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Simple connectedness of quasitilted algebras

Patrick Le Meur ∗†

3rd May 2007

Abstract

Let A be a basic connected finite dimensional algebra over an algebraically closed field. Assuming that
A is quasitilted, we prove that A is simply connected if and only if HH1(A) = 0. This generalises a result
of I. Assem, F. U. Coelho and S. Trepode and which proves the same equivalence for tame quasitilted
algebras.

Introduction

Let A be a finite dimensional algebra over an algebraically closed field k. In order to study the category
mod(A) of finite dimensional (right) A-modules we may assume that A is basic and connected. In this
study, covering techniques introduced in [5] and [21] have proved to be a very powerful tool. Indeed, a
Galois covering C → A (with C a locally bounded k-category) reduces the study of part of mod(A) to the
one of mod(C) which is easier to handle (see for example [8]). From this point of view, simply connected
algebras are of particular interest. Recall that if Q is the ordinary quiver of A and if kQ is the path
algebra of Q, then there exists a (non necessarily unique) surjective algebra morphism (or presentation)
ν : kQ ։ A (see [4] for example). Moreover, given such a presentation, one can define the fundamental
group π1(Q, Ker(ν)) of ν (see [20]). With this setting, the algebra A is called simply connected if and
only if Q has not oriented cycle (i.e. no non trivial oriented path whose source equals its target, the
algebra is then called triangular) and π1(Q,Ker(ν)) = 1 for any ν : kQ ։ A (see [3]). Equivalently ([24]
and [18]) A is simply connected if and only if there exists no Galois covering C → A with non trivial
group and with C a connected locally bounded k-category.

To prove that A is simply connected seems to be a difficult problem, a priori, since one has to
check that various groups are trivial. Hence, it is worth looking for a simpler characterisation of simple
connectedness. It was asked by A. Skowroński ([25]) whether the equivalence “A is simply connected if
and only if HH1(A) = 0” is satisfied for A a tame triangular algebra. This equivalence is true for tilted
algebras (see [2] for the tame case and [19] for the general case), for piecewise hereditary algebras of
type any quiver (see [19]), for tame quasititled algebras (see [1]) and it is conjectured (loc.cit.) that this
equivalence is true for any quasitilted algebra.

Recall ([12]) that a quasitilted algebra is an algebra isomorphic to EndH(T )op where H is a hereditary
abelian k-linear category (with finite dimensional Hom and Ext spaces) and where T ∈ H is a (basic)
tilting object. In particular, a quasitilted algebra has global dimension at most 2 (see loc.cit.). Quasitilted
algebras were introduced in order to give a common framework to the class of tilted algebras (introduced
in [13]) and to the class of canonical algebras (introduced in [22]). In this text, we prove the following
result:

Theorem 1. Let A be a basic connected finite dimensional k-algebra. If A is quasitilted, then:

A is simply connected ⇔ HH1(A) = 0

Moreover, if A is tilted of type Q, then A is simply connected if and only if Q is a tree.

Hence, the above theorem solves the above conjecture of [1] and it also answers positively the above
question of A. Skowroński ([25]) for quasitilted algebras (of finite, tame or wild type). Recall that in
Theorem 1, the case of tilted algebras and the one of quasitilted algebras which are derived equivalent

∗adress: Département de Mathématiques, École normale supérieure de Cachan, 61 avenue du Président Wilson, 94235

CACHAN cedex, FRANCE
†
e-mail: plemeur@dptmaths.ens-cachan.fr

1



to a hereditary algebra have been successfully treated in [2] and [19]. Here, we say hat two algebras
are derived equivalent if and only if their derived categories of bounded complexes of finite dimensional
modules are triangle equivalent.

In order to prove Theorem 1, we use ideas from [19]. More precisely, given a quasitilted algebra A
which is not derived equivalent to a hereditary algebra, we find a suitable algebra B which is derived
equivalent to A and for which the equivalence of Theorem 1 may be proved easily. Then, we prove that
A is simply connected if and only if B is simply connected by establishing a correspondence between
the Galois coverings of A and those of B. This correspondence is very similar to the one of [19] (and of
[17]) since we shall compare the Galois coverings of A and those of EndDb(A)(T ) for some T ∈ Db(A)

(where Db(A) denotes the derived category of bounded complexes of A-modules). Recall that, in [19],
the suitable algebra B associated a piecewise hereditary algebra A of type Q was chosen to be the path
algebra kQ. Here, we shall take for B a squid algebra (see [23]). Indeed, it was proved in [11] that a
hereditary abelian k-linear category with tilting object and which is not derived equivalent to the module
category of a hereditary algebra is derived equivalent to a squid algebra.

The text is organised as follows. In Section 1 we fix some notations. In Section 2, we construct the
above correspondence. In Section 3, we prove the Theorem 1 for squid algebras. Finally, Section 4 is
devoted to the proof of this theorem.

1 Notations

A k-category C is a category whose collection ob(C) of objects is a set, whose space of morphisms yCx

(or C(x, y)) from x to y is a k-vector space for any x, y ∈ ob(C), and whose composition of morphisms
is k-bilinear. All functors between k-categories will be assumed to be k-linear. A basic connected finite
dimensional k-algebra A will always be considered as a locally bounded k-category (see [5]) with set of
objects a complete set {e1, . . . , en} of pairwise orthogonal primitive idempotents, with space of morphisms
from ei to ej equal to ejAei and with composition of morphisms induced by the product of A.

Following [5], a (right) module over a locally bounded k-category C is a k-linear covariant func-
tor from Cop to the category of k-vector spaces. Such a module M is called finite dimensional if∑

x∈ob(C) dimk M(x) < ∞. In particular, for any x ∈ ob(C), the indecomposable projective module
y 7→ xCy will be denoted by xC?. The category of finite dimensional C-modules will be denoted by
mod(C). The derived category of bounded complexes of C-modules will be denoted by Db(C) and Σ will
denote the shift functor. Recall that if C has finite global dimension, then Db(C) is equivalent to the
homotopy category of bounded complexes of finite dimensional projective C-modules. The Auslander-
Reiten translation (see [9]) on Db(C) will be denoted by τC. Also, if H is a hereditary abelian category
with tilting objects, then we shall write τH for the Auslander-Reiten translation on H and on Db(H).

For a reminder on Galois coverings, we refer the reader to [5] or [7]. A Galois covering F : C → A
will be called connected if and only if C (and therefore A) is connected and locally bounded. Recall that
if F : C → A is a Galois covering with group G and with C and A locally bounded, then F defines a
triangle functor Fλ : Db(C) → Db(A) (see for example [19, Lem. 2.1]). Moreover, the group G acts on
Db(C) by triangle isomorphisms (g, X) ∈ G × Db(C) 7→ gX. For this action, Fλ is G-invariant and for
any X, Y ∈ Db(C), the following maps induced by Fλ are linear isomorphisms:

⊕

g∈G

HomDb(C)(
gX, Y )

∼
−→ HomDb(A)(FλX, FλY ),

⊕

g∈G

HomDb(C)(X, gY )
∼
−→ HomDb(A)(FλX, FλY )

For short, these properties on Fλ will be called the covering properties of F . Recall ([19, Lem. 4.1]) that
Fλ verifies τA ◦ Fλ ≃ Fλ ◦ τC. An indecomposable object X ∈ Db(A) is called of the first kind w.r.t. F

if and only if X ≃ FλX̃ for some X̃ ∈ Db(C) (which is necessarily indecomposable). More generally, an
object X ∈ Db(A) is called of the first kind w.r.t. F if and only if X is the direct sum of indecomposable
objects of the first kind w.r.t. F . Finally, for T ∈ Db(A), we introduce two assertions depending on T
and F and which will be used in this text:

(H1) T is of the first kind w.r.t. F .

(H2) for every indecomposable direct summand X ∈ Db(A) of T , for any X̃ ∈ Db(C) such that FλX̃ ≃ X

in Db(A), and for any g ∈ G\{1}, we have gX̃ 6≃ X̃ in Db(C).

For a reminder on tilting objects in hereditary abelian categories, we refer the reader to [12], for a re-
minder on cluster categories and on cluster tilting objects we refer the reader to [6]. The cluster category
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of a finite dimensional algebra A (resp. of a hereditary abelian category H) will be denoted by CA (resp.
CH).

If T is a triangulated category with shift functor Σ, we set Exti
T (?, !) := HomT (?, Σi!). Also, if A is

a finite dimensional algebra, we shall write Exti
A instead of Exti

Db(A), for simplicity.

Finally, if A is a dg category, Dif A will denote the dg category of dg A-modules, D(A) will denote
the associated derived category. Recall that if A is a k-category considered as a dg category concentrated
in degree 0, then D(A) is the usual derived category of (unbounded) complexes of A-modules. If B is
another dg category and if X is a dg B − A-bimodule, ? ⊗

B
X : Dif B → Dif A will denote the tensor

product dg functor and ?
L

⊗
B

X : D(B) → D(A) will denote its left derived functor. For a reminder on dg

categories, we refer the reader to [15].

2 Invariance of simple connectedness under tilting

Let A be a basic connected finite dimensional k-algebra. Let Db(H)
∼
−→ Db(A) be a triangle equivalence

where H is a hereditary abelian category with tilting objects. Finally, let T ∈ Db(A) be a basic object
such that:

1. T is a cluster tilting object of CA

2. Exti
A(T, T ) = 0 for any i 6= 0.

In this section, we shall compare the Galois coverings of A and those of A′ := EndDb(A)(T ) in order to
prove the following implication:

A′ is simply connected ⇒ A is simply connected (⋆⋆)

Set T = T1

⊕
. . .

⊕
Tn ∈ D

b(A) with T1, . . . , Tn ∈ D
b(A) indecomposables (where n = rk(K0(A)). Recall

that A′ is a locally bounded k-category with set of objects {T1, . . . , Tn}, with space of morphisms from
Ti to Tj equal to HomDb(A)(Ti, Tj) and with composition of morphisms induced by the composition in

Db(A).

2.1 (Cluster) tilting objects of the first kind w.r.t. Galois coverings

In order to prove (⋆⋆), we shall associate Galois coverings of A′ to Galois coverings of A using a construc-
tion of [17, Sect. 2] and then use the characterisation [18, Cor. 4.5] of simple connectedness in terms
of Galois coverings. In this purpose, the following lemma will be useful. Its proof is based on the work
made in [19].

Lemma 2.1. (see [19, Prop. 6.5, Prop. 6.8]) Let F : C → A be a Galois covering with group G and with
C locally bounded. Then, (H1) and (H2) are satisfied for F and for any object of Db(A) which is a cluster
tilting object of CA.

Proof: For simplicity, we shall make no distinction between an object and its isomorphism class. Let
S ⊆ Db(A) be the class of objects R ∈ Db(A) which are isomorphic to the image of a cluster tilting object
of CH under the equivalence Db(H) → Db(A). Hence, S is the class of cluster tilting objects of CA. In
particular, it contains A. Let ∼ be the equivalence relation on S generated by the following property: “if
R, R′ ∈ S are such that R = X

⊕
R, R′ = Y

⊕
R with X, Y ∈ Db(A) indecomposables and verifying at

least one of the following properties:

1. X ≃ (τAΣ−1)mY for some m ∈ Z,

2. there exists a triangle X →M → Y → ΣX of Db(A) with M ∈ add(R),

3. there exists a triangle Y →M → X → ΣY of Db(A) with M ∈ add(R).

then R ∼ R′” . Here, add(R) denotes the full additive subcategory of Db(A) closed under isomorphisms
and generated by the indecomposable direct summands of R. Since any cluster tilting object of CH is
isomorphic (in CH) to a tilting object of H (see [6, Sect. 3]), since the Hasse diagram of tilting objects of
H is connected (see [14]), and since Db(H)

∼
−→ Db(A) commutes with Σ and preserves Auslander-Reiten

triangles, we infer that S is an equivalence class for ∼. On the other hand, Fλ : Db(C)→ Db(A) commutes
with Σ and is compatible with τC and τA (i.e. Fλ ◦ τC ≃ τA ◦ Fλ, see [19, Lem. 4.1]). Therefore, using
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[19, Prop 6.5] and [19, Prop 6.8], we deduce that if R ∼ R′, then the conclusion of the lemma holds for
R and F if and only if it holds for R′ and F . Since (H1) and (H2) are clearly satisfied for T = A, the
lemma is proved. �

2.2 Galois coverings of A
′ associated to Galois coverings of A

Now we can recall the construction of [17, Sect. 2] which associates Galois coverings of A′ to Galois
coverings of A. Fix F : C → A a Galois covering with group G and with C locally bounded. Assume
that there exist T̃1, . . . , T̃n ∈ D

b(C) together with isomorphisms λi : FλT̃i
∼
−→ Ti in Db(A), for every i (see

Lemma 2.1). Then, we define C′ to be the following k-category:

1. the set of objects of C′ is { gT̃i | g ∈ G, i ∈ {1, . . . , n}}.

2. hT̃j
C′gT̃i

:= HomDb(C)(
gT̃i,

hT̃j) for any g, h ∈ G and i, j ∈ {1, . . . , n}.

3. the composition in C′ is induced by the composition in Db(C).

Hence, C′ is the full subcategory of Db(C) whose objects are the complexes gT̃i. Moreover, we define a
k-linear functor F ′ : C′ → A′ as follows:

F ′ : C′ → A′

gT̃i ∈ ob(C′) 7→ Ti ∈ ob(A′)

u ∈ hT̃j
C′g T̃i

7→ Ti

λj◦Fλu◦λ
−1

i−−−−−−−−→ Tj

The following lemma was proved in [17] in the case T ∈ mod(A). However, the reader may easily check
that the proof still works in our situation (T ∈ Db(A)):

Lemma 2.2. (see [17, Rem. 2.1, Lem. 2.2]) The G-action on Db(C) naturally defines a G-action on C′.
For this action, F ′ : C′ → A′ is a Galois covering with group G and C′ is a locally bounded k-category.

Remark 2.3. Since Extm
A (T, T ) = 0 for any m 6= 0 and since Fλ has the covering property, we infer

that Extm
C ( gT̃i,

hT̃j) = 0 for any g, h ∈ G, i, j ∈ {1, . . . , n} and m ∈ Z\{0}.

2.3 Connectedness of Galois coverings

Let us keep the notations of the preceding subsection. Since we are interested in connected Galois
coverings, we need to check when C′ is connected. In this purpose, we shall prove the following proposition.

Proposition 2.4. C and C′ are derived equivalent. In particular, C′ is connected if and only if C is
connected.

We shall prove Proposition 2.4 in two steps: first we construct a fully faithful triangle functor
Ψ: Db(C′) → Db(C) which maps the indecomposable projective C′-module g T̃i

C′? to an object of Db(C)

isomorphic to gT̃i ∈ D
b(C). Then, we prove that this functor is dense.

Lemma 2.5. There exists Ψ: Db(C′)→ Db(C) a fully faithful triangle functor such that Ψ( gT̃i
C′?) ≃

gT̃i

in Db(C), for any g ∈ G, i ∈ {1, . . . , n}. Moreover, Ψ has a right adjoint triangle functor Db(C)→ Db(C′).

Proof: We may assume that gT̃i =g T̃ •
i is a bounded complex of projective C-modules, for any g, i.

• A dg category B derived equivalent to C′. Denote by B the following dg category:

1. the set of objects is { gT̃i | g ∈ G, i ∈ {1, . . . , n}},

2. Bd( gT̃i,
hT̃j) :=

{
(fm : gT̃ m

i →
hT̃ m+d

j )m∈Z | fm is a morphism of C-modules
}
,

3. the differential df of f = (fm)m∈Z ∈ B
d( gT̃i,

hT̃j) is given by:

(df)m = dm+d
hT̃j

◦ fm − (−1)dfm+1 ◦ dm
gT̃i

Since gT̃i is a bounded complex of projective C-modules and thanks to Remark 2.3, there is an
isomorphism of k-categories H0B

∼
−→ C′ extending the identity map on objects. To B is associated the

sub dg category τ60B with the same objects as B and such that (τ60B)(X, Y ) is truncated complex
τ60(B(X, Y )) for any X, Y . Thus, we have natural dg functors:

B ← τ60B → H0B

4



Once again, by assumption on gT̃i and thanks to Remark 2.3, these functors induce isomorphisms of
graded categories:

H•B
∼
←− H•τ60B

∼
−→ H0B (i)

On the other hand, τ60B → B (resp. τ60B → H0B) defines a dg τ60B − B-bimodule M (resp. a dg
τ60B − H0B-bimodule N) such that M(X, Y ) = B(X, Y ) for any X ∈ ob(B) and Y ∈ ob(τ60B) (resp.
such that N(X, Y ) = H0B(X, Y ) for any X ∈ ob(H0B) and Y ∈ ob(τ60B)). The bimodules M and N
define triangle functors:

D(B)

?
L

⊗
τ60B

M

←−−−−− D(τ60B)

?
L

⊗
τ60B

N

−−−−−→ D(H0B) (ii)

Using [15, 6.1] and the isomorphisms of (i), we infer that the above functors (ii) are triangle equiva-
lences. Remark that since H0B is concentrated in degree 0, the derived category D(H0B) is exactly the
derived category of complexes of H0B-modules. Finally, for any X ∈ ob(B) = ob(τ60B) = ob(H0(B)), we
have ([16, 6.1]):

1. X∧ ⊗
τ60B

M ≃M(?, X) = X∧ in Dif B,

2. X∧ ⊗
τ60B

N ≃ N(?, X) = X∧ in Dif H0B,

so that:

1. X∧
L

⊗
B

M ≃ X∧ in D(τ60B),

2. X∧
L

⊗
H0B

N ≃ X∧ in D(H0B).

These isomorphisms together with the equivalences (ii) and the isomorphism H0(B) ≃ C′ prove that there
exists a triangle equivalence Φ: D(C′)

∼
−→ D(B) which maps g T̃i

C′? to an object of D(B) isomorphic to
gT̃∧

i , for any g, i.

• The triangle functor ?
L

⊗
B

T̃ : D(B) → D(C). The complexes of C-modules gT̃i naturally define a

dg B−C-bimodule T̃ such that T̃ (x, gT̃i) = gT̃i(x) for any gT̃i ∈ ob(B) and any x ∈ ob(C). This bimodule
defines a triangle functor:

?
L

⊗
B

T̃ : D(B)→ D(C)

Notice that [15, 6.1] implies that:

(∀g, i) gT̃∧
i

L

⊗
B

T̃ ≃ T̃ (?, gT̃i) = gT̃i (iii)

Since gT̃i is a bounded complex of projective C-modules, we infer (using [15, 6.2]), that ?
L

⊗
B

T̃ admits a

right adjoint triangle functor D(C)→ D(B).
• The triangle functor Ψ: Db(C′)→ Db(C) and its right adjoint Θ: Db(C)→ Db(C′). Let us set

Ψ :=?
L

⊗
B

T̃ ◦Φ: D(C′)→ D(C) and let us denote by Θ: D(C)→ D(C′) the composition of a quasi inverse

of Φ: D(C′)
∼
−→ D(B) with the right adjoint D(C) → D(B) of ?

L

⊗
B

T̃ . Thus, the pair (Ψ, Θ) is adjoint.

Moreover, the construction of Φ and (iii) prove that:

(∀g, i) Ψ( g T̃i
C′?) ≃

gT̃i (iv)

This proves that Ψ maps Db(C′) into Db(C) and that it induces a triangle functor Ψ: Db(C′) → Db(C).
Let us prove that Θ maps Db(C) into Db(C′). If X ∈ Db(C), then:

1.
⊕

g∈G

HomDb(C)(Σ
m gT̃i, X) ≃ HomDb(A)(Σ

mTi, FλX) is finite dimensional for any i ∈ {1, . . . , n} and

m ∈ Z (recall that Fλ : Db(C)→ Db(A) has the covering property).

2. there exists m0 ∈ N such that HomDb(C)(Σ
m gT̃i, X) = 0 for any g ∈ G, i ∈ {1, . . . , n} and m ∈ Z

such that |m| > m0.
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These two properties imply that
∑

g,i,m

dimk D(C)(Σm gT̃i, X) < ∞. Using the fact that (Ψ,Θ) is adjoint

and using (iv), we deduce that
∑

g,i,m

dimk D(C′)(Σm
g T̃i
C′?, Θ(X)) <∞. This proves that Θ(X) ∈ Db(C′).

Therefore, Θ induces a triangle functor Θ: Db(C)→ Db(C′) such that the pair (Ψ, Θ) is adjoint:

Db(C′)

Ψ

��

UU

Θ

Db(C)

• Ψ: Db(C′) → Db(C) is fully faithful. For short, if X, Y ∈ Db(C′), we shall write ΨX,Y for the
mapping HomDb(C′)(X, Y ) → HomDb(C)(Ψ(X),Ψ(Y )) induced by Ψ. Let g, h ∈ G and i, j ∈ {1, . . . , n}.

Then HomDb(C′)( g T̃i
C′?, hT̃j

C′?) = HomDb(C)(
gT̃i,

hT̃j). Moreover, we have (iv) Ψ( g T̃i
C′?) ≃

gT̃i and

Ψ( hT̃j
C′?) ≃

hT̃j , and with these identifications, Ψ
gT̃i

C′

?
, hT̃j

C′

?
is the identity mapping. On the other

hand, if m ∈ Z\{0}, then ΨΣm( gT̃i
C′

?
), hT̃j

C′

?
is an isomorphism because the involved morphisms spaces

are trivial. Hence, ΨΣmX,Y is an isomorphism for any m ∈ Z and any projective C′-modules X, Y . This
shows that Ψ is fully faithful. �

Lemma 2.6. The set { τ l
CΣm gT̃i | m, l ∈ Z, g ∈ G, i ∈ {1, . . . , n}} generates Db(C) as a triangulated

category. Therefore, the functor Ψ of Lemma 2.6 is dense.

Proof: Let S and ∼ be as in the proof of Lemma 2.1. For any R = R1

⊕
. . .

⊕
Rn ∈ S , fix R̃1, . . . , R̃n ∈

Db(C) indecomposables such that FλR̃i ≃ Ri for every i (see Lemma 2.1). Then denote by < R > for

the full triangulated subcategory of Db(C′) generated by { τ l
CΣm gR̃i | m, l ∈ Z, g ∈ G, i ∈ {1, . . . , n}}.

Remark that < R > does not depend on the choice of R̃1, . . . , R̃n because if R̃′
i ∈ D

b(C) verifies FλR̃′
i ≃

FλR̃i ≃ Ri, then there exists some g ∈ G such that gR̃i ≃ R̃′
i (see for example the proof of [19, Lem.

5.3]). Since < A > contains all the indecomposable projective C-modules up to isomorphism, we infer
that < A >= Db(C). On the other hand, the second assertion of [19, Prop. 6.5] proves that if R ∼ R′,
then < R >=< R′ >. Since S is an equivalence class for ∼ (see the proof of Lemma 2.1), we infer that
< R >=< A >= Db(C) for any R ∈ S . This proves the first assertion of the lemma.

In order to prove the second assertion of the lemma, it suffices to prove that the image of Ψ: Db(C′)→

Db(C) contains < T >. By construction, this image contains { gT̃i | g ∈ G, i ∈ {1, . . . , n}}. On the other
hand, Ψ: Db(C′)→ Db(C) is fully faithful and admits a right adjoint, so it preserves Auslander-Reiten se-
quences. In particular, we have τC◦Ψ ≃ Ψ◦τC′ . This proves that the image of Ψ contains < T >= Db(C).�

Using Lemma 2.5 and Lemma 2.6, the proof of Proposition 2.4 is immediate. Now, we are able to
prove the announced implication (⋆⋆):

Proposition 2.7. For any group G, there exists a connected Galois covering with group G of A′ if there
exists a connected Galois covering with group G of A′. Consequently:

A′ = EndDb(A)(T ) is simply connected ⇒ A is simply connected

Proof: Let us assume that A′ is simply connected. If F : C → A is a connected Galois covering with
group G, then Lemma 2.2 and Proposition 2.4 show that there exists F ′ : C′ → EndDb(A)(T ) a connected
Galois covering with group G. Since A′ is simply connected, we infer (see [18, Cor. 4.5]) that G is
necessary the trivial group. Hence (loc. cit.) A is simply connected. �

3 Hochschild cohomology and simple connectedness of squid
algebras

We refer the reader to [23] for more details on squid algebras. A squid algebra over an algebraically closed
field k is defined by the following data: an integer t > 2, a sequence p = (p1, . . . , pt) of non negative
integers and a sequence τ = (τ3, . . . , τt) of pairwise distinct non zero elements of k. With this data, the
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squid algebra S(t, p, τ ) is the k-algebra kQ/I where Q is the following quiver:

(1, 1) // . . . // (1, p1)

a1

%%

a2

99

b1

??~~~~~~~~~ b2 //

bt

��.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. (2, 1) // . . . // (2, p2)

...
...

(t, 1) // . . . // (t, pt)

and I is the ideal generated by the following relations:

b1a1 = b2a2 = 0, bia2 = τi bia1 for i = 3, . . . , t

Using Happel’s long exact sequence ([10]), one can compute HH1(S(t, p, τ )):

dimk HH1(S(t, p, τ )) =

{
1 if t = 2

0 if t > 3

On the other hand, one checks easily that if t = 2 then the fundamental group π1(Q, I) of the above
presentation of S(t, p, τ ) is isomorphic to Z (see [20]), whereas S(t, p, τ ) is simply connected if t > 3.
These considerations imply the following proposition.

Proposition 3.1. Let A be a squid algebra. Then A is simply connected if and only if HH1(A) = 0.

4 Proof of Theorem 1

Now we can prove Theorem 1. Let A be quasitilted i.e. A = EndH(X)op where H is hereditary abelian
and where X ∈ H is basic tilting. If H is derived equivalent to mod(kQ) for some quiver Q, then the
conclusion of the theorem follows from [19, Cor. 2]. Otherwise, there exists H′ a hereditary abelian
category, there exists a triangle equivalence Db(H)

∼
−→ Db(H′) and there exists Y ∈ H′ basic tilting such

that EndH′(Y )op is a squid algebra (see [11, Prop. 2.1, Thm. 2.6]). Set B := EndH′(Y )op. Then:

1. there exist triangle equivalences Db(H)
∼
−→ Db(A) and Db(H′)

∼
−→ Db(B) mapping X and Y to A

and B respectively (thanks to [12, Thm. 3.3, Thm 4.3]).

2. if T ∈ Db(A) denotes the image of Y ∈ H′ under the equivalence Db(H′)
∼
←− Db(H)

∼
−→ Db(A), then:

(i) Exti
A(T, T ) = 0 for every i 6= 0, (ii) T is a cluster tilting object of CA, (iii) EndDb(A)(T ) ≃

EndH′(Y ).

3. if T ′ ∈ Db(B) denotes the image of X ∈ H under the equivalence Db(H)
∼
−→ Db(H′)

∼
−→ Db(B), then:

(iv) Exti
B(T ′, T ′) = 0 for every i 6= 0, (v) T ′ is a cluster tilting object of CB , (vi) EndDb(B)(T ) ≃

EndH(X).

Now, Proposition 2.7 applied A and T and to B and T ′ proves that A is simply connected if and only if B is
simply connected (recall that A is simply connected if and only if Aop is simply connected, see for example
the proof of [19, Thm. 3]). Since Db(A) and Db(B) are triangle equivalent, we have HH1(A) ≃ HH1(B)
as k-vector spaces (see [16]). Finally, Proposition 3.1 applied to B proves that A is simply connected if
and only if HH1(A) = 0. �
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