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BIJECTIVENESS OF THE NASH MAP FOR QUASI-ORDINARY

HYPERSURFACE SINGULARITIES

P.D. GONZÁLEZ PÉREZ

Abstract. In this paper we give a positive answer to a question of Nash, concerning the arc space
of a singularity, for the class of quasi-ordinary hypersurface singularities extending to this case
previous results and techniques of Shihoko Ishii.

Introduction

In a 1968 preprint, published later as [N], Nash introduced a map, nowadays called the Nash map
(resp. local Nash map), from the set of families of arcs with origin at the singular locus of a variety
X (resp. at a fixed singular point x ∈ X), to the set of essential divisors over the singular locus
of X (resp. over the point x). These families of arcs are called Nash components (resp. local Nash
components). Obviously, these maps coincide if the singular locus of X is reduced to an isolated
singular point x. Nash showed that these maps are injective and asked if they were surjective.
Ishii and Kollár have shown an affine four dimensional variety with singular locus reduced to a
point, for which the Nash map is not bijective (see [I-K]). The answer of Nash question for surface
and threefolds singularities is not known in general. Plenat has given sufficient conditions for
the surjectivity of the Nash map for isolated surface singularities in [Pl1]. In the case of surface
singularities the Nash map it is known to be bijective in the following cases: for minimal singularities
by Reguera [Re1], for sandwiched singularities by the work of Lejeune and Reguera [LJ-R] and [Re2],
for rational double points of type An, already studied by Nash [N], and of type Dn by Plenat [Pl2]
(the result for rational double points in general is announced in [Pl3]). Plenat and Popescu-Pampu
have shown a class varieties of dimension two and higher for which the Nash map is bijective in
[Pl-PP1] and [Pl-PP2]; a similar result in the surface case is announced by Morales [Mo].

Ishii and Kollár have shown that Nash question has a positive answer in the case of normal toric
varieties, see [I-K]. Ishii has generalized this result for the class pretoric algebraic varieties, which
contains in particular the class of toric varieties (non necessarily normal). Petrov formulated Nash
question for pairs (X,B), consisting of a variety X and a proper closed subvariety B containing
the singular locus of X, and exhibited a positive answer in the case of pairs, (X,B), formed by a
normal toric variety X and an invariant set B. He applied this result to prove the bijectiveness of the
Nash map for the class of stable toric varieties, a class of reduced but non necessarily irreducible
varieties introduced by Alexeev [Al], which generalize normal toric varieties (see [Pe]). Ishii has
shown recently that the local Nash map is bijective for analytically pretoric singularities, a class of
singularities containing toric and analytically irreducible quasi-ordinary hypersurface singularities
(see [I3]). The class of quasi-ordinary singularities appears classically in Jung’s strategy to obtain
resolution of surface singularities from the embedded resolution of plane curves (see [J], [A] and
[L1]).

2000 Mathematics Subject Classification. Primary 14J17; Secondary 32S10, 14M25.
Key words and phrases. Nash problem, arc space, quasi-ordinary singularities, singularities.
The authors’ research was supported in part by Programa Ramón y Cajal and MTM2004-08080-C02-01 grants of

Ministerio de Educación y Ciencia, Spain.

1



2 P.D. GONZÁLEZ PÉREZ

The purpose of this Note is to show that the Nash map is bijective for any reduced germ of quasi-
ordinary hypersuperface singularity, Theorem 4. We show that the results and approach for the
class of pretoric singularities, analyzed by Ishii in [I2], can be extended to the case of an analytically
irreducible quasi-ordinary hypersurface germ (X,x) by showing a property, Proposition 1, deduced
from Lipman’s result on the structure of the singular locus (see [L2], §7). Moreover, if B is a proper
closed subgerm of (X,x) containing the singular locus of X, we prove that Nash question for the pair
(X,B) has a positive answer under a natural technical condition (see Hypothesis 1 and Theorem
2).

In the case of a quasi-ordinary hypersurface germ (X,x) with several irreducible components Xi,
i = 1, . . . , t, the analysis of the pre-image of the singular locus of X by the normalization map (see
Lemma 5) is essential to deduce the main result Theorem 4, the bijectiveness of the Nash map for
X, from the bijectiveness of the Nash map for suitable pairs (Xi, Bi) for i = 1, . . . , t.

Finally, we compare the notions of pretoric singularity and analytically pretoric singularity, in-
troduced by Ishii in [I2] and [I3] respectively, with the notion of toric quasi-ordinary singularity
introduced [GP2] and we show that our main result holds in a slightly larger category, which we
call strongly analytically pretoric (see Corollary 5).

The explicit description of the essential divisors over the singular locus of a quasi-ordinary hyper-
surface singularity, given in this paper, is applied by Hernando and the author in [GP-H] to prove
that the essential divisors of an irreducible germ (X,x) of quasi-ordinary hypersurface determine,
through a suitable notion of Poincaré series, the characteristic monomials, an analytical invariant
which in the analytic case encodes the embedded topological type of the germ characterized by
the work of Gau and Lipman (see [L2] and [Gau]). It should be noticed that the Poincaré series
associated only to the essential divisors over the point x, which correspond by Ishii’s result [I3]
to the local Nash components, does not contain enough information to recover the characteristic
monomials of the quasi-ordinary hypersurface (X,x) in general, see [GP-H]. This property reflects
the fact that quasi-ordinary singularities are rarely isolated: X does have an isolated singularity at
x if and only if the singular germ (X,x) is of dimension one or normal of dimension two. The use
of all essential divisors, over the different components of the singular locus of X, and also over x, is
crucial to recover the characteristic monomials of the germ (X,x), as main local invariants.

1. Basic definitions on the arc space and relative Nash problem

In this section we give basic definitions and results on the relative Nash problem, also called Nash
problem for a pair. These notions are natural extensions of the corresponding ones on the classical
Nash problem (see [Pe]). In this paper the scheme X is a pure dimensional reduced algebraic (resp.
algebroid germ of) variety, defined over a field k, algebraically closed of characteristic zero. Let
B ⊂ X be a reduced proper k-subscheme containing the singular locus Sing(X) of X.

A resolution of singularities of (X,B) is a proper modification φ : Y → X such that φ|Y −φ−1(B) :

Y − φ−1(B)→ X −B is an isomorphism. The resolution φ is divisorial is φ−1(B) is a divisor. An
exceptional divisor E over X relative to B is an exceptional divisor such that the center of E over X
is contained in B. An exceptional divisor E over X relative to B is essential if for every resolution
φ : Y → X of the pair (X,B) the center of E on Y is an irreducible component of φ−1(B). This
center is called an essential component on Y .

If k ⊂ K is a field extension an arc over X is a morphism α : SpecK[[t]] → X. We denote
respectively by 0 and η the closed point and generic point of SpecK[[t]]. If m ≥ 0 is an integer, an
m-jet over X is a morphism α : SpecK[[t]]/(tm+1) → X. The set Xm of m-jets can be given the
structure of scheme of finite type over k. We have canonical morphismsXm+k → Xm, corresponding
to SpecK[[t]]/(tm+1) → SpecK[[t]]/(tm+k+1), for all m,k ≥ 0. The arc space X∞ := lim←−Xm

has the structure of scheme over k, not of finite type. A point z ∈ X∞ corresponds to an arc
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αz : SpecK[[t]] → X such that K is the residue field at z. We have that K-valued points of X∞

correspond to arcs of the form SpecK[[t]] → X bijectively. We often denote the point z and the
corresponding arc αz by the same symbol. We have a canonical projection πX : X∞ −→ X, defined
by z 7→ αz(0). A morphism of varieties (resp. of algebroid germs) ψ : Y → X, corresponds to
a morphism at the level of arcs: ψ∞ : Y∞ → X∞. See [D-L] for the general construction of arcs
spaces.

A Nash component of X relative to B is an irreducible component of π−1
X (B) which is not con-

tained in B∞ ⊂ X∞. If the field k is of characteristic zero, as it is assumed in this paper, then the
proof of Lemma 2.12 [I-K] imply that the Nash components of X relative to B coincide with the
irreducible components of π−1

X (B). Denote by
⋃

i Ci the union of Nash components of X relative to
B. Let φ : Y → X be a divisorial resolution of (X,B), i..e, φ−1(B) is a divisor with irreducible com-

ponents E1, . . . , El. Then the restriction φ∞ to
⋃l

j=1 π
−1
Y (Ej) −→

⋃
iCi. is dominant and bijective

outside B∞. For all i there exists a unique ji such that π−1
Y (Ej)→ Ci is dominant. The analogous

statement of Nash Theorem in this relative situation is that Eji
is an essential divisor of X relative

to B and that the relative Nash map Ci 7→ Eji
is an injection, from the Nash components and to

the set of essential divisors of X relative to B (see Lemma 2.14 [I3] for an analogous proof in this
relative situation or Theorem 2.17 [Pe] for a sketch of proof in the algebraic case). See also [I-K] for
a modern proof of the classical statement of Nash [N], when B = Sing(X)). The Nash problem for
X relative to B, i.e., the Nash problem for the pair (X,B), is to determine if this correspondence
is bijective.

2. Basic notations on normal toric varieties

We give some basic definitions and notations (see [O] or [Fu] for proofs). If N is a lattice we
denote by M the dual lattice, by NR the real vector space spanned by N and by 〈, 〉 the canonical
pairing between the dual lattices N and M (resp. vector spaces NR and MR). A rational convex
polyhedral cone τ in NR, a cone in what follows, is the set τ := pos{a1, . . . , as} of non negative
linear combinations of vectors a1, . . . , as ∈ N . The cone τ is strictly convex if τ contains no linear

subspace of dimension > 0. We denote by
◦
τ the relative interior of a cone σ. The dual cone τ∨

(resp. orthogonal cone τ⊥) of τ is the set {w ∈MR/〈w, u〉 ≥ 0} (resp. 〈w, u〉 = 0) ∀u ∈ τ}). A fan
Σ is a family of strictly convex cones in NR such that any face of such a cone is in the family and the
intersection of any two of them is a face of each. If τ is a cone in the fan Σ, the semigroup τ∨∩M is
of finite type, it spans the lattice M and the variety Zτ,N = Spec k[τ∨∩M ], which we denote by Zτ

when the lattice is clear from the context, is normal. The affine varieties Zτ corresponding to cones

in a fan Σ glue up to define the toric variety ZΣ. The torus TN := Z{0}
∼= (k∗)rkN is embedded

in ZΣ as an open dense subset and there is an action of TN on ZΣ which extends the action of the
torus on itself by multiplication. We have a bijection between the relative interiors of the cones of

the fan and the orbits of the torus action,
◦
τ 7→ orbZΣ

(τ), which inverses inclusions of the closures.
We denote the orbit orbZΣ

(τ) by orb(τ) when the toric variety ZΣ is clear from the context.
In this paper σ denotes a rational strictly convex cone in NR of maximal dimension. Any non

zero vector v ∈ σ ∩ N defines a valuation valv of the field of fractions of k[σ∨ ∩M ] (resp. of the
m-adic completion k[[σ∨∩M ]] of the localization of k[σ∨∩M ] at the maximal ideal, (σ∨∩M)\{0},
defining the origin oσ of the toric variety Zσ). This valuation, called monomial or toric valuation,
is defined for an element 0 6= φ =

∑
cuX

u ∈ k[[σ∨ ∩M ]], by valv(φ) = mincu 6=0〈n, u〉. If the ray
ρ := vR≥0 belongs a fan Σ subdividing σ, the closure Dρ of the orbit orb(ρ) is an invariant divisor
(we denote it also by Dv if the vector v is primitive for the lattice N). We denote by valDρ

the
associated divisorial valuation. If v = qv0 for q ∈ Z≥1 and v0 a primitive vector for the lattice N
then we have that valv = qvalDρ

. Following Ishii we say that the valuation valv is a toric divisorial
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valuation (see [I2]). The cone σ induces a partial order on NR, defined by u ≤σ u
′ iff u′ ∈ u + σ

(similar definition for ≤σ∨ on MR holds).

3. Quasi-ordinary hypersurfaces: singular locus and normalization

A quasi-ordinary hypersurface singularityX is defined by Spec k[[x]][y]/(f) where x = (x1, . . . , xd)
and f ∈ k[[x]][y] is a quasi-ordinary polynomial, i.e., a Weierstrass polynomial such that the dis-
criminant ∆yf with respect to y is of the form xδǫ where δ ∈ Zd

≥0 and ǫ ∈ k[[x]] is a unit. By
the Jung-Abhyankar Theorem the roots of quasi-ordinary polynomials are fractional power series
with particular properties. Namely, if f is irreducible of degree n a root of f is of the form:

ζ =
∑
cλx

λ ∈ k[[x1/n]], where x1/n = (x
1/n
1 , . . . , x

1/n
d ), and the terms appearing in this expansion

verify certain properties. In particular if f is of degree > 1 in y, certain monomials, determined by
comparing the different roots of f and called characteristic or distinguished, appear in the expansion
of ζ with non zero coefficient. The corresponding exponents, which are also called characteristic,
can be relabelled in the form λ1 ≤σ∨ λ2 ≤σ∨ · · · ≤σ∨ λg . These exponents determine the following

nested sequence of lattices: M0 ⊂ M1 ⊂ · · · ⊂ Mg =: M where M0 := Zd and Mj := Mj−1 + Zλj

for j = 1, . . . , g with the convention λg+1 = +∞. We have that the exponents appearing in the
expansion of ζ belong to M . See [L2] and also [GP2]. We have ring extensions:

(1) k[[σ∨ ∩M0]] = k[[x]] −→ OX
∼= k[[x]][ζ] −→ k[[σ∨ ∩M ]]

where σ∨ denotes the positive quadrant Rd
≥0 and M0 = Zd (we denote by σ, N0 and N the

corresponding dual objects of σ∨, M0 and M respectively). In [GP2] it is proved that the ring
extension OX → k[[σ∨ ∩M ]] is the inclusion of OX in its integral closure in its field of fractions.
Geometrically, (1) corresponds to a sequence of finite maps:

(2) (Xσ,N , oσ) = (X̄, x)
ν
−→ (X,x)

ρ
−→ (Z, x) = (Xσ,N0

, oσ) = (kd, 0).

Since the map ρ ◦ ν is equivariant, it maps the orbit orbX̄τ to orbZτ , for each face τ < σ.
We recall Lipman’s description of the singular locus of a quasi-ordinary hypersurface, see Theo-

rem7.3 [L2], for a precise statement (cf. also the reformulation of this result given in [PP]).

Theorem 1. With the previous notations if (X,x) is analytically irreducible we have that the
irreducible components of Sing(X) are of codimension one or two. The codimension one (resp.
two) components are intersections of X with xi = 0, (resp. with xi = 0 and xj = 0) for some
suitable coordinate sections, in each case, determined by the characteristic monomials. �

Proposition 1. The set ν−1(Sing(X)) is a germ of closed set at the origin of X̄, which is invariant
by the torus action on X̄.

Proof. By Lipman’s theorem, the irreducible components of Sing(X) are the germs ρ−1(orbZ(τ))
at the point x, where τ runs certain set of a one (resp. two ) dimensional faces of σ. It follows from
this and the previous discussion that the irreducible components of ν−1(Sing(X)) are of codimension
one or two. The codimension one (resp. two) components are of the form

(ρ ◦ ν)−1(orbZ(τ)) = orbX̄(τ).

If xi = Xui for i = 1, . . . , d, in (1) then xi = 0 (resp. xi = xj = 0) defines in Z the closure of the orbit

orbZ(τ) where the cone τ is characterized by τ⊥∩σ∨ = posk 6=i(uk) (resp. by τ⊥∩σ∨ = posk 6=i,j(uk)).
�
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4. Relative Nash problem, the irreducible case

We follow Ishii’s approach in [I2] and [I3]. Let (X,x) be an irreducible germ of quasi-ordinary
hypersurface. We study the relative Nash problem for a proper closed set B ⊂ X such that
Sing(X) ⊂ B. We introduce the following hypothesis on B.

Hypothesis 1. Any irreducible component of ν−1(B) is an orbit closure orbX̄(τ) corresponding to
some face τ of σ.

Notice that Sing(X) verifies this hypothesis by Proposition 1. When the hypothesis above is verified
any irreducible component in the closure of the set ν−1(B)−Sing(X̄) is an orbit closure correspond-
ing to some regular face τ < σ (with respect to the lattice N). We denote by τ1, . . . , τr the regular
faces determined in this way and by ei ∈ N , the barycenter of τi (i.e., the sum of the primitive
integral vectors, for the lattice N , in the edges of τi), for i = 1, . . . , r.

Let {vj}
s
j=1 the set of minimal elements, with respect of the partial order ≤σ in the set:

S :=
⋃

τ<σ, τ singular

◦
τ ∩N.

By [I-K] the toric divisors {Dvj
}j=1,...,s are the essential divisors of toric variety X̄ , and also the

essential divisors of the germ of X̄ at the closed orbit, by Lemma 4.9 [I3]. This characterization of
essential divisors generalizes a result of Bouvier [Bo], see also [Bo-GS].

Lemma 2. Each ei, for i = 1, . . . , r is minimal among {ei, vj}
j=1,...,s
i=1,...,r for the order ≤σ.

Proof. See Lemma 5.7 [I2]. �

Lemma 3. Let {ei, vj}
j=1,...,w
i=1,...,r , (w ≤ s) be the set of minimal elements of {ei, vj}

j=1,...,s
i=1,...,r . Then

there is an inclusion

{essential divisors over X relative to B} ⊂ {Dei
,Dvj

}j=1,...,w
i=1,...,r .

Proof. The statement can be translated in purely combinatorial terms in terms of the existence
of resolutions of singularities of X, which are obtained by composing the normalization map with
toric modifications. The precise arguments are the content of the proof of Lemma 5.7 [I2]. �

Following Ishii, [I2], we associate to a non zero vector v ∈ σ∩N a subset TX
∞(v) of X∞ , containing

only arcs which lift to arcs with generic point in the torus TN of X̄ :

TX
∞(v) := {α ∈ X∞ | α(η) ∈ ν(TN ), ordtα

∗(xu) = 〈v, u〉, for u ∈M}.

The sets T X̄
∞(v), defined similarly, are orbits of a natural action of (TN )∞ on the arc space of the

normal toric variety X̄ (see [I1]).

Lemma 4. Let {ei, vj}
j=1,...,w
i=1,...,r , (w ≤ s) be the set of minimal elements of {ei, vj}

j=1,...,s
i=1,...,r . Then, the

following closures are distinct Nash components of X∞:

TX
∞(ei), i = 1, . . . , r and TX

∞(vj), j = 1, . . . , w.

If v ∈ {ei, vj}
j=1,...,s
i=1,...,r the image of the component TX

∞(v) by the Nash map is the divisor Dv.

Proof. The proof is analogous to the proofs of Lemma 4.6 and 4.7 in [I3]. Notice that with our

hypothesis the proof holds not only for vectors v ∈
◦
σ ∩N but also for vectors v ∈ σ ∩N . See also

the proof of Lemma 5.10 and Theorem 5.11 [I2]. �

Theorem 2. Let (X,x) be a irreducible germ of quasi-ordinary hypersurface singularity. Let B a
closed subscheme verifying Hypothesis 1. Then the Nash map between the set of Nash components
of π−1

X (B) and the set of essential divisors of X relative to B is bijective.
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Proof. Let u ∈ {ei, vj}
j=1,...,w
i=1,...,r . Then the sequence

u 7→ TX
∞(u) 7→ Du

defines an injection from the set {ei, vj}
j=1,...,w
i=1,...,r to the set of essential divisors over X, by Lemma 4

and by the injectivity of the Nash map. By Lemma 3 the set of essential divisors is of cardinality
less or equal than r + w, hence it follows that this set is of cardinality equal to r + w and the
injection above is a bijection. This implies that the Nash map is bijective. �

Corollary 3. If (X,x) is an analytically irreducible quasi-ordinary hypersurface the Nash map is
bijective.

Proof. By Proposition 1 the singular locus B = Sing(X) verifies the hypothesis 1 of Theorem
2.�

5. Nash problem for a quasi-ordinary hypersurface

Now we suppose that (X,x) is a germ of reduced quasi-ordinary hypersurface. We denote by f
a quasi-ordinary polynomial defining (X,x). The factors fi of the factorization of f = f1 . . . ft as
product of irreducible terms corresponds to the irreducible components of (X,x). The factors fi

are quasi-ordinary polynomials, for i = 1, . . . , t.
We denote by Bi the intersection:

Bi = Xi ∩ Sing(X) = Sing(Xi) ∪

j 6=i⋃

j=1,...,t

Xi ∩Xj .

We denote by νi : X̄i → X the normalization of Xi, which is a toric singularity by the previous
discussion.

Lemma 5. We have that ν−1
i (Bi) is a germ of invariantly closed set, at the close orbit of the toric

singularity X̄i.

Proof. We have already shown the statement for ν−1
i (Sing(Xi)) by Proposition 1. If j 6= i then

ν−1(Xi ∩ Xj) is defined by fj(ζ
(i)) = 0 where ζ(i) is a fixed root of fi, used to define the ring

extension (2) corresponding to Xi. We have that the element fj(ζ
(i)) is equal to the product of

a monomial by a unit in the local algebra of the toric singularity X̄i (this follows easily from the

definition, see [GP2] for more details). This implies that fj(ζ
(i)) = 0 defines a germ of invariantly

closed set, at the close orbit of the toric singularity X̄i, which is equal to ν−1
i (Xi ∩Xj). �

We obtain then a generalization of Corollary 4.12 in [I3]:

Theorem 4. Let (X,x) be a reduced germ of quasi-ordinary hypersurface singularity. Then the Nash
map between the Nash components of π−1

X (Sing(X)) and the essential divisors of X is bijective.

Proof. We keep the notations given above for the irreducible components of X. Notice that
π−1

X (Sing(X)) =
⊔t

i=1 π
−1
Xi

(Bi) by definition of Bi. It follows from this that:

{Nash components of X} ⊂

t⊔

i=1

{Nash components of Xi relative to Bi}.

(See the proof of Lemma 4.11 [I3]). We prove that:

{essential divisors over X} ⊂

t⊔

i=1

{essential divisors over Xi relative to Bi}.
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Let φi : Yi → Xi be a resolution of (Xi, Bi). Then the composite φ : Y → X defined by:

Y :=

t⊔

i=1

Yi

⊔
φi
→

t⊔

i=1

Xi → X

is a resolution of the pair (X,Sing(X)) by the definition of Bi. Let E be an essential divisor of X.
The center of E in Y is an irreducible component of

φ−1(Sing(X)) =

t⊔

i=1

φ−1
i (Bi),

thus an irreducible component of φ−1
i (Bi) for some i. This implies the assertion.

The hypothesis 1 is verified by Bi with respect to Xi for i = 1, . . . , t by Lemma 5. By Theorem
2 applied to the pair (Bi,Xi) the Nash map between the set of Nash components of π−1

Xi
(Bi) and

the set of essential divisors of Xi relative to Bi is bijective. �

6. An extension of the results to a larger category

In Definition 4.1 [I3] the notion of analytically pretoric singularity is introduced in the algebroid
category. A germ (X,x) is called in [I3] analytically pretoric if there exists a sequence of injective
local homomorphisms:

k[[σ∨ ∩M0]]
ρ∗
→ OX,x

ν∗

→ k[[σ∨ ∩M ]]

such that

i. ν∗ ◦ρ∗ : k[[σ∨∩M0]]→ k[[σ∨ ∩M ]] is the canonical injection corresponding to a finite index
lattice inclusion M0 ⊂M ,

ii. the morphism ν : Speck[[σ∨ ∩M ]]→ X corresponding to ν∗ is the normalization map,
iii. the restriction of ν to the torus Speck[[σ∨ ∩M ]][M ] is an isomorphism onto its image.

Notice that Ishii introduced the notion of pretoric variety in the algebraic category in [I2] Definition
5.1. The first two conditions for a variety X to be pretoric are the formulations of axioms i. and ii.
above in the algebraic category, while the third condition above is to be replaced by

iii’. The closed subset ν−1(Sing(X)) is invariant for the torus action of X̄ .

We say that a germ of algebroid singularity is strongly analytically pretoric if it verifies conditions i.,
ii., and iii’. Notice that in the algebroid case condition iii’. implies condition iii in Ishii’s definition
of analytically pretoric singularity.

Corollary 5. If (X,x) is a germ of strongly analytically pretoric singularity then the associated
Nash map is bijective.

Proof. The analysis and results done in the sections 4 and 5 extends formally for any algebroid
singularity (X,x) verifying conditions i., ii., and iii’. �

We end this section by formulating some natural questions which come out from the comparison
of the notions of (strongly) analytically pretoric with that of toric quasi-ordinary singularity, in-
troduced in [GP2] as a suitable generalization of the notion of quasi-ordinary singularity (in [GP1]
the this class of singularities was restricted to the case of relative hypersurface germ in Zσ ×C). A
germ of complex analytic variety (X,x) of pure dimension d is a toric quasi-ordinary singularity if
there exists:

a. An affine normal toric variety Xσ,N0
= Spec k[σ∨∩M0], defined by a d dimensional rational

strictly convex cone σ for the lattice N0 (dual of σ∨ and M0 respectively).

b. A finite morphism of germs (X,x)
ρ
→ (Xσ,N0

, oσ), where oσ is the closed orbit, which is
unramified over the torus of Xσ,N0

.
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Condition b. means that for each representative of the morphism ρ there exists an open neighbor-
hood of oσ such that ρ is unramified over its intersection with the torus. If the cone σ is simplicial
then (X,x) is a quasi-ordinary singularity: we reduce to this case by replacing the lattice M0 by a
sublattice M ′

0 of finite index such that σ∨ is regular for M ′
0 and hence Zσ,N ′

0
= Cd, for N ′

0 the dual

lattice of M ′
0. Then the normalization (X̄, x) is a germ of toric variety Xσ,N = Spec C[σ∨ ∩M ] for

some lattice M ⊇M0, at is closed orbit, and the composite ρ ◦ ν is a germ of toric equivariant map
defined by the change of lattices (see Theorem 5.1 in [PP], or see [GP2] in the hypersurface case).
The definition of analytically pretoric singularity can be easily adapted to the complex analytic
category. It is immediate that if (X,x) is a germ of analytically pretoric singularity then it is toric
quasi-ordinary singularity, since the map ρ is then unramified over the torus by axiom i and iii. It
follows from the discussion above that if the cone σ is simplicial the notions of toric quasi-ordinary
singularity and that of analytically pretoric singularity coincide (at least in the complex analytic
category). It seems quite reasonable that both notions coincide also in the algebroid category and
without any assumption on simpliciality on the cone σ appearing in both Definitions. Is to be
conjectured that for a equidimensional germ of algebroid singularity conditions i., ii., iii. and i., ii.,
iii’. are equivalent.
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