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Resource modalities in game semantics

Paul-André Melliés Nicolas Tabareau
Abstract equal (or at least isomorphic) to the formula negated twice:
The description of resources in game semantics has A = A 1)

never achieved the simplicity and precision of linear logic

because of a misleading conception: the belief that lin- by the idea that i e ists i i
ear logic is more primitive than game semantics. We ad- y the idea that negaling a gameconsists in permuting
the réles of the two players. Hence, negating a game twice

vocate the contrary here: that game semantics is concep- ing the réle of P 40
tually more primitive than linear logic. Starting from this 3”?0“”‘3 _to p_er_muu_ngt € role ot roponent and Opponent
twice, which is just like doing nothing.

revised point of view, we design a categorical model of re- h ’ £l loi | icelv reflected
sources in game semantics, and construct an arena game € connectives of linear logic are aiso nicely retiecte

model where the usual notion of bracketing is extended tow;gamfe serr:a;\gcs.dlig)r mstgng;&, .the tenso;pro&t}u@tB
multi-bracketing in order to capture various resource poli oftwo formulasd and 5 Is suitably interpreted as the game

cies: linear, affine and exponential. (or formula) A played in parallel with th_e game (or for-

mula) B, where only Opponent may switch from a com-
ponent to the other one. Similarly, the suind B of two
formulasA andB is suitably interpreted as the game where
Proponent plays the first move, which consists in choosing
between the gamé and the gamés, before carrying onin
the selected component. Finally, the exponential modality
of linear logic!A applied to the formul&l is suitably in-
terpreted as the game where several copies of the ghme
are played in parallel, and only Opponent is allowed (1) to
switch from a copy to another one and (2) to open a fresh
copy of the gamed.

What we describe here is in essence the game semantics
of linear logic defined by Andreas Blass in [6]. Simple and
elegant, the model reflects the full flavour of the resource
policy of linear logic. It is also remarkable that this game
semantics is an early predecessor to linear logic [5].

Again, this principle is nicely reflected in game semantics

1 Introduction

Game semantics and linear logic. Game semantics is the
younger sibling of linear logic: born (or reborn) at the be-
ginning of the 1990s, in the turmoil produced by the re-
cent discovery of linear logic by Jean-Yves Girard [9], it
remained under its spiritual influence for a very long time.
This ascendancy of linear logic was extraordinarily haalth
and profitable in the early days. Properly guided, game se-
mantics developed steadily, following the idea that every
formula of linear logic describes game and that every
proof of the formula describesstrategyfor playing on that
game.

This correspondence between formulas of linear logic
and games is supported by a series of elegant and strikingd schism with linear logic. The destiny of game seman-
analogies. One basic principle of linear logic is that every tics has been to emancipate itself from linear logic in the
formula behaves as a resource, which disappears once commid—1990s, in order to comply with its own designs, inher-

sumed. In particular, a proof of the formula — B is ited from denotational semantics:

required to deduce the conclusiéhby using (or consum- 1. the desire to interprgirogramswritten in program-
ing) its hypothe3|s4 exact_ly once. Thls principle is nicely ming languages with effects (recursion, states, etc.)
reflected in game semantics, by the idea that playingagame  44'tg characterise exactly their interactive behaviour
is just like consuming a resource, the game itself. insidefully abstractmodels:

Another basic principle of linear logic is that negation

A > —A is involutive. This means that every formulais 2. the desire to understand the algebraic principles of pro-

gramming languages and effects, using the language of

*This work has been supported by the ANR Invariants algébsgles category theory.
systemes informatiques (INVAL). Postal address: Equip8,Rmiversité
Paris VII, 2 place Jussieu, Case 7014, 75251 Paris CedexFOSNEE. So, a new generation of game semantics arose, propelled by

Email addressesnellies@pps.jussieu.frandtabareau@pps.jussieu.fr (at Ieast) two different lines of research:



1. Samson Abramsky and Radha Jagadeesan [2] noticeds Proponent, and®” (m) = —1 when it is Opponent. Fi-
that the (alternating variant of the) Blass model does nally, one requires that the arena is alternating:
not define a categorical model of linear logic. Worse:

it does not even define a category, for lack of asso- mbn = A%%(m)=-X(n)

ciativity. Abramsky dubs this phenomenon tBiass )

problemand describes it in [1]. and that all roots (calledpeningmoves) of the arena have
the same polarity. A typical example of arena is the boolean

2. Martin Hyland and Luke Ong [16] introduced the no-
tion of arena gameand characterised the interactive q
behaviour of programs written in the functional lan- / \ 3)
guage PCF — the simply-typexicalculus with con-
ditional test, arithmetic and recursion.

arenaB:

true false

o - where the Opponent mowg justifies the two Proponent
So, the Blass problem indicates that it is difficult to con- moyestrue andfalse. Every arena gamd induces a set
struct a (sequential) game model of linear logic; and at of justified playswhich are essentially sequences of moves

about the same time, arena games become mainstream afwe will avoid discussingointershere.) Typically, the PCF
though they do not define a model of linear logic. These type
two reasons (at least) opened a schism between game se- (Bs = By) = B,
mantics and linear logic: it suddenly became accepted that
categories of (sequential) games and strategies would onlydefines the arena
capturdragmentf linear logic (intuitionistic or polarised)
but not the whole thing. — .

On the other hand, defining the resource modalities of 92 true false
linear logic for game semantics requires to reunify the two as /true/ \:false
schismatic subjects. Since the disagreement started with SN
category theory, this reunification should occur at the cat-  true false
egorical level. We explain (in 82) how to achieve thisrby
laxingthe involutive negation of linear logic into a less con-
strained tensorial negation. This negation induces inaurn
linear continuatiormonad, whose unit

where the indiceg, 2, 3 distinguish the three instances of
the boolean arenB. This arena contains the justified play

1 - 92 - 93 - trues - truey - true; (4)

A — -4 (2) also depicted using the convention below:
reflhes th(_a |somorph|sm (1) of I|_near logic. Moving from B = B) = B
an involutive to a tensorial negation means that we replace q

linear logic by a more general and primitive logic — which

we call tensorial logic As we will see, this shift to ten- 1 5)
sorial logic clarifies the Blass problem, and describes the d
structure of arena games. It also enables the expressions
of resource modalities in game semantics, just as it is usu-
ally done in linear logic. However, because the presentatio
of modalities may appear difficult to readers not familiar Note that the play (4-5) belongs to the strategy implemented
with categorical semantics, we prefer to recall first the no- py the PCF programf. f(true)
tion of well-bracketingn arena games — and explain how

it can be reunderstood as a resource policy, and extended t@Vell-bracketing. Hyland and Ong demonstrate in their
multi-bracketing. work [16] that a (finite) strategy can be implemented in
PCF if and only if it satisfies two fundamental conditions,
calledinnocenceandwell-bracketing We will focus here
on the well-bracketing condition, which is very similar
to a stack discipline The condition is usually expressed
in the following way. Arenas are refined by attaching a
and says that the move enablesthe moven when the mode \?4(m) € {Q, A} to every movem of the arena.
movem is the immediate ancestor of the moren the A movem is called aguestionwhen\?4(m) = @Q, and
arena. Every moven is assigned a polarithn®” (m) < ananswerwhen\?4(m) = A. One then requires that no
{—1,+1}. By convention\°"(m) = 41 when the move  answer moven justifies another answer move

true
true
true

Arena games. Recall that ararenais defined as a forest
of rooted trees, whose nodes are called rii@vesof the

game. One writes
mbEn



mbn = A%%m)=Q or \%“(n) = Q. e the number:~ of Opponent questions opened but left

S _ unanswered.
The intuition indeed is that an answerresponds to the

questionm which justifies it in the play. Note that alterna- Of course, it is not sufficient to count the two numbers
tion ensures that Proponent answers the questions raised bgnd x~ of a play s to detect whether the play is well-
Opponent, and vice versa: hence, a player never answers hibracketed. Typically, the well-bracketed pl&y) and the
own questions. For instance, the arena g&neerefined by non well-bracketed playb) introduced in (6-7) induce the
declaring that the Opponent moygds a question, and that same numbers™ andsx~:
the two Proponent movesue andfalse are answers.

Now, a justified pla is calledwell-bracketedvhen ev- (@) @i qe-qs-truey — wT =1, & =1
ery answem appearing in the play responds to the “pend- (b) Q- Q2-gs-truer —— KT =1, KT =1
ing” questionm. The terminology is supported by the intu-
ition that (1) every question “opens” a bracket and (2) every
answer “closes” a bracket, which should match the bracket
opened by the answered question. Typically, the play (4-5)
is well-bracketed, because every answer responds properly ()
to the last unanswered question, thus leading to the well- (d)
bracketed sequence:

In order to detect well-bracketing, one needs to apply the
count to the subpaths) and(d) of these plays. This reveals
a key difference:

g3 -trues — kT =0, K= =0
q3-true; — kKT =0, K~ =1

Q1 - Q2 - Q3 - trues - truey - true The elementary but key characterisation follows:

(1 1) Proposition 1 A play s is well-bracketed if and only if ev-
(2 2) ery subpathn - t - n of the plays satisfies
(3—3) kT(m-t-n)=0 = Kk (m-t-n)=0

On the other hand, the play
whenm is Opponent ana is Proponent; and dually
B = B) = B
q K (m-t-n)=0 = kT(m-t-n)=0
q (6) , .
q whenm is Proponent and is Opponent.

t S .
rue Let us explain this briefly. Suppose that- ¢ - n is a sub-

is not well-bracketed, because the moweie answers the  path of a well-bracketed play, wherem is Opponent and
first question of the play, whereas it should have answeredn is Proponent. The first condition says that if there is an
the third (and pending) question. This may be depicted in Opponent question unanswerednin- ¢, then either Player
the following way: answers it — in which case™ (m -t - n) = 0 — or there is
a Player question unansweredrin- ¢ - n — in which case
i - 92 - 3 - true; k¥ (m -t-n) # 0. The other condition is dual.
11— 1
( [CR—— : (7) A resource policy. Reformulated in this way, the well-
bracketing looks very much like a resource policy. The ba-
(g sic intuition is that every questiom emits aqueryfor a
) ; linear session This query is noted by a opening bracket
In fact, the play (6-7) belongs to a strategy which tests and counted by where is the polarity of the moven.

whether the functiory : B = B is strict, that is, interro- h i< th lied with b itted b
gates its argument: this test cannot be implemented in the e query Is then complied with byrasponsesmitted by

language PCF — although it can be implemented in PCF ex-2" @nsWer move, and nqted by closmg brgclge)t In our

tended with the control operatoal | - cc, see [7, 22]. example, the move; emits a query(s which is later com-
plied with in the play (4-5) by the responggemitted by the

Counting resources. We would like to understand well- movetrue whereas it remains unanswered in the play (6-

bracketing as a resource discipline, rather than simply as a/)- Hence, a play like (6-7) is not well-bracketed because it

stack discipline. One key step in this direction is the obser breaks the linearity policy implemented by the queries. Our

vation that a well-bracketed play may be detected simply by game model will relate this linearity policy to the fact that

counting two specific numbers on a path: the boolean formula is defined as

e the number™ of Proponent questions opened but left or
unanswered, B = -= (a1 (8)



in tensorial logic. Here, the tags and P are mnemonics  the play (10) appears to be “well-bracketed” if one depicts
to indicate that the external negatiety is interpreted as  the situation in the following way:
an Opponent move, whereas the internal negatipris in-

terpreted as a Proponent move. The story told by (8) goes 91 - 92 - truey - 93 - trueg - true;
like this: Opponent plays the external negation, followsgd b (1 1)
Proponent, who plays the internal negation ahthe same (o —a)(z — 2)

time resolves the choiceé © 1 betweentrue andfalse. G D)5 — )

This refines the picture conveyed by the boolean arena (3)

by decomposing the Playgr movesue a_mdfalse n two . whereas the play (11) is not “well-bracketed” because the
compound stages: negation and choice — where negation

thus encapsulates the two mowaae andfalse. This en- q_uery(a Is never complied with, as can be guessed from the
ables to relax the well-bracketing policy by interpretihg t picture below:

boolean formula as Q1 - 93 - trues - true;

B o= 94 S(el (9) . 1
where the affine modality, of tensorial logic is inserted (b—1)(3—3)
between the two negations. The intuitionistic hierarchy on
the boolean formula (8) coincides with the well-bracketed We explain in§3 and§4 how we apply the well-bracketing
arena game model of PCF described by Hyland and Ongcriterion devised in Proposition 1 in order to generalise
in [16] whereas the intuitionistic hierarchy on the boolean well-bracketing to a multi-bracketed framework.
formula (9) — where the affine modality is replaced by

the exponential modality — coincides with the non-well-  Plan of the paper. We describe{?2) a categorical seman-
bracketed arena game model of PCF with control describedtics of resources in game semantics, and explain in what
by Jim Laird in [22] and Olivier Laurent in [24]. sense the resulting topography refines both linear logic and

polarized logic. After that, we construd3) a compact-
Multi-bracketing. ~ This analysis leads us to the notion of closed (that is, self-dual) category of multi-bracketechCo
multi-bracketingn arena games. Inlinear logic, every proof way games and well-bracketed strategies, where the re-
of the formula source policy is enforced by multi-bracketing. From this,
BeB) —B we derive §4) a model of our categorical semantics of re-

. sources, using a family construction, and conclugdg.
asks the value of its two boolean arguments, and we would 9 y (

like to understand this as a kind of well-bracketing condi-

. Acknowl ments. We would lik hank Martin Hy-
tion. So, the play cknowledgements. We would like to tha artin Hy

land together with Masahito Hasegawa, Olivier Laurent,
B ©® B) —- B Laurent Regnier and Peter Selinger for stimulating discus-
sions at various stages of this work.
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e 10y 2 Categorical models of resources
trqﬁe We introduce now the notion d@énsorial negatioron a
true symmetric monoidal category; and then explain how such

a category with negation may be equipped with additives
would be “well-bracketed” in the new setting, whereas the and various resource modalities. The first author describes

play in [27] how to extract asyntaxof proofs from a categorical
B ® B — B semantics, using string diagrams and functorial boxes. The
q recipe may be applied here to extract the syntax of a logic,
aQ (11) calledtensorial logic. However, we provide in Appendix a
true sequent calculus for tensorial logic, in order to compare it
true to linear logic [9] or polarized linear logic [23].

would not be “WE||'braCket6d", because it does not eXplore Tensorial negation_ A tensorial negatiom)n a symmetric
the second argument of the function. This extended well- monoidal CategorYA, ®, 1) is defined as a functor
bracketing is captured by the idea that the first question

emitsthreequeries(; and(,, and(, at the same time. Then, - 0 A — AP



together with a family of bijections

A(A® B,-C) A(A,~(B® ()
natural inA, B andC. Given a negation, it is customary to
define the formuldalseas the object

def

>~

$YA,B,C

L

obtained by “negating” the unit objedt of the monoidal
category. Note that we use the notatibiinstead ofl or

e) in order to remain consistent with the notations of linear
logic. Note also that the bijectiop, 5 1 provides then the
category4 with a one-to-one correspondence

PA,B,1 A(A® B, 1) A(A,-B)

for all objectsA and B. For that reason, the definition of
a negation- is often replaced by the — somewhat too in-
formal — statement that “the objedt is exponentiable”
in the symmetric monoidal categos, with negation—A
noted_L .

-1

o~

Self-adjunction. In his PhD thesis, Hayo Thielecke [35]
observes for the first time a fundamental “self-adjunction”

Linear implication. A symmetric monoidal category
with a tensorial negation- is not very far from being
monoidalclosed. It is possible indeed to define laear
implication— when its target:B is a negated object:

A—--B ¥ -(4@B).

In this way, the functor (12) defines what we callexpo-
nential idealin the categoryd. When the functor is faith-
ful on objects and morphisms, we may identify this expo-
nential ideal with the subcategory négated objectm the
categoryA. The exponential ideal discussed in Guy Mc-
Cusker’s PhD thesis [26] arises precisely in this way. This
enables in particular to define the linear and intuitionisti
hierarchies on the arena games (8) and (9).

Continuation category. Every symmetric monoidal cate-
gory A equipped with a negation induces acategory of
continuationsA™ with the same objects a4, and mor-
phisms defined as

A(4,B) A(=A,-B).
Note that the category™ is the kleisli category associated

def

phenomenon, related to negation. This observation playsto the comonad inA°? induced by the adjunction; and that
then a key role in an unpublished work by Peter Selinger it is at the same time the opposite of the kleisli category as-

and the first author [30] on polar categories, a categori-

sociated to the continuation monad.ih Because the con-

cal semantics of polarized linear logic, continuations and tinuation monad is strong, the categody is premonoidal
games. The same idea reappears recently in a nice, comi the sense of John Power and Edmund Robinson [32]. It

prehensive study on polarized categories (=distributoys)
Robin Cockett and Robert Seely [8]. In our situation, the

“self-adjunction” phenomenon amounts to the fact that ev-

ery tensorial negation is left adjoint to the opposite fanct

- AP — A (12)
because of the natural bijection
AP(=A,B) =  A(A,-B).

Continuation monad. Every tensorial negation in-
duces an adjunction, and thus a monad

A— A

This monad is called theontinuation monadof the
negation.
Moggi [31] is that the continuation monadsgongbut not

-

commutative in general. By strong monad, we mean that

the monad-— is equipped with a family of morphisms:
-- (A® B)

natural in A and B, and satisfying a series of coherence
properties.
monad making the two canonical morphisms

- (A® B) (13)

coincide. A tensorial negation is called commutative
when the continuation monad induceddnis commutative
— or equivalently, a monoidal monad in the lax sense.

tA,B A®‘|ﬁB —

By commutative monad, we mean a strong

should be noted that string diagrams in premonoidal cate-
gories are inherently related to control flow charts in soft-
ware engineering, as noticed by Alan Jeffrey [18].

Semantics of resources. A resource modalityn a sym-
metric monoidal categoryA, ®, e) is defined as an adjunc-
tion:

M

A (14)

\/

where F
e (M, e, u)is a symmetric monoidal category,

e U is a symmetric monoidal functor.

. Recall that asymmetric monoidafunctor U is a func-
One fundamental fact observed by Eugenio y

tor which transports the symmetric monoidal struc-
ture of (M,e,u) to the symmetric monoidal structure
of (A, ®, e), up to isomorphisms satisfying suitable coher-
ence properties. Another more conceptual definition of a re-
source modality is possible: itis an adjunction defined @ th
2-category of symmetric monoidal categories, symmet-
ric monoidal functors, and monoidal transformations. Now,
the resource modality is called
¢ affinewhen the unit: is the terminal object of the cat-
egorymM,
e exponentiawhen the tensor produetis a cartesian
product, and the unit is the terminal object of the
categoryM.



This definition of resource modality is inspired by the cat-
egorical semantics of linear logic, and more specifically by
Nick Benton’s notion of Linear-Non-Linear model [4] —
which may be reformulated now as a symmetric monoidal
closedcategoryA equipped with an exponential modality in
our sense. Very often, we will identify the resource modal-
ity and the induced comondd= U o F' on the categoryd.

Tensorial logic. In our philosophy, tensorial logic is en-
tirely described by its categorical semantics — which is de-
fined in the following way. First, every symmetric monoidal
categoryA equipped with a tensorial negatiendefines a
model ofmultiplicativetensorial logic. Such a category de-
fines a model omultiplicative additiveensorial logic when
the category4 has finite coproducts (noted) which dis-
tribute over the tensor product: this means that the canoni-
cal morphisms

(AeB)@a(AeC) — A®(BaC)

0 — A®O0

are isomorphisms. Then, a model of (full) tensorial logic is
defined as a model of multiplicative additive tensorial &gi
equipped with an affine resource modality (with comonad
noted)) as well as an exponential resource modality (with
comonad noted).

The diagrammatic syntax of tensorial logic will be read-
ily extracted from its categorical definition, using theipec
explained in [27]. However, the reader will find a se-
guent calculus of tensorial logic in Appendix, written ireth
more familiar fashion of proof theory. Seen from that point
of view, the modality-free fragment of tensorial logic de-
scribes dinear variant of Girard’s LC [10] thus akin to lu-
dics [11] and more precisely to what Laurent calls MALLP

rent’s polarized logic LLP coincides with multiplicativel-a
ditive tensorial logic — where the monoidal structure is
cartesian This is manifest in the monolateral formulation
of tensorial logic, see Appendix. We sum up below the dif-
ference between tensorial logic and classical logic in & ver
schematic table:

. . ® is monoidal
Tensorial logic . .

- istensorial

. . is cartesian
Classical logic © ! .

- istensorial

Note that every resource modality (14) on a categdry
equipped with a tensorial negation induces a tensorial
negationf’°? o = o U on the categoryM. This provides a
model of polarized linear logic, and thus of classical lpgic
wheneverM is cartesian. This phenomenon underlies the
construction of a control category in [25], see also [12] for
another construction.

Linear logic. The continuation monadl +— O A of
game semantics lifts an Opponent-starting gatmeith an
Opponent move o followed by a Player move:p. Now,
it appears that the Blass problem mentionedinarises
precisely from the fact that the monad is strong, but not
commutative [30, 28]. Indeed, one obtains a game model
of (full) propositional linear logic byidentifying the two
canonical strategies (13) — this leading to a fully complete
model of linear logic expressed in the language of asyn-
chronous games [29].

This construction in game semantics has a nice categor
ical counterpart. We already mentioned that the continu-
ation categoryA™ inherits a premonoidal structure from

in his PhD thesis [23]. This convergence simply expresses, o symmetric monoidal structure of. Now, Hasegawa
the fact that these systems are all based on tensors, SUMRasahito shows (private communication) that the continua-

and linear continuations.

Arena games and classical logic. Starting from Thi-
elecke’s work, Selinger [33] designs the notioncointrol
categoryin order to axiomatize the categorical semantics
of classical logic. Then, prompted by a completeness re-
sult established by Martin Hofmann and Thomas Streicher
in [15], he proves a beautiful structure theorem, statirag th
every control category is the continuation categori™

of aresponse categoryl. Now, a response categody/ —
where the monic requirement on the units (2) is relaxed —
is exactly the same thing as a model of multiplicative addi-
tive tensorial logic, where the tenseris cartesianand the
tensor unitl is terminal.

A purely proof-theoretic analysis of classical logic leads
exactly to the same conclusion. Starting from Girard’s work
on polarities in LC [10] and ludics [11], Laurent devel-
oped a comprehensive analysis of polarities in logic, incor
porating classical logic, control categories and (nonkwel

tion categoryA™ equipped with this premonoidal structure
is x-autonomous if and only if the continuation monad is
commutative. The specialist will recognize here a categori
fication of Girard’s phase space semantics [9]. Anyway, this
shows that linear logic is essentially tensorial logic irieth
the tensorial negation is commutative.

is monoidal
is commutative

&

-

Linear logic

In that situation, every resource modality on the categbry
induces a resource modality on theautonomous cate-
gory A™, and thus a model of full linear logic.

3 Multi-bracketed Conway games

We define here and it a game semantics with resource
modalities and fixpoints, in order to interpret recursion in
programming languages. We achieve this by construct-

bracketed) arena games [23, 24]. Now, it appears that Lau4ng first a compact-closed categoBy of multi-bracketed



Conway games, inspired from André Joyal’s pioneering The definition of residuals is then extended to paths —
work [19]. The compact-closed structure Bfinduces a  y in the usual way: by composition of relations. We then
trace operator [20] which, in turn, provides enough fixpeint define

in the category constructed i in order to interpret the dot def

language PCF enriched with resource modalities. rls] = {r' | r[s]r'} and [s]r = {r'"|7'[s]r}.

Conway games. A Conway game is an oriented rooted We say thata path: z — y:
graph(V, E, \) consisting of a se¥” of vertices called the
positionsof the game, a set C V' x V of edges called the
movesf the game, a function : £ — {—1,+1} indicat-

e complies with a query € Q 4(z) whenr has no resid-
ual afters — that is,r[s] = 0,

ing whether a move belongs to Opponent ] or Proponent e initiates a queryr € Q(y) whenr has no ancestor

(+1). We notex the root of the underlying graph. befores — that is,[s]r = 0.

Path and play. A playis a path starting from the roaty We require that a mover only initiates queries of its own

of the multi-bracketed game: polarity, and only complies with queries of the opposite po-

. . . . larity. In order to formalise that a residual of a query is

x4 T o —— a1 —>x (15)  intuitively the query itself, we also require that two péehl

Two paths are parallel when they have the same initial andpmhsS and? mdqce the same residual rela'qo[rsj = [t i

) i . . ) Finally, we require that there are no queries at the root:

final positions. A play (15) islternatingwhen: Qa(x) =0

Vie{l,....k—1}, Aa(mis1) = —=Aa(my). , _ .
ved } Almis1) almi) Resource function. Extending Conway games with

Strategy. A strategyo of a Conway game is defined as a queries enables the definition of a resource function
set of alternating plays of even length such that: +
e o contains the empty play,
e every nonempty play starts with an Opponent move,
e o is closed by even-length prefix: for every plgyand
for all movesm, n,

) K"i)

which counts, for every path: 2 — y, the numbek™(s)
(respectivelyx(s)) of Proponent (respectively Opponent)
queries inr € Qa(y) initiated by the paths — that is,
such thafs]r = (). The definition of multi-bracketed games

k= (K

s-m-n€oc = sEo, induces three cardinal propertiestof, which will replace
the very definition ofs, and will play the réle of axioms in
e o is deterministic: for every play, and for all all our proofs — in particular, in the proof that the compesit
movesm, n,n’, of two well-bracketed strategies is also well-bracketed.

som-necoands-m-n' co — n—n Property 1: accuracyFor all pathss :  — y and Propo-
nent moven : y — z,

We write o : A wheno is a strategy ofd. Note that a kT (m)=0 and &*(s-m)=r"(s)+ K" (m),
play in a Conway game is generally non-alternating, but that I he dual lities f
alternation is required on the plays of a strategy. as well as the dual equalities for Opponent moves.

Property 2: suffix dominationFor all pathss : « — y and
Multi-bracketed games. A multi-bracketed game is a ¢ .y — 2,

Conway game equipped with K(t) < K(s-t).
e a finite setQ 4 (x) of queriesfor each positior: € V Property 3: sub-additivity.For all pathss : =z — y and
of the game, t:y —» z,

k(s -t) < k(s) + k().

Accuracy holds because Player does not initiate Opponent
queries, and does not comply with Player queries. Suffix
domination says that a query cannot already have been com-
plied with. Sub-additivity expresses that composing two
paths does not increase the number of queries.

e a functionA(z) : Qa(x) — {-1,+1} which as-
signs to every query i) 4(z) a polarity which indi-
cates whether the query is made by Opponerif) (or
Proponent+1),

e for each mover = v, aresidualrelation

[m] € Qa(z) x Qaly)

Well-bracketed plays and strategies. Once the resource

satisfying: function x is defined on paths, it becomes possible to de-
fine awell-bracketed plays a play which satisfies the two
rlmlry - and rfmlry = =712 conditions stated in Proposition 1 §f. So, the property

rifmlr - and ry[mlr = 1 =71 becomes a definition here. A strategyis then declared



well-bracketedvhen, for every play - m - t - n of the strat-

egyo wherem is an Opponent move andis (necessarily)

a Proponent move:
kim-t-n)=0 = Kk (m-t-n)=0.

Every well-bracketed strategy then preserves well-

bracketing in the following sense:

Lemma 1 Supposes - m - n € o and thats - m is well-
bracketed. Thers, - m - n is well-bracketed.

Hence, when Opponent and Proponent play according

to well-bracketed strategies, the resulting play is well-
bracketed.

Dual. Every multi-bracketed gaméinduces alualgame
A* obtained by reversing the polarity of moves and queries.
ThUS:(’iL ) HZ*) = (’i27 K’X)

Tensor product. The tensor product ® B of two multi-
bracketed gamed andB is defined as:
- its positions are the pairér,y) notedz ® y, ie.
Vagp = Va x Ve With xagp = (*A7*B)-
- its moves are of two kinds:

z®yif x — zinthe gameA,

x®y—>{ x ® zif y — zinthe gameB.

- its queries at position: ® y are the queries at posi-
tion x in the gameA and the queries at positignin

the gameB: Qagn(z @ y) = Qa(z) WQp(y).

The polarities of moves and queries in the garhe B

are inherited from the gametsand B, and the residual re-
lation of a movem in the gamed ® B is defined just in
the expected (pointwise) way. The unique multi-bracketed
gamel with {x} as underlying Conway game is the neutral

element of the tensor product. As usual in game seman-

tics, every plays in the gameAd © B may be seen as the
interleaving of a play 4 in the gameA and a plays|z in
the gameB. More interestingly, the resource functieris
“tensorial” in the following sense:

kaoB(s) = Ka(s|a) + KB(5|B)-

Composition. We proceed as in [26, 13], and say that
is an interaction on three games B, C, this notedu €
int Apc, When the projection of, on each gamel* @ B,
B*® C and A* ® C'is a play. Given two strategies :
A* ® B, 7 : B* ® C, we define the composition of these
strategies as follows:

o;7 = {ujargc | U € intapo, UjagB € 0, U pgc € T}

As usually, the composition of two strategies is a strat-
egy. More interestingly, we show that our notion of well-
bracketing is preserved by composition:

Proposition 2 The strategy; 7 : A* ® C'is well-bracketed
when the two strategies : A* ® B and7r : B* ® C are
well-bracketed.

Proof: The proof is entirely based on the three cardinal
properties ok mentioned earlier. The proof appears in the
Master’s thesis of the second author [34].

The category B of multi-bracketed games. The cate-
gory B has multi-bracketed games as objects, and well-
bracketed strategiesof A* ® B as morphisms : A — B.

The identity strategy is the usual copycat strategy, defined
by André Joyal in Conway game [19]. The resulting cate-
gory 13 is compact-closed in the sense of [21] and thus ad-
mits a canonical trace operator, unique up to equivalence,
see [20] for details.

Negative and positive games. A multi-bracketed gamel

is called negativewhen all the moves starting from the
root x4 are Opponent moves; argbsitivewhen its dual
gameA* is negative. The full subcategory of negative (resp.
positive) multi-bracketed games is not&d (resp. B™).

For a multi-bracketed gamé, we write A~ for the nega-
tive game obtained by removing all the Player moves from
the root.

The exponential modality. Every multi-bracketed
gameA induces arexponentiajame! A as follows:

- its positions are the words = z; - - -z, whose let-
ters are positions; of the gameA different from the
root« 4; the intuition is that the letter; describes the
current position of thé*” copy of the game,

- its root* 4 is the empty word,

- its movesw — w’ are either moves played in one
copy:

WL T Wy — W1 Yy w

wherex — y is a move in the gamd; or moves where
Opponent opens a new copy:

w — wx
wherex4 — x is an Opponent move id.

- its queries at positiom = x; - -z, are pairs(s, q)
consisting of an index < ¢ < n and a query at
positionz; in the gameA.

The polarities of moves and queries are inherited from the
gameA in the expected way, and the residual relation is
defined as for the tensor product. Interestingly, the result
ing multi-bracketed gamk4 defines the free commutative
comonoid associated to the well-bracketed gainia the
category3. Hence, the categoiy defines a model of multi-
plicative exponential linear logic. This modeldegenerate

in the sense that the tensor product is equal to its dual, i.e.
(A® B)* = A* ® B*.

Fixpoints. The exponential modality together with the
traced symmetric monoidal structure Brefines a fixpoint
operator in3 as shown by Hasegawa Masabhito in [14]. Re-
mark that this construction does not require that the cate-
gory B is cartesian.



4 A game model with resources In particular, given a pointed gamég ! A is defined as

We would like to construct a model of tensorial logic 14« '(bA)
based_ on negative muIti—bracket_ed games. However it iSFree coproducts. The categons®
meaningless to construct an affine modality on the cate-
gory B~ itself because its unit is already a terminal ob-
ject in the category. So we need to introduce the notion of
pointed game.

lacks coproducts to be

a model of (full) tensorial logic. We adjust this by con-
structing its free completion, notddam (B°), under small
coproducts [3]. Given a categofy the objects oF'am(C)

are families{A4,|i € I} of objects of the category. A mor-
o Phismfrom{4;|i € I} to{B,|j € J} consists of areindex-
different ways: (1) as a positive multi-bracketed Conway Nd functionf : I — J together with a family of morphisms
game, with a unique initial Player move, (2) as a negative 1fi : 4i — By(li € I} of the category..

multi-bracketed Conway game, except that the hypothesis '@ IS @ pseudo-commutative monad Gt [17].
that there are no queries at the reots now relaxed for H.ence, th&-monad for symmetric monoidal categories dis-
Player queries. From now on, we adopt the first point of {fibutes over“am. Consequently, (1) the categafyim(C)
view, and thus see a pointed game as a positive game witthe”t_S the symmetric monoidal structure of a sym_metrlc
a unique initial move. Now, a morphism : A — B m_on0|dal categorg, and (2) the coproduct dfam(C) dis-

in the categony is calledtransversenhen, for every play ~ floutes over that tensor product, and (8ym preserves
mn of length 2 in the strategy : A* ® B, the Opponent m.ono[dfil adjunctions. Be5|deE,an_z preserves categones
movem is in A and the Player move is in B. We note Wlth finite product.s and categories W|t_h a terminal ob—_
B* the subcategory d8 with pointed games as objects, and ject. The construction thus preserves affine and exporentia

well-bracketed transverse strategies as morphisms. modalities in the sense gR. Gathering all those remarks,
we obtain that:

Pointed games. A pointed game may be seen in tw

Coalesced tensor. GivenA, B € B°, the coalesced tensor
A® B is the pointed game obtained frafw B by synchro-
nising the two initial Player moves of and B. Remark
that the coalesced tensor product preserves affine game
and coincides there with the tensor producisof. The cat-
egory3® equipped witho is symmetric monoidal. It is not
monoidal closed, but admits a tensorial negation. Besides,
it inherits a trace operator from the categd®y which is
partial, but sufficient to interpret a linear PCF with resmur
modalities. In this paper, we integrate resource modalities in game
semantics, in just the same way as they are integrated in
linear logic. This is achieved by reunderstanding the very
topography of the field. More specifically, linear logic is re
laxed into tensorial logic, where the involutive negatidn o
linear logic is replaced by a tensorial negation. Once this
performed, it is possible to keep the best of linear logie: re
Affine modality. A pointed gamed is calledaffinewhen source modalities, etc. but transported in the language of
its unique initial Player move does not initiate any query. 9ames and continuations. Then, linear logic coincides with
Note thatB~ is isomorphic to the full subcategory of affine tensorial logic with the additional axiom that the continu-
games in the categoi§®. The affine game, A associated ~ ation monad is commutative. In that sense, tensorial logic
to a pointed gamel is defined by removing all the queries IS more primitive than linear logic, in the same way that
initiated by the first move — as well as their residuals. This 9roups are more primitive than abelian groups. This opens

Proposition 3 Fam(B°) is a model of tensorial logic.

Moreover, the category’am(B®) has a fixpoint operator
Jestricted on its singleton objects — that is, objelcts|i €

I} wherel is singleton. This is sufficient to interpret a lin-
ear variant of the language PCF equipped with affine and
exponential resource modalities, in the categBayn (5°).

5 Conclusion

Tensorial negation. The negation—A of a pointed
gameA is the pointed game obtained by lifting the dual
game A* with a Proponent moven which initiates one
qguery. Then, every initial Opponent move At complies
with this query.

defines an affine resource modality Bh. a new horizon to the subject. The whole point indeed is to
understand in the future how the theory of linear logic ex-
Exponential modality. The exponential modalityy on tends to this relaxed framework. We illustrate this apphoac
pointed games is obtained by composing the two adjunc-here by extending well-bracketing in arena games to the full
tions underlying the comonagsand! (defined ing3). flavour of resources in linear logic, using multi-brackegtin
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A sequent calculus for tensorial logic

In the bilateral formulation of tensorial logic, the se-
qguents are of two formd? - A wherel is a context, and!
is a formula;T" F whereT is a context (the notatiop4]
expresses the unessential presencé of the sequent).

I'A AFB I'1, A, B, Ty + [C]

®-Right ®-Left
I'A+A®B ', A® B,Ts F [C]
it-Righ r'H[A )
1 Unit-Right # Unit-Left
I, 1k [A]
T,A+
— 2" Right LA e
Tk —A I, —-Ak
 Aviom A A AF[B] cut
I,A+ [B]
TFA 4 Right1
'-A® B NA-C TI',BRC
A BEC Lef
T'EB  4Right2 ’
'-A® B
No right introduction rule fo0 T,0- A O-Left
ITHA ) I',At [B]
Strengthening — - Dereliction
ITH LA T, LA+ [B]
I+ [B] , I, lA LA+ [B
Weakening —[] Contraction
I, LA F [B] I, LAF [B]
LT - A . I AF[B
© Strengthening 7[] Dereliction
LT ELA I LAF[B]
T+ [B] .
————— Weakening
T, LA [B]

The monolateral formulation requires to polarize formulas
and to clone each construct into a negative counterpart.

0|1[]L|P®Q|P®Q|LP|LP
L|T|TP|LTM|L&M | 3L | 2L

It is then possible to reformulate all the sequent above, as

Positives
Negatives

illustrated below by the right and left introduction ®f

FT,P FAQ
FILA,P®RQ

T4, L, M, T2, [P]

Ty, LT M, T, [P



