
HAL Id: hal-00144741
https://hal.science/hal-00144741

Preprint submitted on 4 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast tensor-product solvers. Part I: Partially deformed
three-dimensional domains

Tormod Bjøntegaard, Yvon Maday, Einar M Rønquist

To cite this version:
Tormod Bjøntegaard, Yvon Maday, Einar M Rønquist. Fast tensor-product solvers. Part I: Partially
deformed three-dimensional domains. 2007. �hal-00144741�

https://hal.science/hal-00144741
https://hal.archives-ouvertes.fr


Fast tensor-product solvers.

Part I: Partially deformed three-dimensional domains

Tormod Bjøntegaard∗ , Yvon Maday† , and Einar M. Rønquist‡

May 4, 2007

Abstract

We consider the numerical solution of partial differential equations in partially deformed

three-dimensional domains in the sense that a general two-dimensional cross section in the

xy-plane is invariant with respect to the z-direction. Earlier work has exploited such geome-

tries by approximating the solution as a truncated Fourier series in the z-direction. In this

paper we propose a new solution algorithm which also exploits the tensor-product feature

between the xy-plane and the z-direction. However, the new algorithm is not limited to pe-

riodic boundary conditions, but works for general Dirichlet and Neumann type of boundary

conditions. The proposed algorithm also works for problems with variable coefficients as

long as these can be expressed as a separable function with respect to the variation in the

xy-plane and the variation in the z-direction. For most problems where the new method is

applicable, the computational cost is better or at least as good as the best iterative solvers.

The new algorithm is easy to implement, and useful, both in a serial and parallel context.

Numerical results are presented for three-dimensional Poisson and Helmholtz problems using

both low order finite elements and high order spectral element discretizations.

Key words: fast solver, tensor-product, partial differential equation, parallel algorithm.

Suggested running head: Fast tensor-product solvers in space.

∗Norwegian University of Science and Technology, Department of Mathematical Sciences, Trondheim, Norway
†Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France
‡Norwegian University of Science and Technology, Department of Mathematical Sciences, mailing address:

N-7491 Trondheim, Norway, fax: +47 73 59 35 24, phone: +47 73 59 35 47, email: ronquist@math.ntnu.no

1



1 Introduction

Fast tensor-product solvers were proposed by Lynch, Rice and Thomas in 1964; see [10]. This

is a very specialized class of solution methods with limited applicability, but they are very

attractive to use whenever they are applicable. They have typically been used in the context of

solving the system of algebraic equations resulting from discretized partial differential equations

with constant coefficients in very simple computational domains (rectangular, hexahedral, or

cylindrical domains). For example, the solution of the Poisson equation or the biharmonic

equation in a cube can be done extremely efficiently using this approach; see [13, 14, 4, 1].

This class of solution methods have also been exploited in the context of constructing efficient

preconditioners for iterative methods; see for example [5, 16].

Recently, the tensor-product approach has also been extended to solve elliptic problems as-

sociated with layered media; see [9]. However, this two- and three-dimensional direct solver still

assumes a fully separable elliptic problem in order to reduce the multi-dimensional problem to a

sequence of one-dimensional problems.

In this work we exploit the tensor-product feature to solve problems in partially tensor-

product domains. In particular, we consider three-dimensional generalized cylinders (meaning

with a possibly nonquadratic cross-section, and even including holes); see Figure 1. The two-

dimensional cross-section may be discretized in an unstructured manner, or may be discretized

in a structured manner but deformed so as to prevent fast tensor-product solvers to be used

directly. The main idea is to exploit the tensor-product feature between the two-dimensional

cross-section (the xy-plane) and the perpendicular z-direction.

We demonstrate the approach by solving the Poisson problem and the Helmholtz problem in

selected three-dimensional domains. The proposed method results in a set of two-dimensional

Helmholtz-type problems, one for each cross-sectional plane, which can be solved completely

independently. The algorithm is therefore highly parallel. The two-dimensional systems can be

solved either iteratively or using a direct method. Each individual two-dimensional system may

also be parallelized, thus allowing for a two level parallelization: a parallelization with respect to

all the two-dimensional planes, and a separate and independent parallelization of each individual

plane.

2



x
y

z

Figure 1: A two-dimensional deformed domain extended in the third direction.

2 The Poisson problem

Let Ω be a three-dimensionl domain which can be considered as a “cylinder” in the sense that

a two-dimensional cross section, O, in the xy-plane is invariant with respect to the z-direction;

see Figure 1. Hence, we can write

Ω = O × (0, L), (2.1)

where L is the length of the domain in the z-direction.

We consider now the Poisson problem in such a cylinder,

−∇2u = f in Ω,

u = 0 on ∂O × [0, L].

(2.2)

The boundary conditions on the planes z = 0 and z = L will be discussed below.

Earlier work has exploited domains that can be expressed as (2.1). For example, the work

in [3] and [7] exploit this fact in the numerical solution of the three-dimensional Navier-Stokes

equations by using a spectral element discretization in the xy-plane and a truncated Fourier

expansion in the z-direction. Another example is the stability analysis of three-dimensional free

surface flows; see [2]. Most earlier works trying to exploit the particular structure (2.1) have

been based on models incorporating periodicity in the z-direction, i.e.,

u(x, y, 0) = u(x, y, L).

3



The motivation for this work is to generalize this approach, in particular, with respect to

prescribed boundary conditions in the z-direction, but also with respect to more general dis-

cretizations. This is done by using diagonalization techniques between the xy-plane and the

z-direction.

In the following discussion, we assume homogeneous Dirichlet boundary conditions also in

the z-direction. We will return to other types of boundary conditions later.

The weak formulation of the Poisson problem (2.2) is then: Find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1

0 (Ω), (2.3)

where the bilinear form a(u, v) is given as

a(u, v) =

∫

Ω

∇u · ∇v dΩ =

∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
+
∂u

∂z

∂v

∂z

)
dΩ, (2.4)

and the right hand side is given as

(f, v) =

∫

Ω

fv dΩ. (2.5)

We will assume that the given data f is square integrable over Ω.

3 Discretization

We now discuss the numerical solution of (2.3) based on the weak formulation. The particular

structure of our linear differential operator and of our domain Ω allows us to express the discrete

solution space XN as

XN = span {φm(x, y)ψn(z)}, m = 1, . . . , N2, n = 1, . . . , N1. (3.1)

Each basis function can thus be expressed as a product of a two-dimensional function, φm,

defined over O and a one-dimensional function, ψn, defined on the interval (0, L). We note that,

as the resolution is increased (i.e., as the discretization parameters N2 and N1 go to infinity), the

4



two-dimensional functions {φm(x, y)}∞m=1 will span H1
0 (O), while the one-dimensional functions

{ψn(z)}∞n=1 will span H1
0 ((0, L)).

The discrete problem can be stated as: Find uN ∈ XN such that

a(uN , v) = (f, v) ∀v ∈ XN . (3.2)

The discrete solution can be expressed in tensor product form as

uN (x, y, z) =

N2∑

m=1

N1∑

n=1

umn φm(x, y)ψn(z), (3.3)

where umn are the basis coefficients. Note that each basis function is a separable function while

uN is not.

Inserting (3.3) into (3.2) and choosing test functions v(x, y, z) = φi(x, y)ψj(z), we get

N2∑

m=1

N1∑

n=1

[
(

∫

O

∇̃φi · ∇̃φm dx dy)(

∫ L

0

ψjψndz) + (

∫

O

φiφm dx dy)(

∫ L

0

ψ′

jψ
′

ndz)

]
umn = gij . (3.4)

Here, ∇̃ denotes the gradient operator in two space dimensions (in the xy-plane), and

gij =

∫ L

0

(∫

O

f(x, y, z)φi(x, y) dx dy

)
ψj(z) dz. (3.5)

In the case of Dirichlet boundary conditions in the z-direction, ψn(0) = ψn(L) = 0 for all

n = 1, . . . , N1. A convenient choice of functions ψn(z) are those functions that satisfy

∫ L

0

ψ′

jψ
′

ndz = λn

∫ L

0

ψjψndz,
∀j = 1, . . . , N1,

∀n = 1, . . . , N1.
(3.6)

where λn is a constant. Inserting (3.6) into (3.4), we arrive at

N2∑

m=1

N1∑

n=1

[(∫

O

(
∇̃φi · ∇̃φm + λnφiφm

)
dx dy

)(∫ L

0

ψjψndz

)]
umn = gij . (3.7)

On a continuous level, (3.6) is equivalent to choosing ψn(z) to be the solution of the symmetric

5



eigenvalue problem

−ψ′′

n = λnψn, ψn(0) = ψn(L) = 0,

which is explicitly given as

ψn(z) =
√

2/L sin(nπz/L), (3.8)

λn = n2π2/L2. (3.9)

Note also that these eigenfunctions ψn(z) are orthonormal,

∫ L

0

ψjψndz = δjn, ∀j, n. (3.10)

Inserting (3.6) into (3.7) and using (3.10), we arrive at the systems

N2∑

m=1

[ ∫

O

(
∇̃φi · ∇̃φm + λnφiφm

)
dx dy

]
umj = gij ,

∀i = 1, . . . , N2,

∀j = 1, . . . , N1.
(3.11)

We see that this approach transforms the solution of a single three-dimensional problem into the

solution of N1 two-dimensional Helmholtz-type systems.

However, other choices for ψn(z) are also possible. For example, in the low order finite element

case, we can choose the ψn(z) to be the eigenvectors of the one-dimensional stiffness matrix with

respect to the one-dimensional mass matrix; these eigenvectors are then spanned by the usual

one-dimensional “hat” basis functions. Similarly, in the high order spectral (element) case, we

can choose the functions ψn(z) to be the eigenvectors of stiffness matrix with respect to the

one-dimensional mass matrix, however, now the eigenvectors would be spanned by (piecewise)

high order polynomials which vanish at the end points z = 0 and z = L.

We remark that, for both the low order finite element case and the high order spectral

(element) case, the discrete eigenvalues λn and the corresponding discrete eigenfunctions ψn are

different from the analytical expressions (3.9) and (3.8). An expansion in the z-direction based

on the analytical eigenfunctions (3.8) represents an approach similar to the Fourier expansion for

periodic problems. The disadvantage with this approach is that we need to find the explicit form

6



for the analytical eigenfunctions (and eigenvalues) for each specific type of boundary conditions

specified at z = 0 and z = L, and for each type of operator. This may be cumbersome or difficult,

and the implementation will be different for each specific case. In the following, we will therefore

focus on a finite element or spectral (element) discretization in the z-direction, thus allowing for

a more general and flexible setting.

3.1 Algebraic system of equations

Let us now proceed with the details for arbitrary finite element discretizations, both low order

and high order discretizations. We let φm(x, y) be any two-dimensional basis function, and let

ψn(z) be any one-dimensional basis function. The discrete space XN and the discrete solution

uN are then given by (3.1) and (3.3), respectively. If both φm and ψn are nodal basis functions,

the unknown basis coefficients umn will be the numerical approximation at the nodal points.

It now follows directly from (3.4) that we can express the system of algebraic equations as

N2∑

m=1

N1∑

n=1

(A2D
imB

1D
jn +B2D

imA1D
jn )umn = gij ,

∀i = 1, . . . , N2,

∀j = 1, . . . , N1.
(3.12)

where

A2D
im =

∫

O

∇̃φi · ∇̃φm dx dy,

B2D
im =

∫

O

φiφm dx dy,

are the elements in the two-dimensional stiffness matrix and mass matrix, respectively, and

A1D
jn =

∫ L

0

ψ′

jψ
′

n dz,

B1D
jn =

∫ L

0

ψjψn dz,

are the elements in the one-dimensional stiffness matrix and mass matrix associated with the

z-direction. The right hand side elements gij in (3.12) are given in (3.5).

7



In matrix form, we can write (3.12) succinctly as

(B1D ⊗A2D +A1D ⊗B2D)u = g, (3.13)

where we have used standard tensor product notation. Note that u is a vector of length N2N1,

and that the unknowns are numbered in such a way that the all the nodes in a fixed xy-plane

are numbered before proceeding to the next plane. A similar numbering scheme is used for the

right hand side g.

3.2 Diagonalization

We now consider fast tensor-product techniques to solve the system (3.13). To this end, we

introduce the generalized eigenvalue problem

A1Dq
j

= λj B
1Dq

j
, j = 1, . . . , N1,

or

A1DQ = B1DQΛ. (3.14)

Here, q
j

is an eigenvector of the one-dimensional discrete Laplace operator A1D with respect to

the one-dimensional mass matrix B1D, and λj is the corresponding (real and positive) eigenvalue.

The columns of Q contain all the eigenvectors, while Λ is a diagonal matrix containing the

eigenvalues along the diagonal.

Normalizing the eigenvectors with respect to B1D we get

B1D = Q−TQ−1, (3.15)

A1D = Q−T ΛQ−1. (3.16)

8



From (3.13) and (3.15)-(3.16) it follows that

B1D ⊗A2D +A1D ⊗B2D = Q−TQ−1 ⊗A2D +Q−T ΛQ−1 ⊗B2D,

= (Q−T ⊗ I2D)(I1D ⊗A2D + Λ ⊗B2D)(Q−1 ⊗ I2D),

where I2D and I1D are identity matrices of the same dimension as the number of degrees-of-

freedom in each xy-plane and in the z-direction, respectively.

By introducing the variables

ũ = (Q−1 ⊗ I2D)u,

g̃ = (QT ⊗ I2D) g,

the algebraic problem can be written as

(I1D ⊗A2D + Λ ⊗B2D) ũ = g̃.

In “semi-local” form (global numbering in the xy-plane, but local numbering for the combined

xy-plane and the z-direction), this reduces to

N2∑

m=1

N1∑

n=1

[
(A2D)im(I1D)jn︸ ︷︷ ︸

δjn

+ (B2D)im(Λ)jn︸ ︷︷ ︸
λjδjn

]
ũmn = g̃ij ,

i = 1, . . . , N2,

j = 1, . . . , N1.
(3.17)

or

N2∑

m=1

[
(A2D)im + λj(B

2D)im

]
ũmj = g̃ij ,

i = 1, . . . , N2,

j = 1, . . . , N1.
(3.18)

Here, the first index runs over the entire xy-plane, while the second index corresponds to the

z-direction.

Thus, the total algorithm comprises three steps.

9



The first step is to transform the right hand side:

g̃ij =

N2∑

m=1

N1∑

n=1

(I2D)im︸ ︷︷ ︸
δim

QT
jngmn (3.19)

=

N1∑

n=1

QT
jngin =

N1∑

n=1

ginQnj ,
i = 1, . . . , N2,

j = 1, . . . , N1.
(3.20)

or, in matrix form,

G̃ = GQ. (3.21)

Here, G and G̃ are the given data and transformed data, respectively, in a “semi-local” data

representation.

The second step is to solve the systems (3.18). Each system (for a fixed value of j) couples the

degrees-of-freedom within a single xy-plane. Using a global data representation for the unknowns

within each plane, the systems (3.18) can also be expressed as:

(A2D + λj B
2D) ũj = g̃

j
, j = 1, . . . , N1. (3.22)

Each two-dimensional solution ũj forms a column in the two-dimensional solution matrix Ũ fol-

lowing a semi-local data representation. Note that these systems represent completely decoupled

two-dimensional systems which can be solved independently of each other.

The third step involves a transformation of Ũ to the final solution U . Again, using a “semi-

local” data representation, we get

uij =

N1∑

n=1

ũinQjn =

N1∑

n=1

ũinQ
T
nj (3.23)

or, in matrix form,

U = Ũ QT . (3.24)

10



4 Numerical results

We now present numerical results using the proposed solution algorithm to solve the resulting

systems of algebraic equations. All the numerical tests we report have been implemented in

MATLAB R©.

4.1 Finite element discretization

We first consider the solution of the Poisson problem in a wedge-shaped domain as depicted in

Figure 2. The discretization is based on linear finite elements. Each two-dimensional cross section

corresponds to a sector π/4 of the unit circle, which is discretized into triangles with mesh size h.

The grid spacing in the z-direction is h. Hence, our three-dimensional discretization corresponds

to using prismatic linear finite elements of mesh size h.

We derive the right-hand side, f , by using the exact solution

u(x, y, z) = sin
(
2π
(
x2 + y2

))
sin
(
x
(
y − tan

(π
4

)
x
)
π
)

sin
(πz
L

)
.

The domain length in the z-direction is L = 1, and homogeneous Dirichlet boundary conditions

are imposed along the entire domain boundary ∂Ω. Figure 3 shows the convergence results.

As expected, the error between the exact solution and the finite element solution decreases as

O(h2) as the mesh size h decreases; the error is here measured in the discrete L2-norm. Note

that the finest grid used in the convergence study uses 90 elements in the radial direction, in

the angular direction, and in the z-direction. Hence, the resulting algebraic system of equations

corresponds to about 340,000 degrees-of-freedom. All the two-dimensional systems are solved

directly using full LU-factorization. However, even with a simple solver that does not exploit the

sparsity associated with the triangulation of each plane, the solution is readily obtained using

MATLAB R©.

4.2 Spectral discretization

We now demonstrate the proposed method by solving the Poisson problem in a domain Ω as

depicted in Figure 4. The domain is a deformed rectangle in the xy-plane which is extended in

11



0

0.5

1

0

0.5

1
0

0.5

1

x
y

z

Figure 2: The finite element grid for a wedge-shaped domain.

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

h

E
rr

o
r

Figure 3: Relative error between the exact solution u and the numerical solution uh of the three-
dimensional Poisson problem using linear finite elements with mesh size h; the error is measured
in the discrete L2 norm. The computational grid is depicted in Figure 2.

12



the z-direction. The Poisson problem is discretized using a pure spectral method based on high

order polynomials. Figure 4 indicates both the deformed Gauss-Lobatto Legendre grid in the

xy-plane as well as a Gauss-Lobatto Legendre distribution of the nodes in the z-direction.

For the numerical experiments, we compute the right hand side, f , from the exact solution

u(x, y, z) = sin

(
π(x− a4 sin(πy))

1 + a2 sin(2πy) − a4 sin(πy)

)
sin

(
3π(y + a1 sin(2πx))

1 + a3 sin(πx) + a1 sin(2πx)

)
sin

(
2πz

L

)
,

(4.1)

with a1 = 0.08, a2 = 0.10, a3 = 0.12 and a4 = 0.15.

The set of algebraic equations are solved using (3.21), (3.22), and (3.24). In contrast to

the finite element case, the two-dimensional problems in (3.22) are now solved iteratively using

the conjugate gradient method. For the convergence result of the spectral method, we have

measured the discretization error in the discrete L2-norm. Figure 5 shows the relative error as

a function of the polynomial degree, N , in each spatial direction. We see how the exponential

convergence is influenced by the stopping criterion, ε, used in the conjugate gradient method for

each two-dimensional problem in (3.22).

4.3 Spectral element discretization

Again, we consider the Poisson-problem with homogeneous Dirichlet boundary conditions, but

the three-dimensional domain Ω is now a cylinder; see Figure 6. The two-dimensional cross

section is a circle with radius equal to two. Each cross section is divided into five elements, while

two layers of elements is used in the z-direction; see Figure 6.

The exact solution of the Poisson problem is

u(x, y, z) = sin

(
7π

4

√
(x− 2)2 + (y − 2)2 +

π

2

)
sin

(
2πz

L

)
. (4.2)

In Figure 7, we show the discretization error in the discrete L2-error as a function of the

polynomial degree, N , used to approximate the solution in each in each element. Note that the

finest grid used in this convergence study corresponds to a polynomial degree N = 29; with ten

elements, this corresponds to about 300,000 degrees-of-freedom. Similar to earlier experiments,

the numerical results are obtained using MATLAB R©.

13



0

0.5

1

0

0.5

1

0

0.5

1

xy

z

Figure 4: The domain Ω used in the numerical experiment in Section 4.2.

0 10 20 30 40 50

10
−10

10
−5

10
0

N

E
rr

o
r

ε = 10−14

ε = 10−10

ε = 10−6

Figure 5: Relative error between the exact solution u and the numerical solution uN of the
three-dimensional Poisson problem as a function of the polynomial degree, N , in each spatial
dimension. The error is measured in the discrete L2-norm. The convergence results are shown
for different choices of the stopping criterion, ε, used in the conjugate gradient iteration when
solving the two-dimensional systems (3.22): ε = 10−14, ε = 10−10 and ε = 10−6.

14



0
1

2
3

4

0
1

2
3

4
0

0.5

1

xy

z

Figure 6: The computational domain, Ω, and the spectral element discretization. Two layers
of elements are used in the z-direction. Each two-dimensional cross-section is divided into five
spectral elements.

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

N

E
rr

o
r

Figure 7: Relative error between the exact solution u and the numerical solution uN of the three-
dimensional Poisson problem as a function of the polynomial degree, N , in each spatial direction
in each element. The error is measured in the discrete L2-norm. The exact solution is given by
(4.2). Each two-dimensional system in (3.22) is solved using conjugate gradient iteration with a
tolerance ε = 10−12.

15



4.4 Extension to solving the Helmholtz problem

We now extend the proposed method to solving the Helmholtz-problem

−∇2u+ αu = f in Ω, (4.3)

u = 0 on ∂Ω, (4.4)

where α is a positive constant. The only difference from the solution procedure for the Poisson

problem is that the two-dimensional problems in (3.22) now read

(A2D + (λj + α)B2D) ũj = g̃
j
, j = 1, . . . , N1. (4.5)

The domain Ω and the discretization is the same as described in Section 4.2; see Figure 4.

Again, we use the exact solution (4.1) to derive the right hand side, f . The parameter α is

set equal to one. Figure 8 shows the convergence plot. As expected, we obtain exponential

convergence similar to the Poisson problem.

4.5 Further extensions

We conclude with an example showing the extension of the proposed approach to solving problems

with other types of boundary conditions and nonconstant material properties. The particular

example we consider can be formulated mathematically as

−∇ · κ∇u = f in Ω, (4.6)

u = 0 at z = 0, (4.7)

κ
∂u

∂n
= 0 on ∂O × [0, L], (4.8)

κ
∂u

∂n
= q at z = L. (4.9)

This problem describes steady heat transfer in a domain Ω with the temperature u = 0 prescribed

on the plane z = 0, a heat flux, q, prescribed on the plane z = L, and no heat transfer through

the cylinder wall. A volumetric heat source, f , is assumed given. We choose the domain Ω

16



and the discretization to be the same as depicted in Figure 6. The parameter κ is the thermal

conductivity. As long as κ can be expressed as

κ(x, y, z) = κ2(x, y) · κ1(z),

the proposed solution algorithm still applies.

We solve this test problem with f = 0, q = 1, κ = 1 in the lower half of the cylinder, and

κ = 2 in the upper half of the cylinder. This problem has a simple analytical solution which

only depends on z; the exact solution is piecewise linear with a jump in the first derivative at

z = 1/2,

u(x, y, z) = z for 0 ≤ z ≤
1

2
,

u(x, y, z) =
1

2
z +

1

4
for

1

2
≤ z ≤ 1.

The numerical solution is, indeed, constant in each xy-plane, and the variation in the z-direction is

shown in Figure 9. We remark that using the analytic eigenfunctions (3.8) would be inappropriate

for this problem due to the nonconstant thermal conductivity in the z-direction. In this sense,

the proposed diagonalization procedure offers convenience in terms of handling situations with

variable coefficients and other types of boundary conditions.

5 Computational complexity

We now discuss the computational cost of the proposed procedure. This includes the cost of the

diagonalization step (3.14), and the solution steps (3.21), (3.22), and (3.24).

In the following, we denote the total number of elements (finite elements or spectral elements)

in the domain as K, the number of elements in a two-dimensional cross-section as Kxy, while

the number of layers of elements in the z-direction is denoted as Kz, i.e., K = Kxy ·Kz. In the

spectral element case, we denote the polynomial order as N . Note that, in the spectral (element)

case, the polynomial order need not be the same in the z-direction as in the xy-plane. With

17



0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

N

E
rr

o
r

Figure 8: Relative error between the exact solution u and the numerical solution uN of the
three-dimensional Helmholtz problem (4.4) as a function of the polynomial degree, N , in each
spatial direction. The error is measured in the discrete L2-norm.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z

u
N

Figure 9: A plot of the variation in the numerical solution of (4.6) - (4.9) in the z-direction at
a fixed point in the xy-plane. In this problem, f = 0 and q = 1. As expected, the numerical
solution coincides with the exact solution.

18



these parameters, it follows that

N2 ≈ Kxy using linear finite elements,

N2 ≈ Kxy ·N2 using spectral elements,

and

N1 ≈ Kz using linear finite elements,

N1 ≈ Kz ·N using spectral elements.

The exact numbers N2 and N1 will depend on the prescribed boundary conditions.

In order to provide a “reference” for a cost analysis of the proposed method, we first esti-

mate the cost of performing a single operator evaluation involving the three-dimensional discrete

Laplacian:

72K using linear finite elements, (5.1)

12KN4 using spectral elements. (5.2)

In the linear finite element case, this estimate is based on an element-by-element approach, and

assuming an already explicitly contructed element matrix of dimension 6 × 6. In the spectral

element case, this estimate assumes the use of tensor product sum-factorization techniques; see

[12].

We now proceed with a cost analysis of the proposed algorithm; a summary of this cost

analysis is given in Table 1. The cost of solving the one-dimensional eigenvalue problem (3.14)

is approximately equal to N3
1 . This estimate just states the usual fact that the cost of solving

the eigenvalue problem scales like the cube of the dimension of the problem; see [6]. Let us

compare this cost with the cost of performing a single operator evaluation involving the discrete

Laplacian. To this end, let us first assume that Kz ∼
√
Kxy. The cost of the eigenvalue problem

19



Linear Spectral
finite elements elements

N1 Kz KzN
N2 Kxy KxyN

2

Operator evaluation w = A3Dv 72K 12KN4

Eigenvalue problem (3.14); Kz ∼
√
Kxy K KN3

Transformation (3.21) and (3.24) 4KzK 4KzKN
4

Solution of (3.22) (M iterations) 18MK 8MKN4

Total cost (proposed solver) (18M + 4Kz)K (8M + 4Kz)KN
4

Total cost (PCG, ideal 3D preconditioner) 72MK 12MKN4

Table 1: A table showing the scalings and estimated cost for the various parts of the proposed
algorithm. The total cost is also compared to an iterative solution of the full three-dimensional
system, using an ”ideal” preconditioner in the sense of incuring an insignificant computational
cost, while giving a resolution-independent convergence rate.

is then

N3

1 ∼ K3

z ∼K using linear finite elements,

N3

1 ∼ K3

zN
3 ∼KN3 using spectral elements.

In the linear finite element case, the cost of the eigenvalue problem will then be significantly

smaller than the cost of performing a single operator evaluation (assuming we exploit all the

sparsity); see (5.1). In the spectral element case, the cost of the eigenvalue problem will also be

significantly less than the cost of performing a single operator evaluation since the latter scales

like O(KN4); see (5.2). If Kz ≪
√
Kxy, this conclusion will be even more true. If Kz ≫

√
Kxy,

the solution of the eigenvalue problem will become more important. However, the resolution in

the z-direction has to be quite extreme compared to the x- and y-direction before the eigenvalue

problem will play a significant role; see below.

The transformation step (3.21) involves a matrix-matrix product. The number of floating

point operations for this step is

2N2 ·N
2

1 ≈ 2Kxy ·(Kz)
2 = 2Kz·K using linear finite elements, (5.3)

2N2 ·N
2

1 ≈ 2Kxy N
2·(KzN)2 = 2Kz·KN4 using spectral elements. (5.4)

Hence, for Kz < 36 in the linear finite elements case, and for Kz < 6 in the spectral element

20



case, the cost of (3.21) is less than the cost of a single iteration using an iterative solver for the

full three-dimensional problem.

Step (3.22) involves solving approximately N1 two-dimensional problems. The cost of these

problems depends on the particular solver used. For an elliptic problem like the Poisson problem,

we can use a preconditioned conjugate gradient method with a domain-decomposition-based

preconditioner. In the optimal case, the cost of each two-dimensional solve will at least be a

fixed number of iterations, M , times the cost of a two-dimensional operator evalution (or matrix-

vector product); see [15]. In the linear finite element case, this lower bound can be estimated to

be 18M Kxy, while in the spectral element case, this lower bound is equal to 8M Kxy N
3. The

total number of floating point operations for (3.22) is then approximately equal to

18M K using linear finite elements,

8M KN4 using spectral elements.

For non-optimal preconditioners, this cost will be higher. We have here neglected the cost of the

preconditioner and other aspects of the iterative solver. Note that from an implementation point

of view, implementing “optimal” preconditioners in the two-dimensional case is much easier than

in the three-dimensional case. Finally, note that solving two-dimensional problems has eliminated

potential difficult aspect ratio problems associated with domains with a small/large length scale

in the z-direction compared to a typical length scale in the xy-plane.

The above analysis only considers an iterative solution strategy for the two-dimensional prob-

lems in (3.22). This is the most practical strategy for large problems. However, it may also be

possible to use a direct solution method for these two-dimensional systems even though this may

not be practical for the full three-dimensional problem. We refer to the numerical test using linear

finite elements in Section 4.1 as an example. If a direct method is used for the two-dimensional

systems, the entire proposed solution procedure can be classified as a direct solution method.

The final transformation step (3.24) involves a matrix-matrix product at a similar cost as

(3.21); see (5.3)-(5.4).

In summary, if we can neglect the cost of solving the one-dimensional eigenvalue problem,

21



the total cost of the proposed algorithm is then

(18M + 4Kz) ·K using linear finite elements,

(8M + 4Kz) ·KN4 using spectral elements.

We have here assumed iterative solution of the two-dimensional systems using optimal (ideal)

preconditioners, and each system taking M iterations to converge.

Consider now the cost of using an iterative solver for the full three-dimensional problem with

an optimal (ideal) preconditioner that also takes M iterations to converge. From (5.1) and (5.2)

this cost is at least

(72M) ·K using linear finite elements,

(12M) ·KN4 using spectral elements.

The proposed method should therefore (conservatively) be competitive with the best (ideal)

iterative solution methods if

Kz < 13M using linear finite elements,

Kz < M using spectral elements.

For example, if M = 20, we can have up to Kz = 260 layers of linear finite elements, and

KzN = 200 nodes in the z-direction in the spectral element case (assuming N = 10).

Again, this is a conservative estimate. For most problems where the proposed algorithm is

applicable, the computational complexity will be smaller than the best iterative solution method

for the full three-dimensional problem. Additional issues in favor of the proposed approach are:

elimination of the aspect ratio problem discussed earlier; the number of iterations, M , is typically

larger for a full three-dimensional problem compared to solving a problem in a two-dimensional

cross section; the number of iterations, M , is not a constant, but a function of the polynomial

degree N in the case of using spectral elements; easier implementation (two-dimensional versus

three-dimensional solvers); easier parallelization (see the next section).

22



6 Parallel processing

The solution step (3.22) suggests a natural way to parallelize this algorithm. One way is to

simply solve one (or more) two-dimensional problem(s) on a single processor. This will imply

that all the two-dimensional problems can be solved in parallel without any communication. The

implementation of this step will be unchanged from a serial version.

If we assume that the eigenvector matrix Q is stored on all the processors, step (3.21) can

be done by first storing the right hand side gij for some values of i in the xy-plane, and for all

values of j along the z-direction. The transformation of the given data as given by (3.20) or

(3.21) can then be done in parallel without any communication.

The transformed data G̃ can now be “transposed” so that g̃ij will be available on each

processor for all values of the index i in the xy-plane, and for one or more values of j. This

“transpose” operation will require global communication.

The two-dimensional systems (3.22) can now be solved in parallel in a completely decoupled

fashion, and the solution Ũ will be distributed so that ũij will be available on each processor

for all values of the index i in the xy-plane, and for one or more values of j. This distribution

is again “transposed” so that ũij will be available on each processor for some values of i in the

xy-plane, and for all values of j along the z-direction. The final solution U is then obtained from

(3.24) by performing the matrix-matrix product in parallel without any communication.

Hence, the total communication cost for the algorithm is limited to the two “transpose” oper-

ations which imply an all-to-all-type of communication pattern. The parallel implementation as

described above should be compared with a more standard domain decomposition approach which

typically implies a parallel implementation of the preconditioned conjugate gradient method ap-

plied to the full three-dimensional system. The advantage with the proposed method is that it

is has low computational complexity and it is easy to implement both in a serial and a parallel

context.

It is interesting to notice that an iterative solution of the independent two-dimensional systems

will enjoy both the convergence rate and ease of implementation associated with two-dimensional

systems. As explained above, we can solve each two-dimensional system on a single processor.

However, in the case that each two-dimensional system is also very large, we can parallelize

23



the solution of each two-dimensional system as well (in addition to the parallelization across

two-dimensional planes). For such large problems, the proposed algorithm would offer a way to

exploit computer platforms with many processors.

7 Conclusions

We have presented a new solution algorithm for problems in computational domains which can

be expressed as a tensor-product between a general two-dimensional domain in the xy-plane and

the z-direction. The new algorithm allows general boundary conditions to be specified in the

z-direction. It can also be used to solve problems with variable coefficients as long as these can be

expressed as a separable function with respect to the variation in the xy-plane and the variation

in the z-direction.

For most problems where the proposed method is applicable, the computational complexity

is better or at least as good as the best available iterative solvers. An attractive feature with the

proposed method is that it eliminates the aspect ratio problem associated with domains which

have a small length scale in the z-direction compared to a typical length scale in the xy-plane.

The method also allows for an easy implementation, both in a serial and a parallel context.

We have demonstrated the new algorithm by solving selected Poisson- and Helmholtz-type

problems. However, we remark that the method is equally applicable for three-dimnensional

geometries with other two-dimensional topologies, e.g., a planar region with a certain number of

holes, and for solving other partial differential equations.

8 Future work

Future work will include the application of the method presented here to simulate three-dimensional

Bénard-Marangoni convection [8]. Previous numerical results for this problem have assumed a

fixed and undeformed free surface [11]. However, it is known that the (unknown) free surface

will be slightly deformed for this type of problems. In the context of solving the governing equa-

tions (the incompressible Navier-Stokes equations and the energy equation) numerically using a

splitting approach, the computational problem is reduced to solving a Helmholtz-type equation

24



for the velocity and a Poisson-type equation for the pressure at each time step. The fast tensor-

product solver presented here could function as a perfect preconditioner for these elliptic solves;

for small free surface deformations, the convergence should be very rapid. The solver should also

be insensitive to the potentially large aspect ratios associated with the computational domains

for this class of problems. Note that the two-dimensional cross-sections may be quite general

and may not be possible to express in tensor-product form [11].

Future work will also extend the approach presented here to include fast tensor-product

solvers for a combined space-time treatment. In a second paper (Part II), we will discuss a tensor-

product solver for the pure spectral case. This is part of an ongoing research effort to extend the

possibilities for parallel processing in the time direction, thus allowing for an overall increased

speedup for the simulation of evolution problems described by partial differential equations.

Finally, we mention an open area for the possible application of fast tensor-product solvers,

namely, the approximate solution of the Boltzmann equation. For this type of problems, we have

6 independent variables in three physical space dimensions: 3 velocity directions and 3 physical

coordinate directions. A ”cross-section” in the xyz-”plane” is here invariant with respect to all

the velocity directions. This could potentially be exploited in the construction of tensor-product

bases and fast solvers.

References

[1] Bjørstad, P.E. and Tjøstheim, B.P. (1997). Efficient algorithms for solving a fourth-order

equation with the spectral Galerkin method. SIAM J. Sci. Comput., 18(2), 621-632.

[2] Carvalho, M.S. and Scriven, L.E. (1999). Three-dimensional stability analysis of free surface

flows: Application to forward deformable roll coating. J. Comput. Phys., 151(2), 534-562.

[3] Chu, D., Henderson, R., and Karniadakis, G.E. (1992). Parallel spectral-element-Fourier

simulation of turbulent flow over riblet-mounted surfaces. Theoretical and Computational

Fluid Dynamics, 3, 219-229.

25



[4] Couzy, W. and Deville, M.O. (1995). A fast Schur complement method for the spectral

element discretization of the incompressible Navier-Stokes equations. J. Comput. Phys.,

116, 135-142.

[5] Fischer, P.F. (1997). An overlapping Schwarz method for spectral element solution of the

incompressible Navier-Stokes equations. J. of Comput. Phys., 133, 84-101.

[6] Golub, G. and Van Loan, C.F. (1983). Matrix Computations, John Hopkins.

[7] Henderson, R. (1997). Nonlinear dynamics and pattern formation in turbulent wake transi-

tion. J. Fluid Mech., 353, 65-112.

[8] Koschmieder, E.L. (1993). Bénard Cells and Taylor Vortices, Cambridge University Press.

[9] Kwan, Y.-Y. and Shen, J. (to appear). An efficient direct parallel spectral-element solver

for separable elliptic problems. J. Comput. Phys., DOI: 10.1016/j.jcp2007.02.013.

[10] Lynch, R.E., Rice, J.R., and Thomas, D.H. (1964). Direct solution of partial differential

equations by tensor product methods. Numer. Math., 6, 185-199.

[11] Medale, M. and Cerisier, P. (2002). Numerical simulation of Bénard-Marangoni convection

in small aspect ratio containers. Numer. Heat Transfer, Part A, 42, 55-72.

[12] Maday, Y. and Patera, A.T. (1989). Spectral element methods for the Navier-Stokes equa-

tions. In Noor, A.K. (ed.), State of the Art Surveys in Computational Mechanics, ASME,

New York, 71-143.

[13] Patera, A.T. (1986). Fast direct Poisson solvers for high-order finite element discretizations

in rectangularly decomposable domains. J. Comput. Phys., 65, 474-480.

[14] Shen, J. (1994). Efficient spectral-Galerkin method I. Direct solvers for the second and fourth

order equations using Legendre polynomials. SIAM J. Sci. Comput., 15(6), 1489-1505.

[15] Toselli, A. and Widlund, O.B. (2004). Domain Decomposition Methods - Algorithms and

Theory, Springer Series in Computational Mathematics, 34.

26



[16] Tufo, H.M. and Fischer, P.F. (1999). Terascale Spectral Element Algorithms and Implemen-

tations. Gordon Bell Prize paper, Proc. of the ACM/IEEE SC99 Conf. on High Performance

Networking and Computing. IEEE Computer Soc., CDROM.

27


