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Fractional semi-linear parabolic equations

with unbounded data

Nathaël Alibaud∗ and Cyril Imbert†

January 30, 2008

Abstract. This paper is devoted to the study of semi-linear parabolic equations whose principal term is

fractional, i.e. is integral and eventually singular. A typical example is the fractional Laplace operator. This

work sheds light on the fact that, if the initial datum is not bounded, assumptions on the non-linearity are

closely related to its behaviour at infinity. The sublinear and superlinear cases are first treated by classical

techniques. We next present a third original case: if the associated first order Hamilton-Jacobi equation is

such that perturbations propagate at finite speed, then the semi-linear parabolic equation somehow keeps

memory of this property. By using such a result, locally bounded initial data that are merely integrable at

infinity can be handled. Next, regularity of the solution is proved. Eventually, strong convergence of gradients

as the fractional term disappears is proved for strictly convex non-linearity.
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1 Introduction

The present paper is concerned with the following semi-linear parabolic equation

∂tu + H(t, x, u,∇u) + g[u] = 0 in QT := (0, T ) × R
N , (1.1)

u(0, .) = u0 on R
N (1.2)

where ∇u denotes the gradient with respect to (wrt for short) x, H is a continuous first order non-
linearity (or Hamiltonian) and g[u] denotes a Lévy operator. An important example of Lévy operator is
the fractional Laplacian, i.e. the pseudodifferential operator defined by the symbol |ξ|λ, 0 < λ < 2: for
all Schwartz function ϕ

g[ϕ](x) := F−1
(
| · |λFϕ

)

where F denotes the Fourier transform. In general, Lévy operators g[ϕ] have the following integral form

g[ϕ](x) = −
∫

RN\{0}

(
ϕ(x + z) − ϕ(x) − ∇ϕ(x) · z

1 + |z|2
)

dµ(z) (1.3)

where µ denotes the Lévy measure, i.e. a non-negative Radon measure such that
∫

min(1, |z|2)dµ(z) <
+∞. It is convenient to write

µ = µb + µs (1.4)
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where µb is bounded and supported outside of the unit ball B, and µs is eventually singular (
∫
|z|2µs(dz) <

+∞) and supported in B. In the case of the fractional Laplacian, the derivative of µ wrt the Lebesgue
measure is cN (λ)|z|−N−λ, cN (λ) > 0. Hence, the first order Hamilton-Jacobi equation is perturbed by a
singular integral term. We refer to (1.1) as a fractional semi-linear parabolic equation.

By many ways, Lévy operators generalize diffusion operators. They are indeed the infinitesimal
generators of Lévy (jump) processes and Brownian motions make part of this large class of stochastic
processes. In particular, they satisfy maximum principles [16]. They appear in many models from
mathematical finance [15], biology [29, 31], combustion theory [13], continuum mechanics [3, 20], fluid
mechanics [32, 14, 24], physical science [35] etc. We can explain their extensive use in models by two
fundamental facts. First, their distribution functions decay as a power law (instead of exponentially
fast). Secondly, Lévy operators can appear when dimension is reduced; for instance, in [3], the geometric
motion of a curve of defaults in a crystal is obtained by considering the Dirichlet to Neumann operator
associated with the elliptic linear elasticity equation.

The study of fractional non-linear equations have attracted a lot of attention since more than thirty
years and the literature is now rapidly growing as far as fractional non-linear elliptic and parabolic
equations are concerned. A relevant example comes from the study of stochastic control of jump processes.
Equation (1.1) can be interpreted as the Bellman equation of such an optimal control problem if there
is no control on the jumps. Maximum principle techniques are used for instance in [9, 23] in order to
construct solutions in Sobolev spaces. Soner [34] first used the weak notion of viscosity solution to deal
with more general non-linear equations. Indeed, viscosity solution theory provides a good framework and
there is a important literature about it; see for instance [33, 4, 28, 6, 7] and references therein. A second
class of non-linear equations is the one composed with fractional scalar conservation laws [10, 11, 1, 2].
We would like also to mention the books by Garroni and Menaldi [21, 22] about linear equations.

The aim of this paper is to study Equation (1.1) in full details. In particular, existence, uniqueness
and regularity of solutions are investigated. Because of several applications we have in mind, one of our
goal is to be able to deal with unbounded initial data u0 (See (1.2)). For instance, if Equation (1.1) is seen
as the Bellman equation associated with a control problem involving jump processes, a natural initial
condition is u0(x) = max(0, x − K).

In [25], such a Cauchy problem is studied with u0 ∈ L∞ in the case of the fractional Laplacian with
λ > 1. Regularizing effects are exhibited: with bounded Lipschitz continuous initial data, the solution
turns out to be C2 in space en C1 in time. We will see that these results are easily extended to the case
of sublinear initial data, i.e. functions u0 for which there exists C > 0 such that for all x ∈ R

N

|u0(x)| ≤ C(1 + |x|).
Computations next suggest that even superlinear initial conditions can be handled. Precisely, if u0

satisfies for all x ∈ R
N

|u0(x)| ≤ C(1 + |x|λ′

) (1.5)

for a suitable λ′ > 1 and constant C > 0 (we say that such a function is superlinear), assumptions on the
non-linearity can be modified in order to prove a comparison principle; roughly speaking, the dependence
in x of H is relaxed and the one in p is strengthened. See the introduction of Section 3 for a more
detailed discussion about assumptions on H. Jakobsen and Karlsen [28] developed a general theory for
second order parabolic non-linear integro-differential equations. In particular, they establish comparison
results and continuous dependence estimates. Because of the dependence of H on the Hessian of u, their
arguments are more involved. In our case, classical techniques work with minor modifications and more
general assumptions (a modulus of continuity appear in Assumptions (B2) and (B3) instead of a Lipschitz
constant; (B2) can be local in x and u).

As far as the superlinear case is concerned, Condition (1.5) ensures in particular that the following
uniform integrability condition is satisfied by the continuous function u0:

∫ (
sup

B1(z)

u0

)
µb(dz) < +∞ (1.6)
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where µb is the bounded part of µ (it is introduced in (1.4)). The third class of unbounded initial data
u0 we can treat corresponds to assuming that u0 satisfy the uniform integrability condition (1.6). If
assumptions of the superlinear case are strenghtened, existence and (strong) uniqueness can be proved
for (1.1). Moreover, a local L∞ bound is derived. We next make assumptions on the non-linearity
ensuring that the associated first order Hamilton-Jacobi equation (with no integral operator) propagates
perturbations of u0 with finite speed. This means that the solution at a point (t, x) only depends on the
value of the initial condition on a ball centered at x and of radius proportional to t [30, 26]. Following
an original idea of the first author [1], we show that, for initial condition satisfying (1.6), the solutions of
(1.1) keep memory of this finite speed property, even if perturbations now propagate with infinite speed.
Precisely, we prove that if u and v are solutions of (1.1) associated with initial data u0 and v0, then

u(t, x) − v(t, x) ≤ K(t, ·) ∗ sup
|y−·|≤C2t

(u0(y) − v0(y))(x).

Following [1], such a property is referred to as a finite-infinite propagation speed property. Let us make
an important remark: this last result only relies on the fact that the perturbation operator has a positive
Kernel (or Green function) and it can also be applied to any Lévy operator, including the Laplacian. In
this latter case, we recover (more or less) classical results where (1+|z|N+λ)−1 is replaced with exp(−|z|2).

We previously mentioned that the fractional Laplacian has a regularizing effect for λ > 1. The results
we obtain here in the sublinear framework are in the spirit of those of [25] and the proofs rely on them.
They are obtained in the case of a Lipschitz continuous initial datum u0. As far as superlinear initial
conditions are concerned, we give two different results: the first one asserts the C1 regularity in space of
the solutions for superlinear initial conditions that are locally Lipschitz continuous and for a non-linearity
whose Lipschitz constant in p can depend linearly on |x|. If this assumption is strengthened, then C1,1

in space solutions are obtained even for initial conditions that are not locally Lipschitz continuous.

We finally consider the case where the non-local part of Equation (1.1) vanishes. Precisely, we consider

∂tu
ε + H(t, x, uε,∇uε) + εg[uε] = 0 in QT , (1.7)

uε(0, .) = u0 on R
N (1.8)

with u0 (locally) Lipschitz continuous and let ε go to 0. The theory of viscosity solution ensures that
the regular solution uε converges as ε → 0 locally uniformly towards the (locally) Lipschitz continuous
solution u0 of (1.7) with ε = 0. Hence, the sequence {∇uε}ε>0 converges towards ∇u0 in the distribution
sense but it is not clear if strong convergence in Lp

loc, p ≥ 1, can be obtained. We prove it in the case
where the non-linearity is strictly convex with respect to the gradient variable by using Young measure
techniques. Let us mention that the result about the convergence of gradients remains true if the non-
local operator is replaced with the Laplacian. Strong convergence of sequences of gradients appear in
[18] in the context of non-linear elliptic equations in the divergence form. To the best of our knowledge,
there are very few results in the literature as far as Hamilton-Jacobi equations are concerned and we did
not find any references. To finish with, we shed some light on the fact that the proof only relies on local
gradient bounds and the strict convexity of H in p.

Let us mention that we decided to present most of our results with the classical fractional Laplacian
instead of a general Lévy operator to avoid blinding technicality. If general Lévy operators are at stake,
most of the results can be adapted if assumptions are properly translated. For instance, Condition λ′ ∈
(0, λ) in the sub- and superlinear cases should be replaced with

∫
|z|λ′

dµb(z) < +∞

and the results of Subections 3.1 and 3.2 remain true under this assumption. As far as regularity results
of Section 4 are concerned, the techniques of [25] we use there only rely on the fact that the Kernel of
the fractional Laplacian satisfies

sup
t∈[0,T ]

t
1
λ

∫

RN

(1 + |x|λ′

)|∇K(t, x)|dx < +∞
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for all λ′ ∈ [0, λ). As far as the integrable case is concerned, strong uniqueness result and existence for
instance rely on the construction of barrier functions (see Lemma 2.5.2). We are convinced that such
a construction could be done for a large class of Lévy operators, if not for all of them. See also [7] for
further discussion.

The paper is organized as follows. In Section 2, norms and function spaces that are used throughout
the paper are introduced. Next, the definition of a viscosity solution for (1.1) is given and technical results
related to this notion of weak solutions are stated. We also recall in this section some useful properties
of the kernel associated with the non-local operator. Section 3 is devoted to existence and uniqueness
results and gradient estimates in the three frameworks described above. In Section 4, we investigate
regularity issues in the sublinear and the superlinear cases. Next, a non-local vanishing viscosity method
is considered in the last section; in particular, gradients are proved to converge strongly in Lp

loc, p ≥ 1, in
the case where the non-linearity is strictly convex with respect to the gradient variable. Eventually, we
gathered in Appendices several (more or less) classical proofs for the reader’s convenience; a list of the
different assumptions used throughout this paper is also given just before references.

Notation. We let | · | denote the Euclidian norm, BR(x) denote the open ball of R
N centered

at x of radius R and BR denote the ball BR(0) and B denotes the unit ball B1. For any real r, we let
r+ := min{r, 0} denote the positive part of r and r− := (−r)+ its negative part. A modulus (of continuity)
is a non-decreasing function m : R

+ → R
+ such that limr→0 m(r) = 0 and m(r + s) ≤ m(r) + m(s) for

every r, s ≥ 0.
For a Lévy measure µ with a density M with respect to the Lebesgue measure, µb denotes the non-

negative bounded measure whose density is 1BcM . The space of integrable function on R
N wrt µb is

denoted by L1(RN , µb). If now µs denotes µ − µb, one can check that (1.4) holds true.

Acknowledgement. The authors thank the referee for the careful reading and for meaningful re-
marks that yield to a substantially improved version of this paper.

2 Preliminaries

This section is devoted to definitions and technical tools that are used throughout the paper. We
first introduce notation for norms and function spaces (Subsection 2.1), we next recall the definition of
viscosity solutions for fractional semi-linear parabolic equations (Subsection 2.2). In Subsection 2.3 are
gathered technical results related to stability issues. Subsection 2.4 is devoted to the properties of the
Kernel K (or Green function) associated with the Lévy operator g[·] used in the proofs of the main results.
The last subsection defines the notion of uniform integrability related to Condition (1.6) and gives some
basic properties.

Let us mention that we assume throughout the paper that the function H : [0, T ]×R
N ×R×R

N → R

is continuous and that λ ∈ (0, 2).

2.1 Norms and function spaces

Data. Consider functions u0 : R
N → R. The space of continuous (resp. uniformly continuous) functions

u0 is denoted by C(RN ) (resp. UC(RN )). For u0 ∈ C(RN ), λ′ ∈ (0, λ) and β ∈ (1, λ) (if λ > 1), define
the norms and semi-norm

‖u0‖0,λ′ := sup
x∈RN

|u0(x)|
1 + |x|λ′ ,

[u0]1,β := sup
x,y∈RN , x 6=y

|u0(x) − u0(y)|
(1 + |x|β−1 + |y|β−1)|x − y| ,

‖u0‖1,β := ‖u0‖0,β + [u0]1,β
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and the associated function spaces

C0
λ′(RN ) :=

{
u0 ∈ C(RN ) : ‖u0‖0,λ′ < +∞

}
,

C0,1
β (RN ) :=

{
u0 ∈ C(RN ) : ‖u0‖1,β < +∞

}
.

In discussions, C0
λ′(RN ) and C0,1

β (RN ) are respectively denoted C0
λ′ and C0,1

β for short.

Solutions. Consider functions u : QT → R where QT := [0, T ] × R
N . Define the norms

‖u‖0,λ′ := sup
t∈[0,T ]

‖u(t, ·)‖0,λ′ and ‖u‖1,β := sup
t∈[0,T ]

‖u(t, ·)‖1,β

and the associated function spaces

C0
λ′(QT ) :=

{
u ∈ C(QT ) : ‖u‖0,λ′ < +∞

}
,

C0,1
β (QT ) :=

{
u ∈ C(QT ) : ‖u‖1,β < +∞

}
.

In discussions, C0
λ′(QT ) and C0,1

β (QT ) are respectively denoted C0
λ′ and C0,1

β for short.

2.2 Viscosity solutions for (1.1)

Let us introduce the notion of viscosity solution to (1.1). Even if this weak notion of solution is
nowaways well known, we would like to recall some basic facts about it. First, a weak notion of differ-
entiability is obtained by “touching” (from below or above) a semi-continuous function u with smooth
test-functions φ. Secondly, it is very easy to pass to the limit in non-linear terms with this notion of
solution [8]; in other words, good stability results are available. Thirdly, it is possible (and we will do
so later) to prove strong uniqueness results; they are obtained under the form of comparison principles.
To finish with, existence of solutions is generally proved by using Perron’s method [27]. For a general
introduction, the interested reader is referred to the survey [17] or to the book [5] for instance.

We now turn to the definition of viscosity solution for Equation (1.1). Following [25], we will use
an appropriate notion of parabolic sub- and supergradients to define viscosity solutions of first order
integro-differential equations.

Definition 2.2.1 (Parabolic supergradient). Let u : QT → R be upper semicontinuous (usc for short).
Then, (a, p) ∈ R × R

N is a (parabolic) supergradient of u at (t, x) ∈ QT if there exist r > 0 and σ > 0
such that for all s ∈ [0, T ] and all y ∈ Br(x):

u(s, y) ≤ u(t, x) + a(s − t) + p · (y − x) + σ(|y − x|2) + o(|s − t|), (2.1)

where o(l)
l → 0 as l → 0+.

In the following, ∂P u(t, x) denotes the set of all supergradients of u at (t, x) and it is referred to as
the superdifferential of u at (t, x). If u is lower semicontinuous (lsc for short), we then define (parabolic)
subgradients and subdifferentials by ∂P u(t, x) := −∂P (−u)(t, x).

We can now introduce the notion of viscosity solution to (1.1) in the spirit of [7]. We do it for the
following general class of functions

C+(−) :=
{

u : QT → R s.t. ∃Φ ∈ C2(RN ) ∩ L1(RN , µb), ∀(t, x) ∈ QT , u+(−)(t, x) ≤ Φ(x)
}

where µb appears in (1.4) (see also the end of the Introduction). We will consider solutions that lie in
C := C+ ∩ C−.

Let us mention that we will consider different subspaces of C: sublinear functions, superlinear ones
and uniformly integrable ones (see below for a definition).

We now can give the definition of a viscosity solution of (1.1).

5



Definition 2.2.2 (Viscosity solutions for (1.1)). 1. A usc function u ∈ C+ is a viscosity subsolution
of (1.1) if for all (t, x) ∈ QT and all (a, p) ∈ ∂P u(t, x),

a + H(t, x, u(t, x), p) + g[u](t, x, p) ≤ 0, (2.2)

where g[u](t, x, p) := −
∫

RN\{0}

(
u(t, x + z) − u(t, x) − p·z

1+|z|2

)
dµ(z).

2. A lsc function u ∈ C− is a viscosity supersolution of (1.1) if for all (t, x) ∈ QT and all (a, p) ∈
∂P u(t, x),

a + H(t, x, u(t, x), p) + g[u](t, x, p) ≥ 0.

3. A continuous function u ∈ C is a viscosity solution of (1.1) if it is both a viscosity sub- and
supersolution.

Remarks 2.1. 1. Notice that the integral term g[u](t, x, p) makes sense since its integrand is µ-quasi-
integrable, thanks to (2.1) and to the integrability condition on u at infinity. Actually, it is µ-
integrable because of (2.2). Such an idea already appears in [25]. See also [7] for a complete
discussion.

2. If λ ∈ (0, 1), then we obtain an equivalent definition by replacing the notion of (parabolic) super-
gradients with the one of first order Fréchet supergradients.

2.3 Stability results

This subsection is devoted to classical and technical results related with stability issues. It contains two
technical lemmata that are used in the proofs of comparison principles. It also contains a discontinuous
stability result that permits to pass to the limit in the equation in a very weak sense. Sketches of the
proofs of these results are given in Appendix A. The reader can easily skip this technical subsection since
it is not necessary in the understanding of the statements of the main results.

When proving comparison principles, we must show that subsolutions u lie below supersolutions v.
In order to do so, we consider M = sup(u − v) and, in order to get viscosity inequalities, the number of
variables is doubled and this doubling is penalized. Lemmata 2.3.1 and 2.3.2 are related to the doubling
of the time variable.

In order to state and use these lemmata, we need to introduce the closure of sub- and superdifferentials.

Definition 2.3.1 (Limiting subgradients). For u usc, ∂
P

u(t, x) denotes the set of (a, p) ∈ R × R
N such

that there exist r, σ > 0 and a sequence ((tn, xn, an, pn, rn, σn))n∈N
such that (an, pn) ∈ ∂P u(tn, xn),

with (2.1) holding true with the constants rn, σn > 0, and such that (tn, xn, u(tn, xn), an, pn, rn, σn) →
(t, x, u(t, x), a, p, r, σ) as n → +∞.

We then define ∂P u(t, x) := −∂
P

(−u)(t, x) for u lsc.

Lemma 2.3.1. If u ∈ C+ is a viscosity subsolution of (1.1), then (2.2) holds true for all (t, x) ∈
(0, T ] × R

N and all (a, p) ∈ ∂
P

u(t, x).

Remark 2.1. Remark that, passing to the limit in the equation, we conclude that the integrand of the
integral term g[u](t, x, p) is µ-quasi-integrable with g[u](t, x, p) < +∞. Nevertheless, it could occur that
g[u](t, x, p) = −∞; in that case, (2.2) holds true in R ∪ {−∞}.

Lemma 2.3.2. Let u ∈ C+ and v ∈ C− be, respectively, a sub- and a supersolution of Equation (1.1).
Let φ : [0, T ] × R

N × R
N → R be smooth and such that the supremum

M := sup
[0,T ]×RN×RN

(u(t, x) − v(t, y) − φ(t, x, y))

6



is achieved at some point (t, x, y). There then exist a, b ∈ R such that

(
a,∇xφ(t, x, y)

)
∈ ∂

P
u(t, x),

(
b,−∇yφ(t, x, y)

)
∈ ∂P v(t, y)

and a − b = ∂tφ(t, x, y). Moreover,

g[v]
(
t, y,∇yφ(t, x, y)

)
− g[u]

(
t, x,∇xφ(t, x, y)

)

≤
∫

RN

(
φ(t, x + z, y + z) − φ(t, x, y) − (∇x + ∇y)φ(t, x, y) · z

1 + |z|2
)

dµ(z). (2.3)

Remark 2.2. Following the previous remark, (2.3) holds true in R ∪ {+∞}. But, this lemma will be
used with φ such that the last integral term of (2.3) is finite; hence, so will be the integral terms
g[v]

(
t, y,∇yφ(t, x, y)

)
and g[u]

(
t, x,∇xφ(t, x, y)

)
.

We now turn to the discontinuous stability result. When dealing with non-linear equations, it is crucial
to be able to pass to the limit in the non-linear terms in an appropriate sense. It turns out that it is very
easy to do so when working with viscosity solutions. Indeed, Barles and Perthame [8] remarked that the
so-called relaxed lower/upper limits of a family of super-/subsolutions is still a super-/subsolution (see
below for a precise definition). It is also classical to prove that the supremum of a family of subsolutions
is a subsolution of (1.1). This result is useful to prove existence by the classical Perron’s method.

Let us make precise the definition of relaxed semi-limits. Let us recall that if O is a nonempty subset
of R

M , then the relaxed upper limit of a sequence of functions un : O → R is defined as follows

lim sup ∗ un(x) = lim sup
n→+∞,O∋y→x

un(y).

The relaxed lower limit is defined by lim inf∗ un := − lim sup∗(−un). We then have the following result.

Proposition 2.1 (Discontinuous stability). Let (un)n be a sequence of subsolution of (1.1) such that
there exists Φ ∈ C2(RN ) ∩ L1(RN , µb) with

∀n ∈ N, ∀(t, x) ∈ QT , un(t, x) ≤ Φ(x).

Then lim sup∗ un is a viscosity subsolution of (1.1). Moreover,

(lim sup∗ un)(0, .) ≤ lim sup∗(un(0, .)) (2.4)

where the relaxed upper semi-limit of the left-hand side is computed wrt time and space while the one of
the right-hand side is only computed wrt the space variable.

Remarks 2.2. 1. An analogous result for supersolution can be easily stated and proved. Hence one
can pass to the limit in (1.1) wrt the local uniform convergence of sequences of solutions.

2. Inequality (2.4) implies that if u0 is an initial condition, then the notion of subsolution of (1.1)-(1.2)
(the initial condition being replaced with u(0, .) ≤ u0) is stable by passing to the upper semi-limit.
Such a property will be used to prove the convergence of a sequence of solutions under only L∞

loc

estimates, by the so-called technique of the relaxed semi-limits (see [8]).

2.4 The kernel associated with the non-local operator

The semi-group generated by g is formally given by the convolution with the kernel defined for t > 0

by K(t, ·) := F−1(e−t|·|λ). It is well-known that K satisfies the following properties (see [19] and the item
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1) of the remarks below):

K(1, ·) ∈ C∞
b (RN ) ∩ W∞,1(RN ) is positive and

∫
RN K(1, ·) = 1,

K(t, x) = t−N/λK(1, t−1/λx),

K(t, ·) ∗ K(s, ·) = K(t + s, ·).

To deal with unbounded solutions, we need the following estimates

∫ T

0

∫

RN

(1 + |x|λ′

)K(t, x)dx < +∞, (2.5)

Kλ′ := sup
t∈[0,T ]

t
1
λ

∫

RN

(1 + |x|λ′

)|∇K(t, x)|dx < +∞, (2.6)

for all λ′ ∈ [0, λ). These estimates follow immediately from the homogeneity property and the lemma
below.

Lemma 2.4.1 ([12]). Consider λ ∈ (0, 2). There exists Cλ > 0 such that, as |x| → +∞, we have:
K(1, x) ∼ Cλ|x|−N−λ, |∇K(1, x)| = O

(
|x|−N−λ−1

)
and |g[K(1, ·)](x)| = O

(
|x|−N−2λ

)
.

Remarks 2.3. 1. In [19], it is only proved that K is non-negative. But in [2], it is proved that it is
radially decreasing. Combining this result with the ones of Lemma 2.4.1 permits to conclude that
K cannot vanish.

2. Actually, one have results similar to the ones of Lemma 2.4.1 for the derivatives of all order.

2.5 Uniformly integrable functions

In this subsection, we give the definition of uniform integrability of a function (with respect to µb)
and give some basic properties.

Definition 2.5.1 (Uniformly integrable function). Let u0 : R
N → R be locally bounded. We say that

u0 is µb-uniformly integrable if there exists R > 0 such that

∫

RN

sup
BR(z)

|u0| dµb(z) < +∞ . (2.7)

Remark 2.3. We will use this notion for locally bounded functions u : QT → R. In this case, we investigate
either supt∈[0,T ] |u(t, ·)| is µb-uniformly integrable or not. If yes, we simply say that u is µb-uniformly
integrable in space uniformly wrt time.

Here is a result that makes precise the structure of such functions.

Lemma 2.5.1. If u0 is µb-uniformly integrable, then (2.7) holds true for all R > 0.

Proof. Let R > r > 0. For z ∈ R
N , there exists yz ∈ BR(z) such that B r

2
(yz) ⊂ BR(z) and

sup
BR(z)

|u0| = sup
B r

2
(yz)

|u0|.

For y ∈ B r
2
(yz), we have B r

2
(yz) ⊂ Br(y) and 1

1+|z|N+λ ≤ C(R,N,λ)
1+|y|N+λ ; hence,

supBR(z) |u0|
1 + |z|N+λ

≤ C(R,N, λ)
supBr(y) |u0|
1 + |y|N+λ
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and integrating wrt y ∈ B r
2
(yz) yields:

|B r
2
|

supBR(z) |u0|
1 + |z|N+λ

≤ C(R,N, λ)

∫

B r
2
(yz)

supBr(y) |u0|
1 + |y|N+λ

dy,

≤ C(R,N, λ)

∫

BR(z)

supBr(y) |u0|
1 + |y|N+λ

dy.

Let us now integrate wrt z ∈ R
N .

|B r
2
|
∫

RN

sup
BR(z)

|u0|
dz

1 + |z|N+λ
≤ C(R,N, λ)

∫

RN

∫

BR(z)

supBr(y) |u0|
1 + |y|N+λ

dydz,

= C(R,N, λ)|BR|
∫

RN

sup
Br(z)

|u0|
dz

1 + |z|N+λ
;

the last line is obtained by integrating first wrt z. Since a locally bounded function is integrable wrt µb

if and only if it is integrable wrt to dz
1+|z|N+λ , the rest of the proof of the lemma is obvious. �

Let us now construct barrier functions that allow to develop a viscosity solution theory.

Lemma 2.5.2 (Construction of barriers). Let u0 : R
N → R

+ be a usc and µb-uniformly integrable.
Then, there exists Φ[u0] ∈ C∞(RN ) positive, µb-uniformly integrable and such that

∀x ∈ R
N , u0(x) ≤ Φ[u0](x), (2.8)

lim
|x|→+∞

u0(x)

Φ[u0](x)
= 0, (2.9)

|∇Φ[u0]| + |g[Φ[u0]]| ≤ CN,λΦ[u0], (2.10)

for some positive constant CN,λ that only depends on N and λ.

Remarks 2.4. 1. We will use this result for usc functions u : QT → R
+ that are µb-uniformly integrable

in space uniformly wrt time. In this case, we apply it to supt∈[0,T ] u(t, ·) and Φ[u] simply denotes

the barrier function Φ
[
supt∈[0,T ] u(t, ·)

]
.

2. In view of the proof below, one can check that if u ≤ v then Φ[u] ≤ Φ[v].

Proof of Lemma 2.5.2. Define the positive bounded Borel measure ν :=
(
supB1(z) u0

)
dµb(z). Consider

an increasing sequence rn → +∞ such that rn+1 ≥ rn + 1/2 and

ν(Bc
rn

) ≤ 1

n3
ν(RN ).

For r ≥ 0, define

f(r) := 1[0,r1+1/2) +
∑

n≥1

n 1[rn+1/2,rn+1+1/2).

Notice that f ≥ 1, it is non-decreasing and such that limr→+∞ f(r) = +∞. Define now for x ∈ R
N ,

Φ(x) := f(|x|)


 sup

B 1
2
(x)

u0


 .
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Notice that Φ is µb-uniformly integrable; indeed,

∫

RN


 sup

B 1
2
(z)

Φ


 dµb(z) ≤

∫

RN

f(|z| + 1/2)

(
sup

B1(z)

u0

)
dµb(z),

=

∫

RN

f(|z| + 1/2) dν(z),

= ν(Br1
) +

∑

n≥1

n ν(Brn+1
\ Brn

),

≤ ν(Br1
) +

∑

n≥1

n ν(Bc
rn

),

≤ ν(Br1) +
∑

n≥1

n

n3
ν(RN ) < +∞.

Write now Φ̃ := K(1, ·) ∗ Φ. This convolution product is finite, thanks to Lemma 2.4.1, which shows
that the kernel of g and the density of µ behaves the same way at infinity (up to a positive multiplicative
constant). Moreover, the asymptotic properties of the derivatives of K and the theorem of derivation

under the integral sign ensure that Φ̃ ∈ C∞(RN ) with ∇Φ̃ = (∇K(1, ·)) ∗ Φ and g[Φ̃] = g[K(1, ·)] ∗ Φ;

notice that g[Φ̃] is well-defined since we will prove below that Φ̃ is µb-uniformly integrable thus a fortiori
µb-integrable. We have proved in particular (2.10), since adding to the positivity of Φ, Lemma 2.4.1 also
implies that |∇K(1, ·)| + |g[K(1, ·)]| ≤ CN,λK(1, ·).

Let us now prove that Φ̃ is µb-uniformly integrable. We have:

sup
B1(·)

Φ̃ ≤ K(1, ·) ∗ sup
B1(·)

Φ;

indeed, for x ∈ R
N ,

sup
B1(x)

Φ̃ = sup
z∈B1(x)

∫

RN

K(1, y)Φ(z − y)dy,

≤
∫

RN

K(1, y) sup
z∈B1(x)

Φ(z − y)dy,

=

∫

RN

K(1, y) sup
z′∈B1(x−y)

Φ(z′)dy,

= K(1, ·) ∗
(

sup
B1(·)

Φ

)
(x).

Remark that Lemma 2.4.1 implies that µb ≤ CK(1, ·). Moreover, K(1, ·) is even and K(1, ·) ⋆ K(1, ·) =
K(2, ·). Hence, it follows that

∫

RN

sup
B1(z)

Φ̃ dµb(z) ≤ C

∫

RN

sup
B1(z)

Φ̃ K(1,−z)dz

= C K(1, ·) ∗ sup
B1(·)

Φ̃ (0)

≤ C K(1, ·) ∗ K(1, ·) ∗ sup
B1(·)

Φ (0)

= C K(2, ·) ∗ sup
B1(·)

Φ (0)

≤ C̃

∫

RN

sup
B1(z)

Φ dµb(z);
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the last line is obtained by using the homogeneity property of K which shows that K(2, ·) behaves as
K(1, ·) and a fortiori as the density of µ at infinity (up to a positive multiplicative constant). Recalling

now that Φ is µb-uniformly integrable, we deduce that so is Φ̃.
What is left to prove is (2.8) and (2.9). We have

Φ̃(x) ≥
∫

B 1
2
(x)∩{|z|≥|x|}

K(1, x − z)Φ(z)dz ≥ ε

(
inf

z:|z−x|≤1/2,|z|≥|x|
Φ(z)

)

where ε := infz∈Ex
K(1,−z) with Ex := B 1

2
(x)∩ {|z| ≥ |x|} − x. Since K(1, ·) is positive and radial, ε is

a positive constant that does not depend on x. On using the definition of Φ, we get

Φ̃(x) ≥ ε inf
z:|z−x|≤1/2,|z|≥|x|


f(|z|) sup

B 1
2
(z)

u0


 ≥ ε f(|x|) u0(x).

One can check that Φ[u0] := 1
ε Φ̃ satisfies all the desired properties. �

To finish with, let us give an example of non-trivial uniformly integrable function.

Example 2.5.1. Define e1 := (1, 0, . . . , 0) ∈ R
N and let x1 denote the variable on the e1-axis of R

N .
Consider the function defined by:

u0(x) :=
∑

n

1B1(n2e1)(x) |x1|N−1+λ.

Then u0 is uniformly integrable wrt µb, but does clearly not belong to C0
λ. Moreover, if N ≥ 2, then u0

does also not satisfy the following integrability condition:
∫

sup
B|z|

|u0| dµb(z) < +∞. (2.11)

3 Existence and uniqueness of unbounded solutions for (1.1)

In this section, we construct a unique unbounded solution of (1.1),(1.2) for unbounded initial datum
u0. In order to do so, different assumptions on the behaviour of u0 at infinity are made: we will distinguish
the cases of sublinear data, superlinear ones and “uniformly” µb- integrable data. Precisely, we assume
that u0 satisfies one of the following condition

|u0(x)| ≤ C(1 + |x|), |u0(x)| ≤ C(1 + |x|λ′

) or

∫

RN

sup
BR(z)

|u0(z)| dµb(z) < +∞

for some C > 0, λ′ > 1 and R > 0. We use the weak notion of viscosity solution in order to get uniqueness
for instance. As mentioned in the introduction, the assumptions on the non-linearity H vary from one
case to the other.

Before treating each case successively, we would like first to discuss the different sets of assumptions we
need. To make it clear, let us assume that H is locally Lispchitz continuous, even if this assumption can
be relaxed a bit (compare (A2) and (A2’), (B2) and (B2’)). As far as the behaviour wrt u is concerned,
we classically assume that the Lipschitz constant of H is bounded from below. The way H depends on
(x, p) differs from the sublinear case to the superlinear one. If comparison principles are at stake, the
Lipschitz constant of H in x has to be sublinear in p. But in the superlinear case, this constant can be
local in x which is not the case in the sublinear case (compare (A2) and (B2)). Similar differences about
the behaviour in p appear (compare (A3) and (B3)). These differences can be understood by looking
at the proof arguments: in the sublinear case, the penalization in space parameter vanishes before the
doubling variable penalization one and it is the contrary in the superlinear case. In the latter case, in
order to get local bounds for instance, the behaviour of the coefficients must be prescribed (see (B2’) and
(B4)). If finite propagation speed is expected for the pure Hamilton-Jacobi equation, the Hamiltonian H
has to be assumed globally Lipschitz continuous in p.
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3.1 The sublinear case

We first consider uniformly continuous initial data. This implies that we expect solutions to be
sublinear at infinity i.e. to lie in C0

1 . Naturally, for the range of exponent λ ∈ (0, 1], we consider data
and solutions that lie more precisely in C0

λ′ with λ′ ∈ (0, λ). As far as the non-linearity is concerned, we
assume that:

(A1) There exists ν ∈ R such that for all x ∈ R
N , u, v ∈ R, u ≤ v, p ∈ R

N , t ∈ [0, T ],

H(t, x, v, p) − H(t, x, u, p) ≥ ν(v − u).

(A2) There exists a modulus of continuity m such that for all x, y ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, y, u, p)| ≤ m((1 + |p|)|x − y|).

(A3) For all R > 0, there exists a modulus of continuity mR such that for all x ∈ R
N , u ∈ R, p, q ∈ BR,

t ∈ [0, T ],
|H(t, x, u, p) − H(t, x, u, q)| ≤ mR(|p − q|).

Remark 3.1. It is classical that through a change of unknown function in the equation (namely, U(t, x) :=
e−(min{ν,0}+1)t u(t, x)), (A1) reduces to the following assumption:

(A1’) For all x ∈ R
N , u, v ∈ R, u ≤ v, p ∈ R

N , t ∈ [0, T ], H(t, x, v, p) − H(t, x, u, p) ≥ v − u.

For the sake of simplicity, the results of this section are proved under (A1’) without changing explicitely
the unknown function.

We obtain first a comparison principle. Its proof is given in Appendix A.3.

Theorem 3.1 (Comparison principle). Assume (A1)-(A3). Let λ′ ∈ (0, 1] ∩ (0, λ) and u0 ∈ UC(RN ) ∩
C0

λ′(RN ). Let u and v be, respectively, a sub- and a supersolution of (1.1) such that

sup
[0,T ]×RN

u+(t, x)

1 + |x|λ′ < +∞ and sup
[0,T ]×RN

v−(t, x)

1 + |x|λ′ < +∞ .

Then u ≤ v whenever u(0, .) ≤ u0 ≤ v(0, .).

We now focus on existence issue and provide a L∞
loc bound on the solution. We need to prescribe the

behaviour at infinity of the source terms of the equations for the range of exponent λ ∈ (0, 1] (see Remark
3.2 below).

(A4) There exists a constant C0 such that for all x ∈ R
N ,

sup
[0,T ]

|H(t, x, 0, 0)| ≤ C0(1 + |x|λ′

).

Theorem 3.2 (Existence and L∞
loc estimate). Let λ′ ∈ (0, 1] ∩ (0, λ). Assume (A1)-(A4). Let u0 ∈

UC(RN )∩C0
λ′(RN ). There then exists a (unique) viscosity solution u ∈ C0

λ′(QT ) of (1.1)-(1.2). Moreover,
there exists a constant M only depending on ‖u0‖0,λ′ and C0 from (A4) such that ‖u‖0,λ′ ≤ M , i.e. for
all t ∈ (0, T ) × R

N

|u(t, x)| ≤ M(1 + |x|λ′

) .

Remark 3.2. If λ ∈ (1, 2), then (A2) implies (A4).

In order to get a gradient estimate, Assumption (A2) is strenghtened.

(A2’) There exists a constant C1 ≥ 0 such that for all x, y ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, y, u, p)| ≤ C1(1 + |p|)|x − y|.
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Theorem 3.3 (Gradient estimate). Assume (A1),(A2’),(A3). Let λ′ ∈ (0, 1] ∩ (0, λ) and u0 ∈ C0
λ′(RN )

be Lipschitz continuous. Then, if u ∈ C0
λ′(QT ) is a viscosity solution of (1.1)-(1.2), then u is Lipschitz

continuous wrt the space variable; moreover there exists a constant M , only depending on ‖∇u0‖∞ and
C1 from (A2’), such that ‖∇u‖∞ ≤ M .

The proofs of the existence and the gradient estimate can easily be adapted from [25] and are left to the
reader.

3.2 The superlinear case

We now turn to the superlinear case (1.5). In order to deal with λ > 1 and initial conditions that
are not sublinear anymore, the assumptions on the non-linearity H need to be adapted, in particular its
regularity wrt the x and p variables. But even in the case λ ≤ 1, we exhibit different conditions on the
non-linearity H that ensures the well-posedness of the problem.

(B2) For all R > 0, there exists a modulus of continuity mR such that for all x, y ∈ BR, u ∈ [−R,R],
p ∈ R

N , t ∈ [0, T ],
|H(t, x, u, p) − H(t, y, u, p)| ≤ mR((1 + |p|)|x − y|).

(B3) There exists a modulus of continuity m such that for all x ∈ R
N , u ∈ R, p, q ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, u, q)| ≤ m((1 + |x|)|p − q|).

In this framework, the comparison principle holds true for sub- and supersolutions with (eventually)
superlinear growth.

Theorem 3.4 (Comparison principle). Assume (A1),(B2),(B3). Let λ′ ∈ (0, λ). Let u and v be, respec-
tively, a sub- and a supersolution of (1.1) such that

sup
[0,T ]×RN

u(t, x)

1 + |x|λ′ < +∞ and inf
[0,T ]×RN

v(t, x)

1 + |x|λ′ > −∞ .

Then u ≤ v whenever u(0, .) ≤ v(0, .).

Proof. Let M := sup[0,T ]×RN (u − v). We must prove that M ≤ 0. Let us assume the contrary and let
us exhibit a contradiction. Let λ′′ ∈ (λ′, λ) and γ be a non-negative constant that will be appropriately
chosen later. Consider two parameters ε, η > 0 and define

Mε,η = sup
[0,T ]×RN×RN

(
u(t, x) − v(t, y) − |x − y|2

2ε
− ηeγt (1 + |x|2)λ′′

2

λ′′

)
.

Since for all η > 0:

lim
|(x,y)| → +∞

|x − y|2 + η(1 + |x|2)λ′′

2

(1 + |x| + |y|)λ′ = +∞, (3.1)

there exists (t, x, y) ∈ [0, T ] × R
N × R

N where the supremum is attained. There exists η0 > 0 such that
for all ε > 0, Mε,η0 ≥ M/2 > 0. Moreover,

lim
ε→0

sup
RN×RN

(
u(0, x) − v(0, y) − |x − y|2

2ε
− η0

(1 + |x|2)λ′′

2

λ′′

)

= sup
RN

(
u(0, x) − v(0, x) − η0

(1 + |x|2)λ′′

2

λ′′

)
≤ 0
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and it follows that t 6= 0 for ε small enough. By Lemma 2.3.2, there exist

(
a, p + η0e

γt(1 + |x|2)λ′′−2
2 x

)
∈ ∂

P
u(t, x),

(b, p) ∈ ∂P v(t, y)

with a − b = γη0e
γt (1+|x|2)

λ′′

2

λ′′ , p = x−y
ε and

g[v](t, y, p) − g[u]
(
t, x, p + η0e

γt(1 + |x|2)λ′′−2
2 x

)
≤ −η0e

γt

λ′′
g
[
(1 + | · |2)λ′′

2

]
(x).

Subtracting the corresponding viscosity inequalities and using (A1’) (see Remark 3.1), we get

M/2 + γη0
eγt(1 + |x|2)λ′′

2

λ′′
≤ H(t, y, u(t, x), p)

− H
(
t, x, u(t, x), p + η0e

γt(1 + |x|2)λ′′−2
2 x

)
− η0e

γt

λ′′
g
[
(1 + | · |2)λ′′

2

]
(x).

By (3.1), there exists R ≥ 0 that depends on η0 but not on 0 < ε ≤ 1 such that x, y ∈ BR and
u(t, x) ∈ [−R,R]. By (B2) and (B3), we get

M/2 + γη0
eγt(1 + |x|2)λ′′

2

λ′′
≤ mR

(
|x − y| + |x − y|2

ε

)

+ m
(
2η0e

γt(1 + |x|2)λ′′

2

)
− η0e

γt

λ′′
g
[
(1 + | · |2)λ′′

2

]
(x).

By Lemma B.0.1 in Appendix B, the function g[(1 + | · |2)λ′′

2 ] is bounded. If C denotes its L∞ norm and
γ = C + 2λ′′K (where K is an arbitrary positive real number), then

M/2 ≤ mR

(
|x − y| + |x − y|2

ε

)
+ m

(
2η0e

γt(1 + |x|2)λ′′

2

)
− 2Kη0e

γt(1 + |x|2)λ′′

2 ,

≤ mR

(
|x − y| + |x − y|2

ε

)
+ sup

r>0
(m(r) − Kr) . (3.2)

Classical arguments allow to prove that limε→0
|x−y|2

ε = 0, since η0 is a fixed positive number. The limit
as ε → 0 thus yields M/2 ≤ supr>0 (m(r) − Kr). Taking the infimum wrt K > 0 gives the contradiction
0 < M/2 ≤ 0. The proof of Theorem 3.4 is now complete. �

Theorem 3.5 (Existence and L∞
loc estimate). Let λ′ ∈ (0, λ). Assume (A1),(B2),(B3),(A4). Let u0 ∈

C0
λ′(RN ). There then exists a (unique) viscosity solution u ∈ C0

λ′(QT ) of (1.1)-(1.2). Moreover, ‖u‖0,λ′ ≤
M , i.e. for all (t, x) ∈ (0, T ) × R

N

|u(t, x)| ≤ M(1 + |x|λ′

) .

where M is some constant that only depends on ‖u0‖0,λ′ , C0 from (A4) and m from (B3).

We do not give an explicit proof of this result, since it is similar and easier than the one we will give
for the existence of solutions with integrable initial data (see next subsection).

We now turn to gradient estimates. To get some, we need to make precise the way the derivative of
the non-linearity H wrt x depends on |x| (see R in (B2)) and to strengthen a little bit (B3).

(B2’) There exists a constant C1 such that for all x, y ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, y, u, p)| ≤ C1(1 + |x|λ′−1 + |y|λ′−1 + |p|)|x − y|.
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(B3’) There exists a constant C2 such that for all x, y ∈ R
N , u ∈ R, p, q ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, u, q)| ≤ C2(1 + |x|)|p − q|.

Theorem 3.6 (Gradient estimate). Let λ ∈ (1, 2) and λ′ ∈ (1, λ). Assume (A1),(B2’),(B3’). Let
u0 ∈ C0,1

λ′ (RN ). If u ∈ C0
λ′(QT ) is a viscosity solution of (1.1)-(1.2), then u ∈ C0,1

λ′ (QT ) and there exists
a constant M , only depending on ‖u0‖1,λ′ , C1 from (B2’) and C2 from (B3’), such that ‖u‖1,λ′ ≤ M .

Proof. Consider a parameter ε > 0 and define uε(t, x) := supy∈RN

(
u(t, y) − eγt |x−y|2

2ε

)
with

γ = max
{

2C1 + 1, 4C2(λ
′ − 1) + ‖ g[(1 + | · |2)λ′−1] ‖∞ + 1

}
(3.3)

where C1 and C2 appear in (B2’) and (B3’). It is easy to see that uε is continuous and such that

sup[0,T ]×RN
uε(t,x)

1+|x|λ′ < +∞. Let us prove that uε is a viscosity subsolution of the following equation:

∂tu
ε + H(t, x, uε,∇uε) + g[uε] ≤ Cε

(1 + |x|2)λ′−1

2(λ′ − 1)
+ Cε

λ′

2−λ′ , (3.4)

where C is some constant that only depends on C1 and λ′. Let t ∈ (0, T ], x ∈ R
N and (a, p) ∈ ∂P uε(t, x).

It is well-known that there exists a point y such that uε(t, x) = u(t, y)− eγt |x−y|2

2ε ,
(
a + γeγt |x−y|2

2ε , p
)
∈

∂P u(t, y) and p = eγt(x−y
ε ). Moreover, using the fact that

uε(t, x + z) − uε(t, x) − p.z

1 + |z|2 ≥ u(t, y + z) − u(t, y) − p.z

1 + |z|2 ,

we get g[uε](t, x, p) ≤ g[u](t, y, p). The viscosity inequality corresponding to the solution u of (1.1) at
(t, y) and Assumptions (A1’) (see Remark 3.1) and (B2’) then imply that

a + H(t, x, uε(t, x), p) + g[uε](t, x, p) ≤

C1

(
(1 + |x|λ′−1 + |y|λ′−1) + eγt |x − y|

ε

)
|x − y| − γeγt |x − y|2

2ε
.

By (3.3), the right-hand side of this inequality is bounded from above by

C1(1 + 2|x|λ′−1)|x − y| + C1|x − y|λ′

+ C1e
γt |x − y|2

ε
− γeγt |x − y|2

2ε

≤ sup
r>0

(
C1(1 + 2|x|λ′−1)r + C1r

λ′ − r2

2ε

)
≤ C

(1 + |x|2)λ′−1

2(λ′ − 1)
ε + Cε

λ′

2−λ′

where C is some constant that only depends on C1 and λ′. This achieves the proof of (3.4).
Let us prove that for all C ′ ≥ C,

w(t, x) := uε(t, x) − C ′eγtε
(1 + |x|2)λ′−1

2(λ′ − 1)
− Cε

λ′

2−λ′ t

is a subsolution of (1.1). Let t ∈ (0, T ], x ∈ R
N and (a, p) ∈ ∂P w(t, x). Then,

(
a + γC ′eγtε

(1 + |x|2)λ′−1

2(λ′ − 1)
+ Cε

λ′

2−λ′ , p + C ′eγtε(1 + |x|2)λ′−2x

)
∈ ∂P uε(t, x)

and

g[w](t, x, p) = g[uε]
(
t, x, p + C ′eγtε(1 + |x|2)λ′−2x

)
− C ′eγtε

1

2(λ′ − 1)
g
[
(1 + | · |2)λ′−1

]
(x).
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The viscosity inequality corresponding to the subsolution uε of (3.4) and Assumptions (A1’) and (B3’)
then imply that

a + H(t, x, w(t, x), p) + g[w](t, x, p) ≤ 2C2C
′eγtε(1 + |x|2)λ′−1

+ C
(1 + |x|2)λ′−1

2(λ′ − 1)
ε − C ′eγtε

1

2(λ′ − 1)
g
[
(1 + | · |2)λ′−1

]
(x) − γC ′eγtε

(1 + |x|2)λ′−1

2(λ′ − 1)
.

By (3.3), the right-hand side of this inequality is non-positive for C ′ ≥ C and we conclude that w is a
subsolution of (1.1).

Clearly supQT

w(t,x)

1+|x|λ′ < +∞ and by the comparison principle we get

w(t, x) ≤ u(t, x) + sup
RN

(w(0, x) − u0(x)) (3.5)

for all t ∈ [0, T ] and all x ∈ R
N . Simple computations show that

sup
RN

(w(0, x) − u0(x)) = sup
RN×RN

(
u0(y) − u0(x) − |x − y|2

2ε
− C ′ε

(1 + |x|2)λ′−1

2(λ′ − 1)

)

≤ sup
RN×RN

(
‖u0‖1,λ′(1 + |x|λ′−1 + |y|λ′−1)|x − y| − |x − y|2

2ε
− C ′ε

(1 + |x|2)λ′−1

2(λ′ − 1)

)

≤ sup
RN×RN

(
‖u0‖1,λ′(1 + 2|x|λ′−1)|x − y| + ‖u0‖1,λ′ |x − y|λ′ − |x − y|2

2ε
− C ′ε

(1 + |x|2)λ′−1

2(λ′ − 1)

)

≤ sup
x∈RN

(
sup
r>0

(
‖u0‖1,λ′(1 + 2|x|λ′−1)r + ‖u0‖1,λ′rλ′ − r2

2ε

)
− C ′ε

(1 + |x|2)λ′−1

2(λ′ − 1)

)

≤ sup
x∈RN

(
C ′′ε

(1 + |x|2)λ′−1

2(λ′ − 1)
+ C ′′ε

λ′

2−λ′ − C ′ε
(1 + |x|2)λ′−1

2(λ′ − 1)

)
,

where C ′′ only depends on ‖u0‖1,λ′ and λ′. If we take C ′ ≥ C ′′ sufficiently large then

sup
RN

(w(0, x) − u0(x)) ≤ C ′′ε
λ′

2−λ′ .

Inequality (3.5) then implies that for all t ∈ [0, T ], x, y ∈ R
N and ε > 0,

u(t, y) ≤ u(t, x) + eγt |x − y|2
2ε

+ C ′eγtε
(1 + |x|2)λ′−1

2(λ′ − 1)
+ ε

λ′

2−λ′ (C ′′ + Ct);

it follows that

|u(t, x) − u(t, y)| ≤ eγt |x − y|2
2ε

+ C ′eγtε
(1 + |x|2)λ′−1

2(λ′ − 1)
+ ε

λ′

2−λ′ (C ′′ + Ct)

and taking ε = |x−y|

(1+|x|λ′−1)
implies the result. �

3.3 The uniformly integrable framework

We present in this subsection a viscosity solution theory in an uniformly integrable framework (see
the definition in Section 2). As we shall see, this theory seems to be related with a property of the speed
of propagation for (1.1). It is as if the equation keeps memory of the finite propagation speed of the
associated pure first order Hamilton-Jacobi equation (i.e. (1.1) without the integral term).

Let us begin by proving a strong uniqueness result. To do this, Assumption (B3) is strenghtened as
follows:
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(C3) There exists a modulus of continuity such that for all x, y ∈ R
N , p, q ∈ R

N , u ∈ R, t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, u, q)| ≤ m(|p − q|).

Theorem 3.7 (Comparison principle). Assume (A1),(B2),(C3). Let u and v be, respectively, a sub- and
a supersolution of (1.1) such that u+ and v− are µb-uniformly integrable in space uniformly wrt time.
Then u ≤ v whenever u(0, .) ≤ v(0, .).

Proof. Let us assume as previously that M := sup[0,T ]×RN (u− v) > 0 and let us exhibit a contradiction.
We need to construct barrier functions in order to perturb this supremum. We do so by applying
Lemma 2.5.2. Precisely, define Φ := Φ[u+] + Φ[v−] and

Mε,η = sup
[0,T ]×RN×RN

(
u(t, x) − v(t, y) − |x − y|2

2ε
− ηeγt(Φ(x) + Φ(y))

)
.

By Property (2.9) of barrier functions, we claim that there exists (t, x, y) ∈ [0, T ] × R
N × R

N where the
supremum is attained. Arguing as in the proof of Theorem 3.4, we infer that Mε,η0

≥ M/2 and t 6= 0 for
some η0 > 0 and all ε small enough. Lemma 2.3.2 yields the existence of

(
a, p + η0e

γt∇Φ(x)
)

∈ ∂
P

u(t, x),
(
b, p − η0e

γt∇Φ(y)
)

∈ ∂P v(t, y)

with a − b = γη0e
γt (Φ(x) + Φ(y)), p = x−y

ε and

g[v]
(
t, y, p − η0e

γt∇Φ(y)
)
− g[u]

(
t, x, p + η0e

γt∇Φ(x)
)
≤ −η0e

γt (g [Φ] (x) + g [Φ] (y)) .

The viscosity inequalities and (A1’) now give

M/2 + γη0e
γt (Φ(x) + Φ(y)) ≤ H

(
t, y, u(t, x), p − η0e

γt∇Φ(y)
)

− H
(
t, x, u(t, x), p + η0e

γt∇Φ(x)
)
− η0e

γt (g [Φ] (x) + g [Φ] (y)) .

Using again Property (2.9) of barrier functions, we claim that x, y ∈ BR and u(t, x) ∈ [−R,R] for some
R ≥ 0 which does not depend on 0 < ε ≤ 1 (but does depend on η0). By (B2) and (C3), we get

M/2 + γη0e
γt (Φ(x) + Φ(y)) ≤ mR

(
|x − y| + |x − y|2

ε

)

+ m
(
η0e

γt (|∇Φ(x)| + |∇Φ(y)|)
)
− η0e

γt (g [Φ] (x) + g [Φ] (y)) .

We next use the key property on the barrier function, (2.10), to get

|∇Φ| + g[Φ] ≤ |∇Φ[u+]| + g[Φ[u+]] + |∇Φ[v−]| + g[Φ[v−]] ≤ CN,λ (Φ[u+] + Φ[v−]) = CN,λ Φ .

Combining the two previous inequalities yield

M/2 + γη0e
γt (Φ(x) + Φ(y)) ≤ mR

(
|x − y| + |x − y|2

ε

)

+ m
(
CN,λ η0e

γt (Φ(x) + Φ(y))
)

+ CN,λ η0e
γt (Φ(x) + Φ(y))

and, on taking γ = CN,λ(K + 1), we deduce that

M/2 ≤ mR

(
|x − y| + |x − y|2

ε

)
+ sup

r>0
(m(r) − Kr) ;

taking now successively the limit as ε → 0 and the infimum wrt K > 0 gives the desired contradiction
0 < M/2 ≤ 0. The proof is complete. �
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To get existence result, we naturally need a uniform integrability condition on source terms

(C4) The function (t, x) 7→ H(t, x, 0, 0) is µb-uniformly integrable in space uniformly wrt time.

Theorem 3.8 (Existence and L∞
loc estimate). Assume (A1),(B2),(C3),(C4). Let u0 be a continuous and

µb-uniformly integrable. There then exists a (unique) continuous and µb-uniformly integrable in space
uniformly wrt time viscosity solution u of (1.1)-(1.2).

Proof. Let us first approximate the initial condition u0 and the Hamiltonian H in order to apply the
result of [25]. Define u0

n := u0 × χn where χn : R
N → [0, 1] equals 1 in Bn and 0 outside Bn+1. We

also define Hn := Tn(H) where Tn(r) := max(−n, min(n, r)) is a truncature function. The W 1,∞ theory
of [25] ensures the existence of a bounded continuous viscosity solution un associated with these data.
Assume for a while that we have some L∞

loc estimate on un. Proposition 2.1 implies that the upper
(resp. lower) semi-limit of un is a subsolution (resp. supersolution) of (1.1)-(1.2). The comparison
principle then yields lim sup ∗ un ≤ lim inf ∗ un; since the other inequality always holds true, we have:
lim sup ∗ un = lim inf ∗ un. If u denotes this function, we see that u is both usc and lsc and both a
viscosity sub- and supersolution.

It now remains to derive a L∞
loc estimate on un. To do this, define Φ := Φ[ |u0|] + Φ[ |H(·, ·, 0, 0)|]. In

view of Remark 2.4 following Lemma 2.5.2, we claim that Φ ≥ Φ[|u0
n|]+Φ[ |Hn(·, ·, 0, 0)|]. Hence, we have

|u0
n| + sup

[0,T ]

|Hn(t, ·, 0, 0)| ≤ Φ,

|∇Φ| + |g[Φ]| ≤ CN,λΦ.

Let us look for a supersolution of (1.1) of the form w(t, x) := eγtΦ(x) + t supr>0 (m(r) − Kr). We
first choose K sufficiently large so that supr>0 (m(r) − Kr) is finite. By using (A1’) and (C3), simple
computations show that we have

∂tw(t, x) + Hn(t, x, w,∇w) + g[w] ≥ γeγtΦ(x) + sup
r>0

(m(r) − Kr)

+ Hn(t, x, 0, 0) − m
(
eγt|∇Φ(x)|

)
+ eγtg[Φ](x) .

By the property on the barrier function, we see that

∂tw(t, x) + Hn(t, x, w,∇w) + g[w] ≥ γeγtΦ(x) + sup
r>0

(m(r) − Kr)

− eγtΦ(x) − m
(
CN,λ eγtΦ(x)

)
− CN,λ eγtΦ(x).

If we take γ := 1 + CN,λ(1 + K), we get

∂tw(t, x) + Hn(t, x, w,∇w) + g[w] ≥ 0.

The comparison principle then implies that un ≤ w. We argue similarly to get the other inequality and
prove that |un| ≤ w. This is the desired L∞

loc estimate and the proof is now complete. �

To get a Lipschitz continuity regularity result, we need to use the following assumptions

(C2) The Hamiltonian H is locally Lipschitz continuous wrt x and there are a constant C1 and a locally
bounded function Θ : R

N → R
+ such that Θ2 is µb-uniformly integrable and for a.e. x ∈ R

N ,
u ∈ R, p ∈ R

N , t ∈ [0, T ],
|∇xH(t, x, u, p)| ≤ Θ(x) + C1|p|.

(C3’) There exists a constant C2 such that for all x, y ∈ R
N , u ∈ R, p, q ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, u, q)| ≤ C2|p − q|.
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Theorem 3.9 (Gradient estimate). Assume (A1),(C2),(C3’). Let u0 be locally Lipschitz continuous, µb-
uniformly integrable and such that |∇u0|2 is µb-uniformly integrable. Then, if u is a continuous viscosity
solution of (1.1)-(1.2) µb-uniformly integrable in space uniformly wrt time, then u is locally Lipschitz
continuous wrt the space variable.

Proof. Consider Φ := Φ[|u|]+Φ[|∇u0|2]+Φ[Θ2] a barrier function given by Lemma 2.5.2. For x, y ∈ R
N ,

define

φ(x, y) :=

∫ 1

0

Φ((1 − τ)x + τy)dτ + Φ(x) + Φ(y).

For ε > 0, define

M := sup
[0,T ]×RN×RN

(
u(t, x) − u(t, y) − eγt |x − y|2

2ε
− εeγtφ(x, y)

)
.

Let us prove that for γ sufficiently large, this supremum is non-positive. Assume this is true. In this
case, for every x, y ∈ R

N and ε > 0, we have

u(t, y) − u(t, x) ≤ eγt |x − y|2
2ε

+ εeγtφ(x, y).

It follows that

|u(t, x) − u(t, y)| ≤ eγt |x − y|2
2ε

+ εeγtφ(x, y)

and taking ε = |x−y|
φ(x,y) implies the result since φ is locally bounded.

It remains to prove that M is non-positive. Recall that M is achieved at some (t, x, y) ∈ [0, T ]×R
N ×

R
N , thanks to the definition of φ and to Property (2.9) of Φ[|u|]. If t = 0, then

M ≤ sup
RN×RN

(
u0(x) − u0(y) − |x − y|2

2ε
− εφ(x, y)

)
.

Using Property (2.8) of barrier function, we claim that Φ is continuous and such that Φ ≥ |∇u0|2; hence,
it is obvious that for every x, y ∈ R

N ,

|u0(x) − u0(y)| ≤ I(x, y) |x − y|,

where I(x, y) :=
∫ 1

0

√
Φ((1 − τ)x + τy) dτ . It follows that

M ≤ sup
RN×RN

(
I(x, y) |x − y| − |x − y|2

2ε
− εφ(x, y)

)
.

But, I(x, y) |x−y|− |x−y|2

2ε ≤ supr>0

(
I(x, y) r − r2

2ε

)
and an easy computation shows that this supremum

equals 1
2I2(x, y)ε. Since Jensen’s inequality implies that

I2(x, y) =

(∫ 1

0

√
Φ((1 − τ)x + τy) dτ

)2

≤
∫ 1

0

Φ((1 − τ)x + τy) dτ ≤ φ(x, y),

we conclude that M ≤ supRN×RN

(
1
2εφ(x, y) − εφ(x, y)

)
≤ 0 in the case where t = 0.

To prove the non-positivity of M in the other case, we assume the contrary and we seek a contradition.
In particular, we have u(t, x) ≥ u(t, y). Moreover, recall that Lemma 2.3.2 yields the existence of

(
a, p + εeγt∇xφ(x, y)

)
∈ ∂

P
u(t, x),

(
b, p − εeγt∇yφ(x, y)

)
∈ ∂P v(t, y)
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with a − b = γeγt |x−y|2

2ε + γεeγtφ(x, y), p = eγt(x−y
ε ) and

g[v]
(
t, y, p − εeγt∇yφ(x, y)

)
− g[u]

(
t, x, p + εeγt∇xφ(x, y)

)

≤ εeγt

∫

RN

(
φ(x + z, y + z) − φ(x, y) − (∇x + ∇y)φ(x, y) · z

1 + |z|2
)

dµ(z) =: εeγtJ.

By the definition of φ, simple computations show that the integral term I above equals

J = J(x̄, ȳ) =

∫ 1

0

g[Φ]((1 − τ)x + τy) dτ + g[Φ](x) + g[Φ](y).

Using Property (2.10) of barrier functions, we see that |g[Φ]| ≤ CN,λΦ and we obtain

J(x̄, ȳ) ≤
∫ 1

0

CN,λ Φ((1 − τ)x + τy) dτ + CN,λ Φ(x) + CN,λ Φ(y) = CN,λφ(x, y).

It follows that the non-local terms satisfy

g[v]
(
t, y, p − εeγt∇yφ(x, y)

)
− g[u]

(
t, x, p + εeγt∇xφ(x, y)

)
≤ CN,λεeγtφ(x, y).

The viscosity inequalities and (A1’) now give

γeγt |x − y|2
2ε

+ γεeγtφ(x, y) ≤ H
(
t, y, u(t, x), p − εeγt∇yφ(x, y)

)

− H
(
t, x, u(t, x), p + εeγt∇xφ(x, y)

)
+ CN,λεeγtφ(x, y).

Using (C3’), we get

γeγt |x − y|2
2ε

+ γεeγtφ(x, y) ≤ H
(
t, y, u(t, x), p

)
− H

(
t, x, u(t, x), p

)

+ C2εe
γt |(∇x + ∇y)φ(x, y)| + CN,λεeγtφ(x, y).

Using that |(∇x + ∇y)φ(x, y)| ≤ CN,λφ(x, y), thanks again to Property (2.10) of barrier functions, we
deduce that

γeγt |x − y|2
2ε

+ γεeγtφ(x, y) ≤ H
(
t, y, u(t, x), p

)
− H

(
t, x, u(t, x), p

)
+ (1 + C2)CN,λεeγtφ(x, y).

Since Φ ≥ Θ2, Assumption (C2) implies that

γeγt |x − y|2
2ε

+ γεeγtφ(x, y) ≤ (I(x, y) + C1|p|)|x − y| + (1 + C2)CN,λεeγtφ(x, y),

where we recall that I(x, y) :=
∫ 1

0

√
Φ((1 − τ)x + τy) dτ . Using the fact that I ≤

√
φ, we get

γeγt |x − y|2
2ε

+ γεeγtφ(x, y) ≤
√

φ(x, y) |x − y| + C1e
γt |x − y|2

ε
+ (1 + C2)CN,λεeγtφ(x, y).

Rearranging terms, we get

(γ − (1 + C2)CN,λ)εeγtφ(x, y) ≤
√

φ(x, y) |x − y| + (C1 − γ/2)eγt |x − y|2
ε

.

Take now γ := max{2(C1 + 1), (1 + C2)CN,λ + 1}. We get

εφ(x, y) ≤
√

φ(x, y) |x − y| − |x − y|2
ε

≤ 1

2
εφ(x, y)

which yields the desired contradiction since φ is positive. We then have proved that M ≤ 0. �
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We end this section by studying how (1.1) keeps memory of the fact that the pure first order Hamilton-
Jacobi equation propagates perturbations of the initial conditions with finite speed. It is well-known that
the key assumption to get such a property is (C3’). In order to simplify the proof of the result below, we
shall assume in addition that

(C1) H does not depend on u.

We then have the following result.

Theorem 3.10 (Finite-infinite propagation speed). Assume (C1),(B2),(C3’). Let u and v be, respec-
tively, a sub- and super-solution of (1.1) such that u and v are µb-uniformly integrable in space uniformly
wrt time. Then for all t ∈ (0, T ] and all x ∈ R

N ,

u(t, x) − v(t, x) ≤ K(t, ·) ∗ sup
BC2t(·)

(u(0, ·) − v(0, ·)) (x), (3.6)

where C2 is the constant in (C3’).

Proof. Notice first that the right-hand side of (3.6) is well-defined, thanks to Lemma 2.5.1 and to the
uniform integrability of u+(0, ·) and v−(0, ·) wrt µb. Now, we let the reader check that w = u − v is a
viscosity subsolution of the equation

∂tw + g[w] = C2|∇w|. (3.7)

By the Lax-Oleinik formula, we know that α(t, x) := supBC2t(x)(u(0, ·)− v(0, ·)) is the unique continuous
viscosity solution of

∂tw = C2|∇w| (3.8)

such that w(0, ·) = u(0, ·) − v(0, ·). Consider a sequence (w0
n)n of W 1,∞ initial conditions that converges

locally uniformly to w(0, ·). Define αn(t, x) := supBC2t(x) w0
n. By stability, αn → α locally uniformly as

n → +∞. Moreover, we know that αn is Lipschitz continuous and thus satisfies (3.8) almost everywhere.
Let (θm)m and (ρm)m be mollifiers, in time and space respectively. Assume that supp(θm) ⊂ (−∞, 0).
Define

αn,m(t, x) = αn ∗t,x (ρmθm)(t, x) :=

∫ +∞

0

αn(s, .) ∗ ρm(x) θ(t − s)ds.

The function αn,m is smooth and

∂tαn,m = ∂t(αn ∗t,x (ρmθm)) = (∂tαn) ∗t,x (ρmθm) = C2|∇αn| ∗t,x (ρmθm) ≥ C2|∇αn,m|.

This means that αn,m is a supersolution of (3.8). Using now that ∂tK + g[K] = 0, we obtain

∂t(K(t, ·) ∗ αn,m(t, .))(x) = −g[K(t, ·) ∗ αn,m(t, .)](x) + K(t, ·) ∗ (∂tαn,m(t, .))(x),

≥ −g[K(t, ·) ∗ αn,m(t, .)](x) + C2K(t, ·) ∗ |∇αn,m(t, .)|(x),

≥ −g[K(t, ·) ∗ αn,m(t, .)](x) + C2|∇(K(t, ·) ∗ αn,m(t, .))(x)|.

Hence K(t, ·) ∗ αn,m(t, .)(x) is a smooth supersolution of (3.7); moreover, it converges locally uniformly
to K(t, ·)∗αn(t, .)(x) as n → +∞. By stability, K(t, ·)∗αn(t, .)(x) is a supersolution of (3.7). Write next

K(t, .) ∗ αn(t, .) =

∫

RN

K(1, y)αn(t, x − t1/λy)dy

and conclude that the limit of this function as t goes to 0+ exists and equals αn(0, .) = w0
n. Taking now the

limit as n → +∞, we see that K(t, ·) ∗ α(t, .)(x) is a supersolution of (3.7) that satisfies α(0, .) = w(0, ·).
The comparison principle then yields w(t, x) ≤ K(t, ·) ∗ α(t, .)(x), that is to say, (3.6) holds true. �
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4 Regularizing effect

In this section, we focus on the range of exponents λ ∈ (1, 2) and we prove that the unbounded
continuous (viscosity) solution of (1.1) we constructed in the previous section is in fact C1,1 with respect
to x and Lipschitz continuous with respect to t.

4.1 The sublinear case

In order to get C1,1 solution for (1.1), we need to strenghen assumptions. In particular, we need the
following one.

(A3’) For all R > 0, there exists a constant CR such that for all x ∈ R
N , u, v ∈ R, p, q ∈ BR, t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, v, q)| ≤ CR(|u − v| + |p − q|).

Theorem 4.1. Let λ ∈ (1, 2). Assume (A1),(A2’),(A3’) and consider a Lipschitz continuous function
u0. Then the (unique) viscosity solution of (1.1)-(1.2) is C1,1 wrt the space variable and locally Lipschitz
continuous wrt the time variable on (0, T ] × R

N .

Proof. Let us regularize the non-linearity and the initial data in order to ensure, thanks to the results of
[25], existence and uniqueness of C2 in space and C1 in time bounded solution of (1.1). Let us consider
u0

n ∈ W 1,∞(RN ) which converges locally uniformly to u0 on R
N by satisfying:

‖u0
n‖0,1 + ‖∇u0

n‖∞ ≤ C

for some constant C. Consider a sequence of smooth non-linearities Hn which converges locally uniformly
to H in [0, T ] × R

N × R × R
N by satisfying the assumptions of Theorem 4.1 (with same constants). Let

un be the viscosity solution associated to Hn and u0
n. The estimates of Theorems 3.2 and 3.3 imply that

there exists a constant M > 0 such that:

‖un‖0,1 + ‖∇un‖∞ ≤ M. (4.1)

This gives us in particular an L∞
loc estimate; hence, we can argue as in the proof of Theorem 3.5 to establish

the local uniform convergence on QT of un toward the unique C0
λ′ viscosity solution u of (1.1)-(1.2). It

thus rests to derive a C1,1 in space estimate on un.
In order to use the results of [25], we need to consider Hn that satisfies in addition:

sup
QT

|Hn(t, x, 0, 0)| < +∞,

∀R > 0, sup
[0,T ]×RN×[−R,R]×BR

(
|∂uHn| + |∇pHn| + |D2

p,xHn| + |∇p∂uHn| + |D2
pHn|

)
< +∞.

Then, un ∈ Cb(QT ) ∩ L∞([0, T ];W 1,∞(RN )) is C2 in space and C1 in time on (0, T ] × R
N with

sup
[0,T ]

‖t1/λD2un(t, .)‖∞ < +∞. (4.2)

Moreover, un satisfies the Duhamel’s Formula: for all t > 0 and all x ∈ R
N ,

un(t, x) = K(t, ·) ∗ u0
n(x) −

∫ t

0

K(t − s, .) ∗ Hn(s, ., un(s, .),∇un(s, .))(x)ds. (4.3)

By (2.6) and the properties of un and Hn, the theorem of derivation under the integral sign implies that

D2un(t, x) = ∇K(t, ·) ∗ ∇u0
n(x) −

∫ t

0

∇K(t − s, .) ∗ ∇ (Hn(s, ., un(s, .),∇un(s, .))) (x)ds. (4.4)

22



Compute next

∇ (Hn(s, ., un(s, .),∇un(s, .))) = ∇xHn(s, ., un(s, .),∇un(s, .))

+∂uHn(s, ., un(s, .),∇un(s, .))∇un(s, .)

+D2un(s, .)∇pHn(s, ., un(s, .),∇un(s, .)).

By (4.1), (A2’) and (A3’), this implies:

‖∇ (Hn(s, ., un(s, .),∇un(s, .))) (x)‖∞ ≤ C1(1 + M) + CM

(
M + ‖D2un(s, .)‖∞

)
.

By (2.6), we get:

‖∇K(t − s, .) ∗ ∇ (Hn(s, ., un(s, .),∇un(s, .))) ‖∞
≤ (t − s)−1/λ K0[C1(1 + M) + CMM ] + (t − s)−1/λs−1/λ K0CM‖s1/λD2un(s, .)‖∞.

Since ‖∇K(t, ·) ∗ ∇u0
n‖∞ ≤ t−1/λK0M , we deduce from (4.4) that

‖t1/λD2un(t, .)‖∞ ≤ K0M + t1/λ

∫ t

0

(t − s)−1/λds K0[C1(1 + M) + CMM ]

+t1/λ

∫ t

0

(t − s)−1/λs−1/λds K0CM sup
τ∈[0,T ]

‖τ1/λD2un(τ, .)‖∞,

= K0M +
λ

1 − λ
t K0[C1(1 + M) + CMM ]

+Iλt
λ−1

λ K0CM sup
τ∈[0,T ]

‖τ1/λD2un(τ, .)‖∞

where Iλ =
∫ 1

0
(1 − s)−1/λs−1/λds. Let T1 ∈ (0, T ] be such that IλT1

λ−1
λ K0CM ≤ 1/2. We have proved

that

sup
[0,T1]

‖t1/λD2un(t, .)‖∞ ≤ 2

(
K0M +

λ

1 − λ
T1 K0[C1(1 + M) + CMM ]

)
=: C(M, λ,K0).

Taking any T0 as initial time, we can argue similarly to prove that for all n ∈ N and all T0 ∈ [0, T − T1],

sup
[T0,T0+T1]

‖(t − T0)
1/λD2un(t, .)‖∞ ≤ C(M,λ,K0).

Eventually, we get for all t ∈ [0, T ] and x ∈ R
N :

|D2un(t, x)| ≤ t−1/λC̃(M, λ,K0). (4.5)

This gives the desired C1,1 estimate in space. The equation ∂tun = −Hn(t, x, un,∇un)−g[un] now allows
to derive a Lipschitz continuous in time estimate on un. The proof is complete. �

Corollary 4.1 (Duhamel’s formula). The unique viscosity solution of (1.1)-(1.2) satisfies:

u(t, x) = K(t, ·) ∗ u0(x) −
∫ t

0

K(t − s, .) ∗ H(s, ., u(s, .),∇u(s, .))(x)ds.

Proof. We need to check that we can pass to the limit in (4.3). This reduces to get pointwise convergence
of gradients. To prove this, remark that we have the C1,1 estimate (4.5) and ‖∇un‖∞ ≤ M . Hence, we
have compactness. The fact that un converges locally uniformly towards u tells us that the limit of any
subsequence of ∇un has to be ∇u. Indeed, it coincides with the distribution limit. �
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4.2 The superlinear case

To get the C1 and/or C1,1 regularity in the superlinear case, we need to strengthen Assumption (A1).

(B1) There exists a constant C3 such that for all x ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, v, p)| ≤ C3|u − v|.

It turns out that the assumptions that permit to get existence of a viscosity solution in the superlinear
case (see the assumptions of Theorem 3.5) only permit to prove C1 regularity in space; moreover, initial
conditions have to be locally Lipschitz; precisely, they have to lie in C0,1

λ′ . If now one considers the
assumptions that permit to get existence in the case of finite-infinite speed of propagation (Theorem 3.10),
solutions can be proved to be C1,1. Moreover, initial conditions need not being assumed to be locally
Lipschitz continuous; precisely, they have to lie in C0

λ′ . Let us first state both results before turning to
their proofs.

Theorem 4.2. Let λ ∈ (1, 2) and λ′ ∈ (1, λ). Assume (B1),(B2’),(B3’),(A4). Let u0 ∈ C0,1
λ′ (RN ). Then

the (unique) viscosity solution of (1.1)-(1.2) is C1 wrt the space variable on (0, T ] × R
N .

Remark 4.1. Notice that (B2’) and the continuity of H(t, 0, 0, 0) wrt t ∈ [0, T ] already imply (A4).

Remark 4.2. A Duhamel’s formula holds true in this case too (see Corollary 4.1) under the assumptions
of Theorem 4.2.

Theorem 4.3. Let λ ∈ (1, 2) and λ′ ∈ (1, λ). Assume (B1),(B2’),(C3’),(A4). Let u0 ∈ C0
λ′(RN ). Then

the (unique) viscosity solution of (1.1)-(1.2) is C1,1 wrt the space variable and locally Lipschitz continuous
wrt the time variable in (0, T ] × R

N .

Proof of Theorem 4.2. Following the proof of Theorem 4.1, we first regularize the non-linearity and the
initial data in such a way that ‖u0

n‖1,λ′ remains bounded. We have a C0,1
λ′ bound on (un)n given by

Theorems 3.5 and 3.6. Let M denote this bound. By the theorem of derivation under the integral sign
and Duhamel’s Formula (4.3),

∇un(t, x) = ∇K(t, ·) ∗ u0
n(x) −

∫ t

0

∇K(t − s, .) ∗ Hn(s, x, un(s, .),∇un(s, .))(x)ds. (4.6)

Define Hn(s, x) := Hn(s, x, un(s, x),∇un(s, x))1(0,T )(s) and K(s, x) := ∇K(s, x)1(0,T )(s). The last term
of the right-hand side of (4.6) is equal to Hn∗K where the convolution is computed wrt (t, x). Assumptions
(A4),(B1) and (B3’) imply:

‖Hn‖0,λ′ ≤ C0 + 4C3M.

By (2.6), K is integrable with respect to the measure (1 + |z|λ′

)dτdz. Hence, the continuity of the
translations in L1((1 + |z|λ′

)dτdz) implies that (Hn ∗ K)n is equicontinuous in QT ; indeed, we can write

|Hn ∗ K(t, x) −Hn ∗ K(s, y)| ≤ ‖Hn‖0,λ′

∫

R

∫

RN

|K(τ + (t − s), z + (x − y)) −K(τ, z)| (1 + |z|λ′

)dτdz,

≤ (C0 + 4C3M) ω(|t − s| + |x − y|),

where ω is a modulus of continuity. Using now the bound on ‖u0
n‖0,λ′ , it is immediate to see that the

sequence (∇K(t, ·) ∗ u0
n)n is equicontinuous in (0, T ] × R

N ; hence, so is (∇un)n and the local uniform
limit u of un is C1 in space in (0, T ] × R

N . The proof of Theorem 4.2 is complete. �

Proof of Theorem 4.3. Once again, we regularize the initial conditions as in Theorem 4.1; in particular,
the corresponding solution of (1.1) remains bounded in C0

λ′ and M denotes its bound. Let us derive local
gradient estimate on ∇un with the help of (4.6). By (A4),(B1) and (C3),

‖Hn(s, ., un(s, .),∇un(s, .))‖0,λ′ ≤ C0 + C3M + C2‖∇un(s, .)‖0,λ′ .
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By (2.6), we get

‖∇K(t − s, .) ∗ Hn(s, ., un(s, .),∇un(s, .))‖0,λ′ ≤ 2(t − s)−1/λ (K0 + Kλ′) (C0 + C3M)

+ 2(t − s)−1/λs−1/λ (K0 + Kλ′) C2‖s1/λ∇un(s, .)‖0,λ′ .

Since ‖∇K(t, ·) ∗ u0
n‖0,λ′ ≤ 2t−1/λ (K0 + Kλ′) M , we deduce from (4.6) that

‖t1/λ∇un(t, .)‖0,λ′ ≤ 2 (K0 + Kλ′)M + 2
λ

1 − λ
t (K0 + Kλ′) (C0 + C3M)

+2Iλt
λ−1

λ (K0 + Kλ′) C2 sup
[0,T ]

‖s1/λ∇un(s, .)‖0,λ′ .

Let T1 ∈ [0, T ] be such that 2IλT
λ−1

λ
1 (K0 + Kλ′)C2 ≤ 1/2. We have proved that

sup
[0,T1]

‖t1/λ∇un(t, .)‖0,λ′ ≤ 4

(
(K0 + Kλ′) M +

λ

1 − λ
T1 (K0 + Kλ′) (C0 + C3M)

)
.

Taking any T0 as initial time, we can argue similarly to prove that for all n ∈ N and all T0 ∈ [0, T − T1],

sup
[T0,T0+T1]

‖(t − T0)
1/λ∇un(t, .)‖0,λ′ ≤ 4

(
(K0 + Kλ′) M +

λ

1 − λ
T1 (K0 + Kλ′) (C0 + C3M)

)
.

The local uniform limit u of un is then locally Lipschitz continuous wrt x in (0, T ]×R
N . This process can

be iterated with the formula (4.4) to prove the C1,1 regularity in space and a fortiori the local Lipschitz
continuity regularity in time. The proof of Theorem 4.3 is now complete. �

Let us end this section with a remark on regularity results in the uniformly integrable framework.

Remark 4.1. The key property on the kernel used in the preceding proof is Estimate (2.6). By the
homogeneity property of K, this property still holds true for (1 + |x|λ′

) replaced by Φ(|x|), with Φ :
R

+ → R
+ non-decreasing and such that

∫
Φ(|z|)dµb(z) < +∞. This suggests that our techniques can be

adapted to initial condition satisfying (2.11).

5 Convergence of gradients as “viscosity” vanishes

In this section, we prove a result about the sequence of the gradients of the solution uε of (1.7)-(1.8)
under the following assumption

(D) The non-linearity H is strictly convex wrt p.

Theorem 5.1. Let λ ∈ (1, 2) and λ′ ∈ (1, λ). Let u0 ∈ C0,1
λ′ (RN ) (resp. let u0 be Lipschitz continuous).

Assume (D) and the assumptions of Theorem 4.2 (resp. of Theorem 4.1). Then the unbounded regular
solution uε of (1.7)-(1.8) converges locally uniformly to the solution u0 of (1.7) with ε = 0 and the
sequence of gradients satisfies: for all p ∈ [1,+∞),

∇uε(t, x) →
ε→0

∇u0(t, x) in Lp
loc(QT ).

Proof. To avoid technicalities with Young measures, we only do the proof with H(t, x, u, p) = H(p) and
let the reader check that the following ideas can be adapted in the general case.

The kernel associated with εg[·] is Kε(t, x) = K(εt, x). We then have

uε(t, x) = K(εt, .) ∗ u0(x) +

∫ t

0

K(ε(t − s), ·) ∗ H(∇uε(s, ·))ds. (5.1)
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Consider the Young measure ν associated with the locally bounded family {∇uε}ε>0 with ε → 0. Pre-
cisely, its disintegration is a family of probabilities {νt,x}(t,x)∈QT

such that for all F ∈ C(RN ) and all

φ ∈ Cc(QT ),
∫ T

0

∫

RN

F (∇uε(t, x))φ(t, x) dtdx →
∫ T

0

∫

RN

∫

RN

F (ξ)φ(t, x) dνt,x(ξ)dtdx as ε → 0 (5.2)

(up to a subsequence). Indeed, Prokhorov’s Theorem gives us the existence of a Young measure νR on
R

N indexed by (0, T ) × BR for all R > 0 associated to the bounded sequence (1(0,T )×BR
∇uε)ε>0. An

argument of diagonalization (with Rn = n for instance) then implies the existence of the measure ν
indexed by QT that coincides with νR on each (0, T ) × BR. Notice finally, that by the local bound we
have on ∇uε (see Theorems 3.3 and 3.6 respectively), (5.2) holds true for F not necessarily bounded on
R

N and ϕ with compact support on QT ; indeed, supp(νt,x) ⊂ {|ξ| ≤ supε>0 |∇uε(t, x)|}. This implies
that ∫ t

0

∫

RN

F (∇uε(s, x))ds φ(x)dx →
∫ t

0

∫

RN

∫

RN

F (ξ) dνs,x(ξ)ds φ(x)dx as ε → 0.

We will use it with F = H. The previous convergence result implies that
∫ t

0

H(∇uε(s, x))ds →
∫ t

0

∫

RN

H(ξ) dνs,x(ξ)ds in D′(RN ).

We try to prove that for almost every (a.e. for short) (t, x) ∈ QT , νt,x is a Dirac mass centered at
∇u0(t, x). Classical results about Young measures will thus imply the convergence in Lp

loc(QT ) for all
p ≥ 1.

We claim that, as ε → 0,
∫ t

0

K(ε(t − s), ·) ∗ H(∇uε(s, ·))(x)ds →
∫ t

0

∫

RN

H(ξ) dνs,x(ξ)ds in D′(RN ). (5.3)

Indeed, thanks to the evenness of K wrt x, we have:

∫ t

0

∫

RN

K(ε(t − s), ·) ∗ H(∇uε(s, ·))(x) ϕ(x)dxds

=

∫ t

0

∫

RN

K(ε(t − s), ·) ∗ ϕ (x) H(∇uε(s, x))dxds.

Recalling that
∫

RN K(t, ·) = 1, the homogeneity property of K implies from the equality above that
∣∣∣∣
∫ t

0

∫

RN

K(ε(t − s), ·) ∗ H(∇uε(s, .))(x) ϕ(x)dxds −
∫ t

0

∫

RN

H(∇uε(s, x)) ϕ(x)dxds

∣∣∣∣ , (5.4)

≤
∫ t

0

∫

RN

∫

RN

K(ε(t − s), z) |ϕ(x − z) − ϕ(x)| |H(∇uε(s, x))|dzdxds,

≤
∫ t

0

∫

RN

∫

RN

K(t − s, z) |ϕ(x − ε1/λz) − ϕ(x)| |H(∇uε(s, x))|dzdxds,

≤ ε1/λ‖∇ϕ‖L1(RN )

∫ t

0

∫

RN

K(t − s, z)|z| sup
1≥ε>0

sup
|x|≤Rϕ+ε1/λ|z|

|H(∇uε(s, x))|dzds

where supp(ϕ) ⊂ BRϕ
. By (2.5), the growth conditions on H and the local bound we have on ∇uε, we

deduce that (5.4) goes to 0 as ε → 0.

Since uε converges towards u0 locally uniformly, we can pass to the limit in Duhamel’s formula (see
Corollary 4.1 and Remark 4.2) in the distribution sense as ε → 0. We thus obtain by using (5.3) that:

u0(t, x) = u0(x) +

∫ t

0

∫

RN

H(ξ)dνs,x(ξ) a.e. x. (5.5)
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Since u0 is locally Lipschitz continuous wrt (t, x), we also have an integral (mild) formulation:

u0(t, x) = u0(x) +

∫ t

0

H(∇u0(s, x))ds a.e. x. (5.6)

Combining (5.5) and (5.6), we obtain:

∫ t

0

∫

RN

H(ξ)dνs,x(ξ)ds =

∫ t

0

H(∇u0(s, x))ds a.e. x.

Both sides are Lipschitz continuous wrt t, and we obtain for a.e. (t, x):

∫

RN

H(ξ)dνt,x(ξ) = H(∇u0(t, x)).

Now use the facts that
∫

RN ξdνt,x(ξ) = ∇u0(t, x) and that H is strictly convex to conclude that νt,x =
δ∇u0(t,x). The proof is now complete. �

A Sketches of proofs of classical results

A.1 Proofs of Lemmata 2.3.1 and 2.3.2

Proof of Lemma 2.3.1. Let (a, p) ∈ ∂
P

u(t, x). Following [5], it is quite classical to pass to the limit in
the Hamiltonian; hence, we only need to check that we can pass to the limit in the integral term. To
do so, let fn(z) denote the function u(tn, xn + z) − u(tn, xn) − pn·z

1+|z|2 where tn, xn and pn appear in the

definition of the closure of superdifferential. Let Φ be the barrier function associated to u ∈ C+. By the
definition of a supergradient, we have:

fn(z) ≤ Φ(xn + z) 1Bc
r/2

(z) + g(z)

for n large enough, where g is continuous and µ-integrable. For R > 2|x|, define:

ω(R) :=

∫

Bc
R

Φ(xn + z)dµ(z) +

∫

Bc
R

g(z)dµ(z),

where
∫

Bc
R

Φ(xn + z)dµ(z) = cN (λ)

∫

Bc
R

Φ(z′)
dz′

|z′ − xn|1+λ
,

≤ 2N+λcN (λ)

∫

Bc
R

Φ(z′)
dz′

|z′|1+λ
,

since |z′ − xn| ≥ |z′| − |xn| ≥ 1
2 |z′|. By the integrability property of Φ, we see that limR→+∞ ω(R) = 0.

Moreover, Fatou’s lemma implies:

lim sup
n→+∞

∫

RN\{0}

fn(z)dµ(z) ≤
∫

BR\{0}

lim sup
n→+∞

fn(z)dµ(z) + ω(R).

The positive part of lim supn→+∞ fn(z) is µ-integrable since it is bounded above by Φ(x + z) 1Bc
r
+ g(z);

hence, we can use again Fatou’s lemma to pass to the limit as R → +∞ and deduce that

lim sup
n→+∞

∫

RN\{0}

fn(z)dµ(z) ≤
∫

RN\{0}

lim sup
n→+∞

fn(z)dµ(z).
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The limit equation then becomes:

a + H(t, x, u(t, x), p) ≤
∫

RN\{0}

lim sup
n→+∞

fn(z)dµ(z). (A.1)

The right-hand side of (A.1) is finite, which implies that lim supn→+∞ fn(z) is µ-integrable. Finally, the
upper-semicontinuity of u and the fact that un(tn, xn) → u(t, x) imply:

lim sup
n→+∞

fn(z) ≤ u(t, x + z) − u(t, x) − p · z
1 + |z|2 =: f(z);

hence, the negative part of f(z) is µ-integrable and (A.1) gives:

a + H(t, x, u(t, x), p) ≤
∫

RN\{0}

f(z)dµ(z).

The proof of Lemma 2.3.1 is complete. �

Proof of Lemma 2.3.2. To prove the existence of a and b, we let the reader check that we can slightly
modify φ, without changing its first order partial derivatives at (t, x, y), in such a way that M achieves
a strict maximum at (t, x, y) and φ is positive and such that

lim sup
|(x,y)|→+∞

sup
t∈[0,T ]

u(t, x) − v(t, y)

φ(t, x, y)
≤ 0. (A.2)

Consider a parameter δ > 0 and define

Mδ := sup
[0,T ]×[0,T ]×RN×RN

(
u(t, x) − v(s, y) − |s − t|2

2δ
− φ(t, x, y)

)
.

This supremum is achieved at some point (tδ, sδ, xδ, yδ). By (A.2), the set {(tδ, sδ, xδ, yδ) : δ > 0} is
relatively compact and we know that (tδ, sδ, xδ, yδ) → (t, t, x, y) as δ → 0. Moreover,

(aδ,∇xφ(tδ, xδ, yδ)) ∈ ∂pu(tδ, xδ),

(bδ,−∇yφ(tδ, xδ, yδ)) ∈ ∂pv(sδ, yδ),

where bδ = tδ−sδ

δ and aδ = bδ + ∂tφ(tδ, xδ, yδ). By writing the viscosity inequality for u, we get

aδ ≤ −H (tδ, u(tδ, xδ),∇xφ(tδ, xδ, yδ)) − g[u] (tδ, xδ,∇xφ(tδ, xδ, yδ)) .

One can see that the constants in the definition of the supergradient (aδ,∇xφ(tδ, xδ, yδ)) can be chosen
as follows: σδ := sup|t−tδ|+|x−xδ|+|y−yδ|≤1 |D2

xφ(t, x, y)| and r = 1. According to the growth condition on
u, this gives us an upper bound on −g[u] (tδ, xδ,∇xφ(tδ, xδ, yδ)) which does not depend on small δ. The
viscosity inequality above then gives us an upper bound on aδ independently on small δ. Similar arguments
allow to prove that bδ is bounded from below independently on small δ. Since aδ − bδ = ∂tφ(tδ, xδ, yδ),
we deduce that aδ and bδ are bounded independently on small δ. There then exit a, b ∈ R such that
(aδ, bδ) → (a, b) as δ → 0 (up to a subsequence). It is now straightforward that:

(
a,∇xφ(t, x, y)

)
∈ ∂

P
u(t, x),

(
b,−∇yφ(t, x, y)

)
∈ ∂P v(t, y)

and a − b = ∂tφ(t, x, y).
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It remains to prove that (2.3) holds true. Writing that M = u(t, x) − v(t, y) − φ(t, x, y), we get

u(t, x + z) − u(t, x) − ∇xφ(t, x, y) · z
1 + |z|2 − v(t, y + z) + v(t, y) +

∇yφ(t, x, y) · z
1 + |z|2

≤ φ(t, x + z, y + z) − φ(t, x, y) − (∇x + ∇y)φ(t, x, y) · z
1 + |z|2

for all z ∈ R
N . We have seen in the preceding proof that the negative part of the left-hand side of

this inequality is µ-integrable; hence, so do the negative part of the right-hand side and integrating with
respect to dµ(z) completes the proof of Lemma 2.3.2. �

A.2 Main ideas of the proof of the discontinuous stability

Sketch of the proof of Proposition 2.1. Following the preceding proof of Lemma 2.3.1, one can easily
adapt the ideas of [5] to prove that u := lim sup∗ un is a viscosity subsolution of (1.1) with general-
ized initial condition:

min {∂tu(0, .) + H (0, x, u(0, .),∇u(0, .)) + g[u(0, .)], u(0, .) − u0} ≤ 0, (A.3)

where u0 := lim sup∗(un(0, .)); the main difficulty is to handle the non-local term and this is done by
using Fatou’s lemma.

Let us prove (2.4). For λ′ ∈ (0, λ), ε > 0 and C > 0, define

χ(t, y) = u(t, y) − φε(y − x)

ε
− Φ(y) − Ct,

where φε(z) := (ε+|z|2)
λ′

2

λ′ . Using some ideas of the proof of Lemma 2.5.2, we claim that Φ can be slightly
modified in such way that Φ stays positive, C2 and µb-integrable and satisfies in addition

lim sup
|x|→+∞

sup[0,T ] u(t, x)

Φ(x)
≤ 0;

hence, if x ∈ R
N is fixed, χ achieves its maximum at some (t, y). We claim that (t, y) → (0, x) as ε → 0

and C → +∞. Let us fix ε. On denoting

pC :=
(y − x) ∇φε(y − x)

ε
+ ∇Φ(y),

the optimilaty conditions satisfied by the global maximum (t, y) imply that (C, pC) ∈ ∂P u(t, y) and

g[u](t, y, pC) ≥ g

[
φε(· − x)

ε
+ Φ

]
(y) =: IC .

By the smoothness of φε and Φ, we can see that lim supC→+∞ (|pC | + |IC |) < +∞; hence, if C is
sufficiently large, then

C + H
(
t, y, u(t, y), pC

)
+ IC > 0.

It follows that
C + H

(
t, y, u(t, y), pC

)
+ g[u](t, y, pC) > 0

and that necessarily t = 0. Moreover, since χ(0, y) ≥ χ(0, x), we have u(0, y) ≥ u(0, x) + Φ(y) − Φ(x)
and (A.3) implies that u(0, x) ≤ u0(y) + Φ(x) − Φ(y). Since u0 is usc as upper semi-limit, we can pass
to the limit as ε → 0 and C → +∞ to deduce that u(0, x) ≤ u0(x). The proof of Proposition 2.1 is now
complete. �
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A.3 Proof of the comparison principle in the sublinear case

Proof of Theorem 3.1. The proof proceeds in two steps. We first prove that there exists a constant K > 0
such that

sup
[0,T ]×RN×RN

(u(t, x) − v(t, y) − K|x − y|) < +∞ (A.4)

and then prove that u ≤ v.
Hence, let us prove (A.4). First we note that the uniform continuity of u0 and (A2) imply that we

can choose K > 0 such that

sup
RN×RN

(u0(x) − u0(y) − K|x − y|) < +∞, (A.5)

sup
[0,T ]×RN×RN

(H(t, y, u(t, x), 0) − H(t, x, u(t, x), 0) − K|x − y|) < +∞. (A.6)

Consider (βR)R≥1 a family of C2 functions on R
N such that





(i) βR ≥ 0,

(ii) lim inf |x|→+∞
βR(x)
|x| ≥ 2R0,

(iii) ‖βR‖0,λ′ + ‖∇βR‖∞ + ‖D2βR‖∞ ≤ C for R ≥ 1,
(iv) limR→+∞ βR(x) = 0 for x ∈ R

N ,

(A.7)

where R0 = max
{

sup[0,T ]×RN
u(t,x)
1+|x| , inf [0,T ]×RN

v(t,x)
1+|x| , 0

}
and C is some positive constant. In view of

(A3), (A.6), (A.7)-(iii) and Lemma B.0.1, there exists a constant σ such that for all R ≥ 1, x, y ∈ R
N ,

p ∈ BKeT , t ∈ [0, T ],

H(t, y, u(t, x), p + ∇βR(y)) − H(t, x, u(t, x), p −∇βR(x)) − K|x − y| − g[βR](x) − g[βR](y) ≤ σ. (A.8)

Define

MR := sup
[0,T ]×RN×RN

(
u(t, x) − v(t, y) − Ket(1 + |x − y|2)1/2 − βR(x) − βR(y) − σt

)
.

There exists (t, x, y) ∈ [0, T ] × R
N × R

N where the supremum is attained. Now either (A.4) holds true
or limR→+∞ MR = +∞. In the latter case, MR is in particular greater than 0 and greater than the
supremum in (A.5) for R large enough. It follows that u(t, x) > v(t, y) and t 6= 0. By Lemma 2.3.2, there
exist a, b ∈ R such that

(a, p + ∇βR(x)) ∈ ∂
P

u(t, x),

(b, p −∇βR(y)) ∈ ∂P v(t, y),

with a − b = Ket(1 + |x − y|2)1/2 + σ, p = Ket (x−y)
(1+|x−y|2)1/2 and

g[v](t, y, p −∇βR(y)) − g[u](t, x, p + ∇βR(x)) ≤ −g[βR](x) − g[βR](y).

Since u is a subsolution and v is a supersolution of (1.1), Lemma 2.3.1 gives

a + H(t, x, u(t, x), p + ∇βR(x)) + g[u](t, x, p + ∇βR(x)) ≤ 0,

b + H(t, y, v(t, y), p −∇βR(y)) + g[v](t, x, p −∇βR(y)) ≥ 0.

Subtracting the two inequalities, it comes

σ ≤ H(t, y, v(t, y), p −∇βR(y)) − H(t, x, u(t, x), p + ∇βR(x)) − K|x − y| − g[βR](x) − g[βR](y).
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Since u(t, x) > v(t, y) and H is strictly non-decreasing wrt u (see (A1’)), we find that

σ < H(t, y, u(t, x), p −∇βR(y)) − H(t, x, u(t, x), p + ∇βR(x)) − K|x − y| − g[βR](x) − g[βR](y).

By (A.8), we get a contradiction and this implies that (A.4) holds true.
We this information in hand we repeat the above line of arguments to show that

M := sup
[0,T ]×RN×RN

(u − v) ≤ 0.

Let λ′′ ∈ (λ′, λ) be fixed. Consider two parameters ε, η > 0 and define

Mε,η := sup
[0,T ]×RN×RN

(
u(t, x) − v(t, y) − |x − y|2

2ε
− η

(1 + |x|2)λ′′

2

λ′′

)
.

There exists (t, x, y) ∈ [0, T ] × R
N × R

N where the supremum is attained. If M > 0 then for ε and η
small enough, Mε,η ≥ M/2 > 0 and t 6= 0; indeed,

Mε,η ≥ sup
[0,T ]×RN×RN

(
u(t, x) − v(t, x) − η

(1 + |x|2)λ′′

2

λ′′

)
→ M

as η → 0 and

sup
RN×RN

(
u(0, x) − v(0, y) − |x − y|2

2ε
− η

(1 + |x|2)λ′′

2

λ′′

)
≤ sup

RN×RN

(
u0(x) − u0(y) − |x − y|2

2ε

)
→ 0

as ε → 0, thanks to the uniform continuity of u0. It follows that u(t, x) − v(t, y) ≥ M/2 and by (A.4):

lim
ε→0

lim sup
η→0

|x − y|2
ε

= 0, (A.9)

|x − y|2
4ε

+ η
(1 + |x|2)λ′′

2

λ′′
≤ u(t, x) − v(t, y) − |x − y|2

4ε
≤ C(1 + ε) (A.10)

for some positive constant C. By Lemma 2.3.2, there exist

(
a, p + η(1 + |x|2)λ′′−2

2 x
)
∈ ∂

P
u(t, x),

(a, p) ∈ ∂P v(t, y)

with p = x−y
ε and

g[v](t, y, p) − g[u]
(
t, x, p + η(1 + |x|2)λ′′−2

2 x
)
≤ η

λ′′
g
[
(1 + | · |2)λ′′

2

]
(x).

Substracting the corresponding viscosity inequalities and using (A1’) (see Remark 3.1), we get

M/2 ≤ H(t, y, u(t, x), p) − H
(
t, x, u(t, x), p + η(1 + |x|2)λ′′−2

2 x
)
− η

λ′′
g
[
(1 + | · |2)λ′′

2

]
(x).

If η ≤ 1, then (A.10) implies that p + η(1 + |x|2)λ′′−2
2 x ∈ BRε

with

Rε =

√
C(1 + ε)

4ε
+ (λ′′C(1 + ε))

λ′′−1
λ′′ .
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By (A3),

M/2 ≤ H(t, y, u(t, x), p) − H
(
t, x, u(t, x), p

)
+ mRε

(
η

1
λ′′ (λ′′C(1 + ε))

λ′′−1
λ′′

)
− η

λ′′
g
[
(1 + | · |2)λ′′

2

]
(x).

Assumption (A2) now gives

M/2 ≤ m

(
|x − y| + |x − y|2

ε

)
+ mRε

(
η

1
λ′′ (λ′′C(1 + ε))

λ′′−1
λ′′

)
− η

λ′′
g
[
(1 + | · |2)λ′′

2

]
(x).

By Lemma B.0.1 and (A.9), we see that the right-hand side of the inequality above tends to 0 as η → 0
and ε → 0 successively. This gives us the desired contradiction 0 < M/2 ≤ 0 and this completes the
proof of Theorem 3.1. �

B A technical result

Define for β ∈ (1, 2):

C2
β(RN ) :=

{
f ∈ C0,1

β (RN ) ∩ C2
b (RN ) : D2f(x) = O

(
|x|β−2

)
as |x| → +∞

}
.

Lemma B.0.1. Let λ ∈ (0, 2) and λ′′ ∈ (0, λ). Then:

• If λ′′ > 1 then g : C2
λ′′(RN ) → Cb(R

N ).

• If λ′′ ≤ 1, then g : C2
b (RN ) → Cb(R

N ).

Proof. Let f ∈ C2
b (RN ) with λ′′ ∈ (0, 1]. By a second order expansion, we get

|g[f ]|(x) ≤ sup
Br(x)

|D2f |
∫

Br

|z|2dµ(z)dτ + sup
Br(x)c

|∇f |
∫

Bc
r

|z|
1 + |z|2 dµ(z) + sup

Br(x)c

|f |
∫

Bc
r

dµ(z)

for all r ≥ 0 and all x ∈ R
N . The proof is complete in this case.

If now λ′′ ∈ (1, 2), write for x ∈ R
N \ B1

g[f ](x) = −
∫

Br

(
f(x + z) − f(x) −∇f(x) · z

1 + |z|2
)

dµ(z) −
∫

RN\Br

(. . . )dµ(z)

and choose r = |x|/2. Observe that

sup
z′∈B|x|/2

(1 + |x + z′|)λ′′−2 ≤ (1 + |x|/2)λ′′−2

so that

|g[f ](x)| ≤ C(1 + |x|/2)λ′′−2

∫

B|x|/2

|z|2dµ(z) + C(1 + |x|)λ′′−1

∫

RN\B|x|/2

|z|
1 + |z|2 dµ(z)

+C

∫

RN\B|x|/2

(1 + |z|)λ′′−1 |z|
1 + |z|2 dµ(z) + C

∫

RN\B|x|/2

|z|λ′′

dµ(z),

≤ C(1 + |x|)λ′′−2J2 + C(1 + |x|)λ′′−1I−1 + CIλ′′−2 + CIλ′′

where

J2 =

∫

|z|≤|x|/2

|z|2µ(dz) = C

∫ |x|/2

0

r1−λdr ≤ C(1 + |x|2−λ)
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and for α = −1, λ′′ − 2, λ′′ (hence α < λ)

Iα =

∫

RN\B|x|/2

|z|αdµ(z) = C

∫ +∞

|x|/2

rαrN−1r−N−λdr = C

∫ +∞

|x|/2

rα−1−λdr = C|x|α−λ.

Hence, we obtain for x ∈ R
N \ B1

|g[f ](x)| ≤ C + C|x|λ′′−λ + C|x|λ′′−2−λ ≤ C.

This completes the proof of the lemma. �

C Different sets of assumptions

H continuous, λ ∈ (0, 2) and λ′ ∈ (0, λ).

• The sublinear case

(A1) There exists ν ∈ R such that for all x ∈ R
N , u, v ∈ R, u ≤ v, p ∈ R

N , t ∈ [0, T ],

H(t, x, v, p) − H(t, x, u, p) ≥ ν(v − u).

(A1’) For all x ∈ R
N , u, v ∈ R, u ≤ v, p ∈ R

N , t ∈ [0, T ], H(t, x, v, p) − H(t, x, u, p) ≥ v − u.

(A2) There exists a modulus of continuity m such that for all x, y ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, y, u, p)| ≤ m((1 + |p|)|x − y|).

(A2’) There exists a constant C1 ≥ 0 such that for all x, y ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, y, u, p)| ≤ C1(1 + |p|)|x − y|.

(A3) For all R > 0, there exists a modulus of continuity mR such that for all x ∈ R
N , u ∈ R,

p, q ∈ BR, t ∈ [0, T ],
|H(t, x, u, p) − H(t, x, u, q)| ≤ mR(|p − q|).

(A3’) For all R > 0, there exists a constant CR such that for all x ∈ R
N , u, v ∈ R, p, q ∈ BR,

t ∈ [0, T ],
|H(t, x, u, p) − H(t, x, v, q)| ≤ CR(|u − v| + |p − q|).

(A4) There exists a constant C0 such that for all x ∈ R
N ,

sup
[0,T ]

|H(t, x, 0, 0)| ≤ C0(1 + |x|λ′

).

• The superlinear case

(B1) There exists a constant C3 such that for all x ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, v, p)| ≤ C3|u − v|.

(B2) For all R > 0, there exists a modulus of continuity mR such that for all x, y ∈ BR, u ∈ [−R,R],
p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, y, u, p)| ≤ mR((1 + |p|)|x − y|).
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(B2’) There exists a constant C1 such that for all x, y ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, y, u, p)| ≤ C1((1 + |x|λ′−1 + |y|λ′−1) + |p|)|x − y|.

(B3) There exists a modulus of continuity m such that for all x ∈ R
N , u ∈ R, p, q ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, u, q)| ≤ m((1 + |x|)|p − q|).

(B3’) There exists a constant C2 such that for all x, y ∈ R
N , u ∈ R, p, q ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, u, q)| ≤ C2(1 + |x|)|p − q|.

• The uniformly integrable case

(C2) The Hamiltonian H is locally Lipschitz continuous wrt x and there are a constant C1 and a
locally bounded function Θ : R

N → R
+ such that

∫
RN supBR(z) Θ2 dµb < +∞, for some R > 0,

and for a.e. x ∈ R
N , u ∈ R, p ∈ R

N , t ∈ [0, T ],

|∇xH(t, x, u, p)| ≤ Θ(x) + C1|p|.

(C3) There exists a modulus of continuity such that for all x, y ∈ R
N , p, q ∈ R

N , u ∈ R, t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, u, q)| ≤ m(|p − q|).

(C3’) There exists a constant C2 such that for all x, y ∈ R
N , u ∈ R, p, q ∈ R

N , t ∈ [0, T ],

|H(t, x, u, p) − H(t, x, u, q)| ≤ C2|p − q|.

(C4) There exists R > 0 such that

∫

RN

sup
[0,T ]×BR(z)

|H(·, ·, 0, 0)| dµb < +∞.

• The assumption for the strong convergence of gradients

(D) The non-linearity H is strictly convex wrt p.
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vol. 11 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Sci-
ence], Gauthier-Villars, Paris, 1982.

[10] P. Biler, T. Funaki, and W. A. Woyczynski, Fractal Burgers equations, J. Differential Equa-
tions, 148 (1998), pp. 9–46.

[11] P. Biler, G. Karch, and W. A. Woyczynski, Asymptotics for multifractal conservation laws,
Studia Math., 135 (1999), pp. 231–252.

[12] K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by
gradient operators, Comm. Math. Phys., 271 (2007), pp. 179–198.

[13] P. Clavin, Diamond patterns in the cellular front of an overdriven detonation, Phys. Rev. Letters,
88 (2002).

[14] P. Constantin, A. J. Majda, and E. Tabak, Formation of strong fronts in the 2-D quasi-
geostrophic thermal active scalar, Nonlinearity, 7 (1994), pp. 1495–1533.

[15] R. Cont and P. Tankov, Financial modelling with jump processes, Chapman & Hall/CRC Finan-
cial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.
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principe du maximum, in Séminaire BRELOT-CHOQUET-DENY, vol. 10 of théorie du potentiel,
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l’Université d’Etat de Moscou, (1937), pp. pp. 1–26. English translation: Study of the diffusion
Equation with growth of the quantity of matter and its application to a biological problem.

[30] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, vol. 69 of Research Notes in Math-
ematics, Pitman (Advanced Publishing Program), Boston, Mass., 1982.

[31] J. D. Murray, Mathematical biology, vol. 19 of Biomathematics, Springer-Verlag, Berlin, second ed.,
1993.

[32] J. Pedlovsky, Geophysical Fluid Dynamics, Springer-Verlag, 1987.
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