,x(|zl| ) |Z2|) |Z2 - 21|
for 0 < e < ez, ¢ € Q. and 21|, |22]| < p. Hence for y;,y2 € M we obtain

1(51(y2))(e, 2) — (S1(y1))(e, 2)| < Kgmax([lysll, lly2l]) lly2 — v1ll exp(—2a/e)

and hence by equation (32)

1T181(y2) — T1S1(y1)|| < K2Kaesp [|y2 — u1ll - (35)

For j =2, ..., u, we find using equations (33, 34)
17553 (92) = TSl < Ks (L5(@) + Kae %)) llyz —mll (36)

where L;(2) = sup(. )ep|4j(e,2) — Ajid|. Finally, because of the assumption of the
theorem

1T (O)| = max(|IT1SL (O], -, | TuSu(O)) < K1 max(Kaes, Kse /) . (37)

Now first choose! 8, p > 0 and Q sufficiently small so that the factors of ||y2 — y1]| in
equations (35, 36) are smaller than 1/2 then choose €3 > 0 small enough so that the right
hand side of equation (37) becomes smaller than p/2. Then we see that 7 : M — B"
satisfies the hypotheses of Banach’s fixed point theorem and hence, 7 has a unique fixed
point y in M. As discussed above equation (30), this yields the existence of an analytic
solution y of (18) that is exponentially small: |y(e, z)| < pe /5. 0

6 Proof of lemma 7

If equation (21) is considered and only f(0,z¢) = id is known, then by reducing 2, as a
c-ascending domain, one can achieve that f satisfies equation (20).

Equation (21) is somewhat analogous to ¢y’ = (f(e,z) — id)y + g; only for the latter
equation, Schifke - Schifke [10] or “Gronwall’s lemma” can be used. In any case, the

lsee above equation (22).
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local existence of a solution of the ordinary differential equation is not a problem. For the
difference equation, the existence of a local solution was not known.

The idea of the proof is as follows: We use the well-known formula of Fruchard - Schéfke
[7] providing a right inverse of the operator A, given by

Acy(e,z) = ¢ (y(e,z +¢) — y(e, z))

and apply the fixed point principle in a certain Banach space with weight function
Blz—xzo|/e
e :

Without loss of generality, we suppose that o = 0. We define b(e,z) = f(e,z) — id,
thus b :]0,0[xQey, = Mpn(C) is bounded by v where v~ = =1 + ¢72(27c — B)~L. Our
equation (21) becomes

eBcy(e,x) = ble, x)y(e, x) + g(e, x).
With a certain right inverse V; of A, to be introduced subsequently it suffices to solve
1 1
(e ) = SValb-y) + - Velg), (39)

where b - y denotes the function (e,z) + b(e,z)y(e,z). In the appropriate setting, z
1V.(b- z) will be shown to define a contraction called 6 and thus

y(e, @) = ;(id — 0:) " Ve(g)

will define a solution of equation (21) having, as we show, the wanted properties. This
provides the operator 7.
Now, we need to detail our construction. We put, as before, for g € D.

Sg(e,z) = /Owg(e,s)ds (39)

1
1 1
Ueg(eax) = 1/81 Ustg(eam)dt (40)
)
and for —3 <t <%
Uaglen) = ¢ [ —235 a
7_ 1—6 € a:)
1 (6 £)
— 41
€/+ ]_—e icw(g_z)dé-’ ( )

where v, , is an ascending path joining z~ + et and z — ¢/2 (avoiding z — ¢ and z) and
such that Im ¢ is increasing as & varies on it, and ’y;, ; 1s an ascending path joining z — /2
and T + et.

It was shown that S —eU, is a right inverse of A, (on 2.) and that it defines a bounded
linear operator on the set of bounded functions in £ with respect to the maximum norm.
Here, we need slightly different estimates. First, without loss of generality, we assume
that g is bounded (otherwise, divide the linear equation by a(e) := sup |g(e,z)| which is

zelde
continuous).

We introduce the Banach space
B={heFE|3JkV(e,x) |h(ez)| < ke3|z|/€},

with the norm ||h| ;3 = min{k | k satisfies above estimate}.



Overstable solutions of systems of difference equations 16

Lemma 8 For h € B one has H%Sh”B < %||h||8 and ||Uch| g < c%ﬁHhHB'

Proof. The first estimate follows from

1 [® 1 [
D[ reads] < 2 [t jas
0 €Jo

1 =l 1
—|lh / Ptedt < ||| gePlel/e .
-l | Il

IN

VAN

The two integrals in the definition of U,; will be called I~ and I". We will only estimate

I~ for some t € [, 5] and © with Imz > Im ™ + 2¢; the estimates for I are analogous

and in the neighborhood of 7, the estimates are as in [7]. As there, we find
_ 1 h(e, &
o= ) R
1 [ 2
< = exp ( ——Im (z —¢) ) [h(e, )] |dE]
€C" Jo—tte €
1 wye [573 2m Bl — |=)
< gl [* e (<Fmme g+ A=) g
< Linleflere [TF P d
< _allhlge P m (z —¢) ) |d¢],
where p = 27 — Lci, because the the argument of the exponential is %(—2711111 (x — &)+

Ble—¢|) < —L2r - g)Im (z — £). As we can parametrize by t = Im¢, |d¢| < ldt, we
obtain that I~ is < c%p||h||Bemz‘/5. All this is only possible, of course, if 8 < 2m¢ so that
p =21 — ii > 0. 0

The remainder of the proof of lemma 7 is straightforward now. If

1 1
S;lg)'b(&,.’l?)' . (E + m) =< 1,

then 6, is a contraction in B and thus (id — 96)71 is defined. We immediately obtain the

lemma observing that ||%V€HB < % + c2(27rlTﬂ)

7 Exponential closeness

Let two quasi-solutions (aj(¢),y1(e,z)) and (a1(e),y1(e,z)) of equation (1) be given; we
want to show that their difference is exponentially small.

More precisely, we consider the difference equation (1) and suppose that F,zg,ag, ¢o
satisfy the hypotheses in section 2, in particular, the hypothesis of transversality (H). We
assume that (a;j(e),y;(e,z)),j = 1,2 are defined and bounded for ¢ € V and z € D,(x),
r > 0, holomorphic with respect z, that a;(¢) — ao and y;(e,z) — ¢o(z) uniformly on
D, (zg) for j = 1,2 and that

Rj(e,z) == yj(e, @ +¢) — F(e, 2, a4(¢),yj (e, 2)) = O(exp(=T/le])) (42)

for j =1,2, V 5 ¢ — 0 uniformly for € D,(z¢) and T is a positive constant.
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Theorem 9 Under the above assumptions, there exist positive K, a > 0 such that
laz(e) — ax(e)| < K exp(—a/le])
for e € V and for all positive r1 < r, there exist positive M, 3 such that

ly2(e, @) — y1(e, @)| < M exp(—p/ [¢])
for all z satisfying |z —zo| <r; ande €V .

The theorem is in particular valid for actual solutions of equation (1) and shows that all
overstable solutions reducing to the same slow curve are exponentially close to each other.
In particular in the situation of our theorem 5, all parameter values yielding solutions of
the difference equation have to be exponentially close to the one we constructed using Borel
and Laplace transform.

Proof. Without loss in generality, we can assume that ag = 0, xp = 0 and ¢y = 0. We
define z(e,z) = ya2(e, ) —y1(e, ) and b(e) = az(e) — a1 (e). By subtraction of the difference
equations (42), we obtain

z(e,x 4+ ¢€) = A(e, x)z(e, z) + B(e, x)b(e) + R(e, ), (43)
where R = Ry — R; and
A(
B(

here @1 and Q)2 are analytic functions satisfying

) = Ql(ea r, y2(€a .’E), n (8’ .’E), (1,2(6), ai (8));

€,
=) :17) = Q2(8a r, yZ(ea .’E), n (8’ .’E), (12(8), ai (8));

F(e,z,c2,u2) — F(e,2,c1,u1)

= Ql(&',ﬂl‘,’U,z,U]_,Cz,Cl)(U2 - ’U,]_) + Q2(8,$,U2,U1,02, C1)(C2 - C]_)

for all sufficiently small uj, ¢, j = 1,2; Q; reduce to the partial derivatives if uz = u1, ¢z =

c1. Using Ao(z) = %(O,x,0,0} — I and By(z) = %—Z(O,m,0,0), we have that A(e,z) =

A(e,z) — Ao(z) and B(e,z) = B(e,z) — By(z) tend to 0 uniformly on D,(0) as V' > ¢ — 0.
Hence we rewrite our equation in the following “prepared form”

Ao(x)Z(&', .’I?) + Bo(l‘)b(é') . . (44)
=z(e,x +¢) —z(e,x) — A(e,x)z(e,x) — B(e, z)b(e) — R(e, z) .

As we want to use our modified Nagumo norms (cf Definition 2), we need a lemma
concerning the difference operator. In the present context, we need to reduce the radius of
the domain of the functions because z(e,z + €) — z(¢, x) is only defined on a subdomain.
Thus we denote with fixed 0 < p <7

1fllne = ‘S?g{lf(w)ldt(w)"} where dy(z) = min(t — [z[, ¢ - p) (45)

for t €]p,r]. Note that ||.||,,, is the modified Nagumo norm on Dy, so its properties
(compatibility with elementary operations, differentiation, the shift operator S (cf appendix
A.1) and thus also with the linear operators (P;, P%); cf equations (9, 10)) can be used.
Observe that the constant for P; does not depend upon ¢ €]p, [ !
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Lemma 10 Suppose that p < t — |e| < t < r. If f : Dy — @ is holomorphic and
g:Dy_|o| = @ is defined by g(x) = f(x +¢) — f(x), then

19llnt1,6- 1) < €lel (2 + D) [ fllne -

Proof. Let |z| <t — |¢]. Then

< ! < 1 —n-1
9(@)] < [e] gmax, | (e + 52)| < [el e(m+ 1)1l gma, de + s2)

by property (6) (see p. 6).

Together with di(z + se) > d;_|;/(z), this yields the lemma. 0
Now we apply the lemma to equation (44), using the fact that the inverse (P, P) of

(c,u) — Ag(.)u + Bo(.)c is a bounded linear operator with respect to ||.||,,, and that its

norm is independent of ¢. For sufficiently small ¢, we find

max(||z(s, ')||n+1,t—|5\7 ||b(6)||n—|—1,t—\s|) <M ‘€| (n + 1)“’2’(”77,1&+
3 max([[z(e; Mniae e 18 ngaee)) + " exp(=T/ Je])

for p <t < r and € € V sufficiently small and n € IN. Now we define L,(c) =
max(|[2(¢, )|l r—njep 10(€) [ p—nje)) for such n, e satisfyingn |e| < r—p. We obtain Ln11(e) <
M |e| (n+1)Lyp(e) + 5 Lpt1(e) + Mr™tlexp(—T/ |e|) provided (n+1)|e| < 7 — p and thus
by induction

Lyp(e) < Lo(e)(2M |g|)"n! + 2M exp(—=T/ |e|) Z ’;—,'(2M e[y i (46)
j=1

ifnle| <r—p.

Next, with some u €]0,7 — p[ to be determined and, for sufficiently small ¢ € V', we
choose n as the largest integer below p/ |e|. Then using Stirling’s formula and observing
that the last term of the sum is the largest provided p < r/2M, we find that there exists
M > 0 such that

Ln(e) < MnC™, C =max(2Mp/e,e T/ )

for sufficiently small e. Using the relation between |g|, , and the values of |g(z)| for
|z| < t —J, we obtain for some § > 0 to be determined, that

max _|2(e, )|, [be)| < M ||~ (C/s)H/

|| <r—p—

with some constant M > 0 and for all sufficiently small e. For arbitrary § < r — p, we see
that C/§ < 1, if u < r — p — § is chosen sufficiently small. This implies the statement of
the theorem; the factor |¢| ' can be eliminated by slightly reducing 3. 0

8 Examples

In this section, we consider two applications of our results to second order difference equa-
tions and deduce consequences for solutions on discrete sets.
The first example is

ylz+e)=2?ylz—¢)+z—cy(z): +a . (47)
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It is equivalent to the following two-dimensional system

F =
z(x +¢) = F(e,z,2(x),a), where (&2, 2,0) Z22 ) (48)
Fy(e,z,z,a) = z°z1+x—cz5+a
The slow curve ¢(z) = (p1(x), p2(x)) is given by ¢1(x) = ¢o(x) = —Hiz, the Ja-
cobian Ag(z) = %—f(O,x,l,qB(x)) = ( xg (1) ) has eigenvalues ¢ and —z and hence

Ao(z) = Ag(z) — I is not invertible at & = xo = 1. It is easily seen that the hypoth-
esis of transversality is satisfied with By(z) = (0,1)7. By our theorem 5, there exist § > 0
and an overstable solution (a(¢), z(g,x)) of (48) on |x — 1] < ¢ and thus also an overstable
solution (a(e),y(e, z)) of (47).

Consider now z1 < 1 < z2 and ¢ > 0 sufficiently small such that Ny = (1 — z1)/e and
Ny = (z2 — 1)/e are integers (this is a condition on z1, x2 and ¢); consider z, 2 as fixed
and ¢ as tending to 0 with the preceding restriction. Then put ¢t; = 1+1e, [ = —Ny, ..., Na.

Our above result implies that for x1, 2o sufficiently close to 1 and ¢ sufficiently small,
there exist a(e) and y(e,t;), | = —Ny,..., No such that (47) is satisfied and a(e) — 1,
y(&, tye)) — d1(x) if e = 0 and ¢,y — 2.

In the numerical study of this problem, it is important that both eigenvalues of Ag(x)
are of absolute value less than 1 for z < 1 and both are larger than 1 for z > 1; thus the
slow curve is attractive for z < 1 and repulsive for z > 1. Hence the solution y* (e, t;), I =
—Ny,..., Ny of (47) defined by y™(e,z2) = y*(z2 — ¢) = 0 and backward recursion will
remain uniformly bounded on [1,z;3] for any value of a, while its solution y (e,t;), | =
—N1,..., N2 defined by y~(e,21) = y~ (1 + ¢) = 0 will be bounded on [z1,1]. For the
“canard value” a = a(e), both are exponentially close to the overstable solution near z = 1
and hence y*(¢,1) — y~ (g, 1) is exponentially small for this value of a.

This gives a means to calculate some “canard value” (exponentially close to the one
given by our overstable solution) numerically: Simply consider y*(g,1)—y (¢,1) := g(a) as
a function of a and solve g(a) = 0. Observe that it is unlikely to achieve y™ (¢, t;) = vy~ (¢, t;)
for all I, as one parameter only allows to solve one equation and her equality for two
subsequent values of [ would be required.

Our numerical procedure worked for ;1 = 1/2, 2 = 2 and ¢ € {0.01,0.005,0.0005};
figure 1 shows the resulting y*(e,t;), I = —Ny, ..., Na. Observe that our result does not
allow to prove the existence of canard solutions on discrete sets for specific given x1, xs;
here an approach similar to [3] might work. Our method, of course, yields boundary layers
in 1 and xz,.

In order to illustrate the extreme sensitivity of the canard phenomenon, we replaced
a canard value a by a + 10750 for z; = 1/2,25 = 2,¢ = 0.0005. The resulting solution
yT (e, t;) still follows the slow curve down to about z ~ 0.68 and then leaves it quickly (cf
figure 2).

Our second example is a discrete version of the differential equation ey’ = 1 — 22 +
(a — z)/y appearing in the study of the (continuous) canard solutions of the forced Van
der Pol equation. Here, we replace €y’ by %(y(x +¢) — y(z — ¢)) and obtain the second
order difference equation

y(x+6):y(x—6)+2(1—x2+c;(_xf> . (49)
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Figure 1: Canard solutions for (47) and ¢ € {0.01,0.005, 0.0005} .

which is again equivalent to a two-dimensional system

Fl(E,.’B,Z,(I) = 22

50
F2(€,.'L',Z,a) = zl+2(1—xz+%) ( )

z2(x +¢) = F(e,z,2(x),a), where {

As for the continuous canard equation, the slow curve ¢(z) is given by ¢1(z) = ¢o(x) =
_H—La:' We find here

o) = 57 022,060 = (] 01wy 1 )

with eigenvalues A(z) = (z — 1)(z + 1)+ /1 + (z — 1)2(z + 1)4 and A\(z) = —1/\(z); the
matrix By(z) = (0, —2(1 + z)).

At 2 = 29 = 1, we find A(z) = 1 and hence Ag(z) = Ap(z) — I is not invertible at
x = 1. It is again easily checked that the hypothesis of transversality is satisfied and hence,
by our main result, there exist § > 0 and an overstable solution (a(e), z(¢,z)) of (50) on
|z — 1] < ¢ and thus also an overstable solution (a(¢),y(e,x)) of (49).

As in the first example, consider now z; < 1 < z2 and ¢ > 0 sufficiently small such
that N; = (1 — z1)/e and N2 = (z2 — 1)/e are integers; consider again z1, zs as fixed and
¢ as tending to 0 with the preceding restriction. Then put t; =1+1le, [ = — Ny, ..., No.

Our above result implies that for x1, xo sufficiently close to 1 and ¢ sufficiently small,
there exist a(e) and y(e,¢;), | = —Ni,..., N2 such that (49) is satisfied and a(e) — 1,
y(s,tl(s)) — d)l(:c) if ¢ = 0 and tl(e) — .

The numerical study of this example is however completely different from the previous
one, because for z < 1, we have |[A(z)| < 1< ‘S\(m)‘ whereas for z > 1, we have |A(z)| >

1> ‘S\(x) . Thus, the slow curve is neither attractive nor repulsive on any interval and the
method applied to the previous example cannot work.

Our idea is to go over to v(e,t;) = y(e, t;) + li—tl and b = a — 1; then to the following
system for v and u(e,t;) = v(e,t; +€) + A(t;) lv(e,t;) (here, the argument ¢ has been
omitted)

u(ty) — AMt)u(ti —e) +2(1L+ )b = h(e, t;,v(t; —€),v(t1),b)

(51)
v(ti+e) + At) to(t) = wulty) .
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Figure 2: Sensitivity of the canard phenomenon for (47) .

where

h(e,z,w,v,b) = (1—-ABAt—¢) Dw+(1+t+e)t—-(1+t—¢)!
—2[(1 =) +b(1 +t)*v(1 — (1 + t)v) !

We know that this system has a solution (b(¢), (u(e,t;),v(e,t),l = —Ny, ..., N3), pro-
vided z1, z2 are suficiently close to 1 and € > 0 is sufficiently small, that tends to a slow
curve of this modified system as € — 0; it is the one obtained by evaluating our overstable
solution at * = t;, | = —Ny,..., No. Now (51) is a fixed point equation, hence given a
sufficiently good approximation b9, w® 4 of this solution, one might be able to obtain
a sequence b¥) u*) y(*) converging to a solution by simply letting b1 o (k+1) 4(k+1) pe
a convenient solution of

wF () — At)ut T (G — ) + 2(1 + 6)p* D = h(e, 1, 0™ () — &), v (1), b4)

ot + &) + M) T () = uHI(@)
(52)
Thus we are lead to solve linear non-homogeneous equations

u(tl) - )\(tl)_lu(tl,l) + 2(1 + tl)b = g(tl) (53)
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Figure 3: The canard solution for equation (49) .

and

v(ti1) + Alt)v(t) = u(t) - (54)
Equation (53) can be solved analogously to the previous example (see also [3]) by putting
u(zy) = u(zz) = 0, calculating u(t;),l = —Ni,...,0 by forward recursion, u(t;),l =

0,...,Na — 1 by backward recursion and adjusting b such that the two obtained values
for u(ty) coincide.

For equation (54), one particular bounded solution can be found by putting v(ty) =
u(tp)/2 — this is the “slow curve” of this linear problem — and calculating the other values
v(t;) by forward and backward recursion. This works, because A(z) < 1 for < 1 and
A(z) > 1 for z > 1. Here, however, there are too many bounded solutions: We can add
any (bounded) multiple of the homogeneous solution wv(¢;) satisfying vy(1) = 1 to our
particular solution and still have a bounded solution of (54). (One or both might have a
spike at © = 1).

Here, the following observation helps. For a function v(e, ) analytic and bounded in
a neighborhood of [z1, z2], it can be shown that Z;E_Nl v(t;)vr(t;) is exponentially small;
this will be the case for the overstable solution! Thus it seems reasonable to require that
Zi’iz_ ~, V(t)vn(t) = 0 for our solution of (54). It can be shown that this defines a linear
operator the norm of which is O(e~1/?).

In this way, we computed b, u,v and thus a and y(e,t;), | = —Ny,..., N3 for 1 = 0.6,
z2 = 1.4 and ¢ = 0.001. Figure 3 shows the values of y(e,t;) + 1+1—t1’ l = —Ny,..,Ny
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for our value of a; the computation needed 200 digits! Figure 4 shows a solution with a
small spike obtained by requiring v(1) = %u(l). Also in this example the sensitivity is

0.8 1 1.2 1.4

—5e-05 ~

—0.0001

-0.00015 - °

Figure 4: Canard solution with a spike for (54) .

extreme, now also with respect to initial values because the canard solutuion is neither
attractive nor repulsive. This can be seen in figure 5 which presents the discrete solution
g(ea tl)a l= _Nla s No defined by ﬂ(é‘, .’172) = y(é‘, .’172) and 7}(8, x2_6) = y(&, .’E2—8)+10_100
and the above values of z1, z2,¢ and a.

A Auxiliary means
A.1 The Nagumo norms

The content of this appendix is taken from [2]. We included (and adapted) it here for
completeness of the thesis.
Let numbers 0 < p < r be given. Consider the following function d on the open circle
D, = D,(0).
el iflel=p
d(:z:)—{ r—p if|z]<p

This is a modification of the function denoting the distance from z to the boundary of D,
and also depends upon p. We have the following property

Proposition 11 If z,y € D, then |d(z) — d(y)| < |z —y| -
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Figure 5: Sensitivity of the canard phenomenon for (54) .

Now we introduce (modified) Nagumo norms on #(D,). For nonnegative integers p and
for f holomorphic in D, we put

Ifll, = sup [f(2)|d(z)" .

|z|<r

Note that the norms depend upon p but we do not indicate this. Of course ||f[, is
infinite for certain f € H(D,). If f is also continuous on the closure of D,, then

[fll, < (r = p)? sup [f(z)] .

|z|<r

In any case

=
—~
8
IA

[1£ll,d(z) P forall |z|<r, (55)
£8P if |z|<7r—6, 0<d<r—p.

=
—~
&
IA

The larger p is, the larger is the set of functions f having finite norm | f[|,. Of course we
have

If+gll, < 171, + lgll,
lecfll, = lelll7l,

for f,g € H(Dy) (except if a = 0, [ f]|, = 00).
The norms are also compatible with multiplication

1£9llprq < 1151l (56)
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for f, g € H(D,) and nonnegative integers p,q (except for f = 0,||g|[, = co or g =
0, ||f||p = 00). The most important property is

Lemma 12 For f € H(D;) one has ||f'||l,.; <e(p+1)|Ifll, -

Here the norm of the derivative of a holomorphic function is estimated; it is important
that it is estimated not only on a subset of D,.
Proof. Let K := ||f[,- Then |f(z)| < K d(z)™? for z € D,. From Cauchy’s theorem for

y € Dy
1 f(z)
— d
2mi fa}—y:R (.’17 - y)2 ’

where R can be chosen arbitrarily between 0 and r — |y|. By proposition 11 we have
d(z) > d(y) — R for |z — y| = R and hence (if R < d(y))

f'(y)| = max _|f(z)| ,

R jz—y|=R

1 _
1f'(y)| < g Ky -R)".
We choose now R = ;1% and obtain
1 4
7] < Kl # 24 1) (1= 1) < K)o+ e
This yields the lemma. 0

Besides differentiation we need the shift operator in our estimates. We recall its defi-
nition: For f € H(D,) denote by Sf € H(D,) the function

st@) =T IO 55 w20, 5700 = 10) -
Here we have
Lemma 13 |Sf[, < % |fll, for f € H(D,), p€ IN .

Proof. We have [f(x)| < d(z)7?|f|, for z € Dy and [f(0)] < [|f[|,(r—p)™P < d(x) [/ f]],
for ¢ € D,. Hence for |z| > p

‘f(w) - f(0)

O <zaw e, -

For |z| < p we have |Sf(z)| < maxy,_, |Sf(y)| < % (r—p) P || fll, by the maximum prin-
ciple and the above estimate. As d(z) =r — p if |z| < p we have |Sf(z)| < % d(z)™? |Ifl,
in all our cases. 0

A.2 The ‘hypothesis of transversality’ (H)

We suppose that Ag(z) is invertible except at # = 0 and hence
det(Ao(z)) = 2™ K(z)

where m € IN and K (z) is analytic near 0 with K (0) # 0.
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We consider equations of the form
Ao(z) y(z) + Bo(z) a = g(z) (57)
for arbitrary functions g. Consider now the Smith normal form of Ay(z) near 0
Ao(z) = C(z) &M D(z),

where C(0) and D(0) are invertible matrices and M = diag(my,...,my) with integers
0<m <...<my, m + ...+ my = m. Then the above equation is equivalent to

z" D(x) y(z) + C(z)”" Bo(x) a = C(z)™" g(x) (58)
For I € {1,...,n}, we find

[C’(x)’lg(w) — O(z) ' Bo(z) a]l
[D(z)y(z)]; = :

™

where [ |; denotes the [** component of a vector in €". In order to obtain a function y
holomorphic in a neighbourhood of 0, we must have

(€' Bo)(0)] a = [s*(C9)0)], (59)

forl=1,...,n, k=0,...,m; — 1. Here [ ]; also denotes the [*" row of a n X m matrix and
S is the shift operator defined above (lemma 13). If we want that this equation always has

a unique solution, we need that the m x m matrix with the rows [Sk(C_lBo)(O) y l =
1,..,n, k=0,...,m; — 1 is invertible. If this condition is satisfied then a = (a1, ...,an) is
uniquely determined by equation (59). Furthermore, we obtain a solution y of equation
(58)

(and hence of equation (57)) corresponding to a holomorphic in a neighborhood of 0 by

y=D1 sM [C’_l(g — By - a)

where SM has the meaning of applying S to the first component m; times, to the second
mo times, ... .

As shown above, the condition that the above matrix is invertible is equivalent to the
so-called ‘hypothesis of transversality’ (H)

(H) The mapping H(D,)"* x €™ — H(D,)" defined by (y,a) — Aqg -y + By - a is bijective

for sufficiently smallr, 0 < r < rq.
Here #(D,) denotes the set of function that are holomorphic on D,. We say that ‘By is
transversal to Ag at z = 0.
We now study the inverse of the mapping in the ‘hypothesis of transversality’ (H). We
denote by

P :H(D,)" — H(D,)"
Py:H(D,)" — @™

the uniquely determined linear mappings satisfying
Ao(z)(Pf)(z) + Bo(z)(P2f)(x) = f(x) forz € Dy, feH(D,)" . (60)

Then we have
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Lemma 14 There is a constant K > 0 such that
1PLfll, < Kfll, and||Pafll, < KI£]l,
(i.e. |[Pof| < K d(0) P fll,) for nonnegative integers p and f € H(D;)".

Proof. Let f € #(D,) with ||f|, < co and g := P;f and a := P>f. Then by a relation
analogous to equation (58), g and a are determined by

™ D(z) g(z) + C(z)™" Bo(z) a = C(z)™* f(z) (61)
and a is determined (cf. equation (59)) by the equations
(S5 (CT B)(O))ia = [S*(CTHA)(0)],

for l = 1,..,n, k = 0,...,m;_1, where S is the shift operator defined above. By the
condition of transversality, the matrix of all [Sk(C’_1 Bo)(O)] ; I=1,..,n, k=0,...,m_1
is an invertible m by m matrix and hence |a| is smaller than some K; times the vector
norm of the vector of all [Sk(C_lf)(O)]l. Now, equations (55, 56) and lemma 13 yield
that there is K5 independent of f such that
ol < (1+@m) e, 4o £,
< K d(0) P fll,,

and hence |la||, < Kz || f]|, -
Furthermore, we can write g in the form

g=DsM[C7X(f - Boa)]

where S™ means applying S to the first component m; times, my times to the second,
and so on. Using equation (56) and lemma 13, we find K3 independent of f such that

lall, < ([P (1 + ™) le o (11, + 1Bollg 2 1111,
< Klfl, -

This proves the lemma. 0

A.3 The notion of the majorization

Definition 15 We say that a series g = Y o gk()e" is majorized (* < ’) by a series
h(z) = 3212, hi2t if and only if

lgjll; < Ry gt for j =0,1,2...
We have the following relations for < :
Lemma 16 Assume that g < h(z) and § < h(z). Then

99 < h(z)h(2)

d
€9 < ezh(z)
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Proof. The first statement follows immediately from the definition of the product of two
formal power series by using equation (56) and k! (7 — k)! < j! for k € [0, j]. In order to
show the second statement, we use lemma 12. If g = > 22 g;(2)e’ and h(2) = > 72 h;2’
then g < h(z) means ||g;|; < hj j! for j =0,1,.... We calculate

d e ) o )
o9 =D 0@ =3 gii(a)e’
=0 =1

o0 o0

ezh(z) = Zehjzj'HZ Zehj_lzj

and hence we have to show that ‘ 9}—1 H < ehj qjlforj=1,2,.... Thisfollow immediately
J

from lemma 12 and the above ‘translation’ of the assumption g < h(z). 0
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