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Resource modalities in game semantics

Paul-André Melliès Nicolas Tabareau∗

Abstract

The description of resources in game semantics has
never achieved the simplicity and precision of linear logic,
because of a misleading conception: the belief that lin-
ear logic is more primitive than game semantics. We ad-
vocate the contrary here: that game semantics is concep-
tually more primitive than linear logic. Starting from this
revised point of view, we design a categorical model of re-
sources in game semantics, and construct an arena game
model where the usual notion of bracketing is extended to
multi-bracketing in order to capture various resource poli-
cies: linear, affine and exponential.

1 Introduction

Game semantics and linear logic. Game semantics is the
younger sibling of linear logic: born (or reborn) at the be-
ginning of the 1990s, in the turmoil produced by the re-
cent discovery of linear logic by Jean-Yves Girard [9], it
remained under its spiritual influence for a very long time.
This ascendancy of linear logic was extraordinarily healthy
and profitable in the early days. Properly guided, game se-
mantics developed steadily, following the idea that every
formula of linear logic describes agame; and that every
proof of the formula describes astrategyfor playing on that
game.

This correspondence between formulas of linear logic
and games is supported by a series of elegant and striking
analogies. One basic principle of linear logic is that every
formula behaves as a resource, which disappears once con-
sumed. In particular, a proof of the formulaA ⊸ B is
required to deduce the conclusionB by using (or consum-
ing) its hypothesisA exactly once. This principle is nicely
reflected in game semantics, by the idea that playing a game
is just like consuming a resource, the game itself.

Another basic principle of linear logic is that negation
A 7→ ¬A is involutive. This means that every formulaA is
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equal (or at least isomorphic) to the formula negated twice:

A ∼= ¬¬A. (1)

Again, this principle is nicely reflected in game semantics
by the idea that negating a gameA consists in permuting
the rôles of the two players. Hence, negating a game twice
amounts to permuting the rôle of Proponent and Opponent
twice, which is just like doing nothing.

The connectives of linear logic are also nicely reflected
in game semantics. For instance, the tensor productA ⊗ B

of two formulasA andB is suitably interpreted as the game
(or formula) A played in parallel with the game (or for-
mula) B, where only Opponent may switch from a com-
ponent to the other one. Similarly, the sumA ⊕ B of two
formulasA andB is suitably interpreted as the game where
Proponent plays the first move, which consists in choosing
between the gameA and the gameB, before carrying on in
the selected component. Finally, the exponential modality
of linear logic !A applied to the formulaA is suitably in-
terpreted as the game where several copies of the gameA

are played in parallel, and only Opponent is allowed (1) to
switch from a copy to another one and (2) to open a fresh
copy of the gameA.

What we describe here is in essence the game semantics
of linear logic defined by Andreas Blass in [6]. Simple and
elegant, the model reflects the full flavour of the resource
policy of linear logic. It is also remarkable that this game
semantics is an early predecessor to linear logic [5].

A schism with linear logic. The destiny of game seman-
tics has been to emancipate itself from linear logic in the
mid–1990s, in order to comply with its own designs, inher-
ited from denotational semantics:

1. the desire to interpretprogramswritten in program-
ming languages with effects (recursion, states, etc.)
and to characterise exactly their interactive behaviour
insidefully abstractmodels;

2. the desire to understand the algebraic principles of pro-
gramming languages and effects, using the language of
category theory.

So, a new generation of game semantics arose, propelled by
(at least) two different lines of research:



1. Samson Abramsky and Radha Jagadeesan [2] noticed
that the (alternating variant of the) Blass model does
not define a categorical model of linear logic. Worse:
it does not even define a category, for lack of asso-
ciativity. Abramsky dubs this phenomenon theBlass
problemand describes it in [1].

2. Martin Hyland and Luke Ong [16] introduced the no-
tion of arena game, and characterised the interactive
behaviour of programs written in the functional lan-
guage PCF — the simply-typedλ-calculus with con-
ditional test, arithmetic and recursion.

So, the Blass problem indicates that it is difficult to con-
struct a (sequential) game model of linear logic; and at
about the same time, arena games become mainstream al-
though they do not define a model of linear logic. These
two reasons (at least) opened a schism between game se-
mantics and linear logic: it suddenly became accepted that
categories of (sequential) games and strategies would only
capturefragmentsof linear logic (intuitionistic or polarised)
but not the whole thing.

On the other hand, defining the resource modalities of
linear logic for game semantics requires to reunify the two
schismatic subjects. Since the disagreement started with
category theory, this reunification should occur at the cat-
egorical level. We explain (in §2) how to achieve this byre-
laxing the involutive negation of linear logic into a less con-
strained tensorial negation. This negation induces in turna
linear continuationmonad, whose unit

A −→ ¬¬A (2)

refines the isomorphism (1) of linear logic. Moving from
an involutive to a tensorial negation means that we replace
linear logic by a more general and primitive logic – which
we call tensorial logic. As we will see, this shift to ten-
sorial logic clarifies the Blass problem, and describes the
structure of arena games. It also enables the expressions
of resource modalities in game semantics, just as it is usu-
ally done in linear logic. However, because the presentation
of modalities may appear difficult to readers not familiar
with categorical semantics, we prefer to recall first the no-
tion of well-bracketingin arena games — and explain how
it can be reunderstood as a resource policy, and extended to
multi-bracketing.

Arena games. Recall that anarenais defined as a forest
of rooted trees, whose nodes are called themovesof the
game. One writes

m ⊢ n

and says that the movem enablesthe moven when the
movem is the immediate ancestor of the moven in the
arena. Every movem is assigned a polarityλOP (m) ∈
{−1, +1}. By convention,λOP (m) = +1 when the move

is Proponent, andλOP (m) = −1 when it is Opponent. Fi-
nally, one requires that the arena is alternating:

m ⊢ n =⇒ λOP (m) = −λOP (n)

and that all roots (calledopeningmoves) of the arena have
the same polarity. A typical example of arena is the boolean
arenaB:

q

xx
xx

x
HHHHH

true false

(3)

where the Opponent moveq justifies the two Proponent
movestrue andfalse. Every arena gameA induces a set
of justified plays, which are essentially sequences of moves
(we will avoid discussingpointershere.) Typically, the PCF
type

(B3 ⇒ B2) ⇒ B1

defines the arena

q1
yy HH

ffffffffffff

q2
yy HH

ffffffffffff true false

q3
xx II

true false

true false

where the indices1, 2, 3 distinguish the three instances of
the boolean arenaB. This arena contains the justified play

q1 · q2 · q3 · true3 · true2 · true1 (4)

also depicted using the convention below:

(B ⇒ B) ⇒ B

q

q

q

true

true

true

(5)

Note that the play (4-5) belongs to the strategy implemented
by the PCF programλf.f(true).

Well-bracketing. Hyland and Ong demonstrate in their
work [16] that a (finite) strategy can be implemented in
PCF if and only if it satisfies two fundamental conditions,
called innocenceandwell-bracketing. We will focus here
on the well-bracketing condition, which is very similar
to a stack discipline. The condition is usually expressed
in the following way. Arenas are refined by attaching a
modeλQA(m) ∈ {Q, A} to every movem of the arena.
A move m is called aquestionwhenλQA(m) = Q, and
ananswerwhenλQA(m) = A. One then requires that no
answer movem justifies another answer moven:



m ⊢ n =⇒ λQA(m) = Q or λQA(n) = Q.

The intuition indeed is that an answern responds to the
questionm which justifies it in the play. Note that alterna-
tion ensures that Proponent answers the questions raised by
Opponent, and vice versa: hence, a player never answers his
own questions. For instance, the arena gameB is refined by
declaring that the Opponent moveq is a question, and that
the two Proponent movestrue andfalse are answers.

Now, a justified plays is calledwell-bracketedwhen ev-
ery answern appearing in the play responds to the “pend-
ing” questionm. The terminology is supported by the intu-
ition that (1) every question “opens” a bracket and (2) every
answer “closes” a bracket, which should match the bracket
opened by the answered question. Typically, the play (4-5)
is well-bracketed, because every answer responds properly
to the last unanswered question, thus leading to the well-
bracketed sequence:

q1 · q2 · q3 · true3 · true2 · true1

(1 1)

(2 2)

(3 3)

On the other hand, the play

(B ⇒ B) ⇒ B

q

q

q

true

(6)

is not well-bracketed, because the movetrue answers the
first question of the play, whereas it should have answered
the third (and pending) question. This may be depicted in
the following way:

q1 · q2 · q3 · true1

(1 1)

(2

(3

(7)

In fact, the play (6-7) belongs to a strategy which tests
whether the functionf : B ⇒ B is strict, that is, interro-
gates its argument: this test cannot be implemented in the
language PCF – although it can be implemented in PCF ex-
tended with the control operatorcall-cc, see [7, 22].

Counting resources. We would like to understand well-
bracketing as a resource discipline, rather than simply as a
stack discipline. One key step in this direction is the obser-
vation that a well-bracketed play may be detected simply by
counting two specific numbers on a path:

• the numberκ+ of Proponent questions opened but left
unanswered,

• the numberκ− of Opponent questions opened but left
unanswered.

Of course, it is not sufficient to count the two numbersκ+

and κ− of a play s to detect whether the play is well-
bracketed. Typically, the well-bracketed play(a) and the
non well-bracketed play(b) introduced in (6-7) induce the
same numbersκ+ andκ−:

(a) q1 · q2 · q3 · true3 7−→ κ+ = 1, κ− = 1
(b) q1 · q2 · q3 · true1 7−→ κ+ = 1, κ− = 1

In order to detect well-bracketing, one needs to apply the
count to the subpaths(c) and(d) of these plays. This reveals
a key difference:

(c) q3 · true3 7−→ κ+ = 0, κ− = 0
(d) q3 · true1 7−→ κ+ = 0, κ− = 1

The elementary but key characterisation follows:

Proposition 1 A plays is well-bracketed if and only if ev-
ery subpathm · t · n of the plays satisfies

κ+(m · t · n) = 0 =⇒ κ−(m · t · n) = 0

whenm is Opponent andn is Proponent; and dually

κ−(m · t · n) = 0 =⇒ κ+(m · t · n) = 0

whenm is Proponent andn is Opponent.

Let us explain this briefly. Suppose thatm · t · n is a sub-
path of a well-bracketed plays, wherem is Opponent and
n is Proponent. The first condition says that if there is an
Opponent question unanswered inm · t, then either Player
answers it – in which caseκ−(m · t · n) = 0 – or there is
a Player question unanswered inm · t · n – in which case
κ+(m · t · n) 6= 0. The other condition is dual.

A resource policy. Reformulated in this way, the well-
bracketing looks very much like a resource policy. The ba-
sic intuition is that every questionm emits aquery for a
linear session. This query is noted by a opening bracket(i

and counted byκ± where± is the polarity of the movem.
The query is then complied with by aresponseemitted by
an answer moven, and noted by a closing bracketi). In our
example, the moveq3 emits a query(3 which is later com-
plied with in the play (4-5) by the response3) emitted by the
movetrue whereas it remains unanswered in the play (6-
7). Hence, a play like (6-7) is not well-bracketed because it
breaks the linearity policy implemented by the queries. Our
game model will relate this linearity policy to the fact that
the boolean formula is defined as

B =
O
¬

P
¬ (1 ⊕ 1) (8)



in tensorial logic. Here, the tagsO andP are mnemonics
to indicate that the external negation¬O is interpreted as
an Opponent move, whereas the internal negation¬P is in-
terpreted as a Proponent move. The story told by (8) goes
like this: Opponent plays the external negation, followed by
Proponent, who plays the internal negation andat the same
time resolves the choice1 ⊕ 1 betweentrue andfalse.
This refines the picture conveyed by the boolean arena (3)
by decomposing the Player movestrue andfalse in two
compound stages: negation and choice – where negation
thus encapsulates the two movestrue andfalse. This en-
ables to relax the well-bracketing policy by interpreting the
boolean formula as

B =
O
¬ !•w

P
¬ (1 ⊕ 1) (9)

where the affine modality!•w of tensorial logic is inserted
between the two negations. The intuitionistic hierarchy on
the boolean formula (8) coincides with the well-bracketed
arena game model of PCF described by Hyland and Ong
in [16] whereas the intuitionistic hierarchy on the boolean
formula (9) – where the affine modality!•w is replaced by
the exponential modality!•e – coincides with the non-well-
bracketed arena game model of PCF with control described
by Jim Laird in [22] and Olivier Laurent in [24].

Multi-bracketing. This analysis leads us to the notion of
multi-bracketingin arena games. In linear logic, every proof
of the formula

(B ⊗ B) ⊸ B

asks the value of its two boolean arguments, and we would
like to understand this as a kind of well-bracketing condi-
tion. So, the play

(B ⊗ B) ⊸ B

q

q

true

q

true

true

(10)

would be “well-bracketed” in the new setting, whereas the
play

(B ⊗ B) ⊸ B

q

q

true

true

(11)

would not be “well-bracketed”, because it does not explore
the second argument of the function. This extended well-
bracketing is captured by the idea that the first question
emitsthreequeries(1 and(a and(b at the same time. Then,

the play (10) appears to be “well-bracketed” if one depicts
the situation in the following way:

q1 · q2 · true2 · q3 · true3 · true1

(1 1)

(a a)(2 2)

(b b)(3 3)

whereas the play (11) is not “well-bracketed” because the
query(a is never complied with, as can be guessed from the
picture below:

q1 · q3 · true3 · true1

(1 1)

(a

(b b)(3 3)

We explain in§3 and§4 how we apply the well-bracketing
criterion devised in Proposition 1 in order to generalise
well-bracketing to a multi-bracketed framework.

Plan of the paper. We describe (§2) a categorical seman-
tics of resources in game semantics, and explain in what
sense the resulting topography refines both linear logic and
polarized logic. After that, we construct (§3) a compact-
closed (that is, self-dual) category of multi-bracketed Con-
way games and well-bracketed strategies, where the re-
source policy is enforced by multi-bracketing. From this,
we derive (§4) a model of our categorical semantics of re-
sources, using a family construction, and conclude (§5).

Acknowledgements. We would like to thank Martin Hy-
land together with Masahito Hasegawa, Olivier Laurent,
Laurent Regnier and Peter Selinger for stimulating discus-
sions at various stages of this work.

2 Categorical models of resources

We introduce now the notion oftensorial negationon a
symmetric monoidal category; and then explain how such
a category with negation may be equipped with additives
and various resource modalities. The first author describes
in [27] how to extract asyntaxof proofs from a categorical
semantics, using string diagrams and functorial boxes. The
recipe may be applied here to extract the syntax of a logic,
calledtensorial logic.However, we provide in Appendix a
sequent calculus for tensorial logic, in order to compare it
to linear logic [9] or polarized linear logic [23].

Tensorial negation. A tensorial negationon a symmetric
monoidal category(A,⊗, 1) is defined as a functor

¬ : A −→ Aop



together with a family of bijections

ϕA,B,C : A(A ⊗ B,¬C) ∼= A(A,¬(B ⊗ C))

natural inA, B andC. Given a negation, it is customary to
define the formulafalseas the object

⊥
def
= ¬ 1

obtained by “negating” the unit object1 of the monoidal
category. Note that we use the notation1 (instead ofI or
e) in order to remain consistent with the notations of linear
logic. Note also that the bijectionϕA,B,1 provides then the
categoryA with a one-to-one correspondence

ϕA,B,1 : A(A ⊗ B,⊥) ∼= A(A,¬B)

for all objectsA andB. For that reason, the definition of
a negation¬ is often replaced by the — somewhat too in-
formal — statement that “the object⊥ is exponentiable”
in the symmetric monoidal categoryA, with negation¬A

noted⊥A.

Self-adjunction. In his PhD thesis, Hayo Thielecke [35]
observes for the first time a fundamental “self-adjunction”
phenomenon, related to negation. This observation plays
then a key rôle in an unpublished work by Peter Selinger
and the first author [30] on polar categories, a categori-
cal semantics of polarized linear logic, continuations and
games. The same idea reappears recently in a nice, com-
prehensive study on polarized categories (=distributors)by
Robin Cockett and Robert Seely [8]. In our situation, the
“self-adjunction” phenomenon amounts to the fact that ev-
ery tensorial negation is left adjoint to the opposite functor

¬ : Aop −→ A (12)

because of the natural bijection

Aop(¬A, B) ∼= A(A,¬B).

Continuation monad. Every tensorial negation¬ in-
duces an adjunction, and thus a monad

¬¬ : A −→ A

This monad is called thecontinuation monadof the
negation. One fundamental fact observed by Eugenio
Moggi [31] is that the continuation monad isstrongbut not
commutative in general. By strong monad, we mean that
the monad¬¬ is equipped with a family of morphisms:

tA,B : A ⊗ ¬¬B −→ ¬¬ (A ⊗ B)

natural inA and B, and satisfying a series of coherence
properties. By commutative monad, we mean a strong
monad making the two canonical morphisms

¬¬A ⊗ ¬¬B ⇉ ¬¬ (A ⊗ B) (13)

coincide. A tensorial negation¬ is called commutative
when the continuation monad induced inA is commutative
— or equivalently, a monoidal monad in the lax sense.

Linear implication. A symmetric monoidal categoryA
with a tensorial negation¬ is not very far from being
monoidalclosed. It is possible indeed to define alinear
implication⊸ when its target¬B is a negated object:

A ⊸ ¬B
def
= ¬ (A ⊗ B).

In this way, the functor (12) defines what we call anexpo-
nential idealin the categoryA. When the functor is faith-
ful on objects and morphisms, we may identify this expo-
nential ideal with the subcategory ofnegated objectsin the
categoryA. The exponential ideal discussed in Guy Mc-
Cusker’s PhD thesis [26] arises precisely in this way. This
enables in particular to define the linear and intuitionistic
hierarchies on the arena games (8) and (9).

Continuation category. Every symmetric monoidal cate-
gory A equipped with a negation¬ induces acategory of
continuationsA¬ with the same objects asA, and mor-
phisms defined as

A¬(A, B)
def
= A(¬A,¬B).

Note that the categoryA¬ is the kleisli category associated
to the comonad inAop induced by the adjunction; and that
it is at the same time the opposite of the kleisli category as-
sociated to the continuation monad inA. Because the con-
tinuation monad is strong, the categoryA¬ is premonoidal
in the sense of John Power and Edmund Robinson [32]. It
should be noted that string diagrams in premonoidal cate-
gories are inherently related to control flow charts in soft-
ware engineering, as noticed by Alan Jeffrey [18].

Semantics of resources. A resource modalityon a sym-
metric monoidal category(A,⊗, e) is defined as an adjunc-
tion:

M

U

&&
⊥ A

F

gg (14)

where
• (M, •, u) is a symmetric monoidal category,

• U is a symmetric monoidal functor.

Recall that asymmetric monoidalfunctor U is a func-
tor which transports the symmetric monoidal struc-
ture of (M, •, u) to the symmetric monoidal structure
of (A,⊗, e), up to isomorphisms satisfying suitable coher-
ence properties. Another more conceptual definition of a re-
source modality is possible: it is an adjunction defined in the
2-category of symmetric monoidal categories,lax symmet-
ric monoidal functors, and monoidal transformations. Now,
the resource modality is called
• affinewhen the unitu is the terminal object of the cat-

egoryM,

• exponentialwhen the tensor product• is a cartesian
product, and the unitu is the terminal object of the
categoryM.



This definition of resource modality is inspired by the cat-
egorical semantics of linear logic, and more specifically by
Nick Benton’s notion of Linear-Non-Linear model [4] —
which may be reformulated now as a symmetric monoidal
closedcategoryA equipped with an exponential modality in
our sense. Very often, we will identify the resource modal-
ity and the induced comonad! = U ◦F on the categoryA.

Tensorial logic. In our philosophy, tensorial logic is en-
tirely described by its categorical semantics — which is de-
fined in the following way. First, every symmetric monoidal
categoryA equipped with a tensorial negation¬ defines a
model ofmultiplicativetensorial logic. Such a category de-
fines a model ofmultiplicative additivetensorial logic when
the categoryA has finite coproducts (noted⊕) which dis-
tribute over the tensor product: this means that the canoni-
cal morphisms

(A ⊗ B) ⊕ (A ⊗ C) −→ A ⊗ (B ⊕ C)

0 −→ A ⊗ 0
are isomorphisms. Then, a model of (full) tensorial logic is
defined as a model of multiplicative additive tensorial logic,
equipped with an affine resource modality (with comonad
noted !•w) as well as an exponential resource modality (with
comonad noted!•e).

The diagrammatic syntax of tensorial logic will be read-
ily extracted from its categorical definition, using the recipe
explained in [27]. However, the reader will find a se-
quent calculus of tensorial logic in Appendix, written in the
more familiar fashion of proof theory. Seen from that point
of view, the modality-free fragment of tensorial logic de-
scribes alinear variant of Girard’s LC [10] thus akin to lu-
dics [11] and more precisely to what Laurent calls MALLP
in his PhD thesis [23]. This convergence simply expresses
the fact that these systems are all based on tensors, sums
and linear continuations.

Arena games and classical logic. Starting from Thi-
elecke’s work, Selinger [33] designs the notion ofcontrol
categoryin order to axiomatize the categorical semantics
of classical logic. Then, prompted by a completeness re-
sult established by Martin Hofmann and Thomas Streicher
in [15], he proves a beautiful structure theorem, stating that
every control categoryC is the continuation categoryA¬

of a response categoryA. Now, a response categoryA —
where the monic requirement on the units (2) is relaxed —
is exactly the same thing as a model of multiplicative addi-
tive tensorial logic, where the tensor⊗ is cartesianand the
tensor unit1 is terminal.

A purely proof-theoretic analysis of classical logic leads
exactly to the same conclusion. Starting from Girard’s work
on polarities in LC [10] and ludics [11], Laurent devel-
oped a comprehensive analysis of polarities in logic, incor-
porating classical logic, control categories and (non-well-
bracketed) arena games [23, 24]. Now, it appears that Lau-

rent’s polarized logic LLP coincides with multiplicative ad-
ditive tensorial logic — where the monoidal structure is
cartesian. This is manifest in the monolateral formulation
of tensorial logic, see Appendix. We sum up below the dif-
ference between tensorial logic and classical logic in a very
schematic table:

Tensorial logic
⊗ is monoidal
¬ is tensorial

Classical logic
⊗ is cartesian
¬ is tensorial

Note that every resource modality (14) on a categoryA
equipped with a tensorial negation¬ induces a tensorial
negationF op ◦ ¬ ◦ U on the categoryM. This provides a
model of polarized linear logic, and thus of classical logic,
wheneverM is cartesian. This phenomenon underlies the
construction of a control category in [25], see also [12] for
another construction.

Linear logic. The continuation monadA 7→
O
¬

P
¬ A of

game semantics lifts an Opponent-starting gameA with an
Opponent move¬O followed by a Player move¬P . Now,
it appears that the Blass problem mentioned in§1 arises
precisely from the fact that the monad is strong, but not
commutative [30, 28]. Indeed, one obtains a game model
of (full) propositional linear logic byidentifying the two
canonical strategies (13) — this leading to a fully complete
model of linear logic expressed in the language of asyn-
chronous games [29].

This construction in game semantics has a nice categor-
ical counterpart. We already mentioned that the continu-
ation categoryA¬ inherits a premonoidal structure from
the symmetric monoidal structure ofA. Now, Hasegawa
Masahito shows (private communication) that the continua-
tion categoryA¬ equipped with this premonoidal structure
is ∗-autonomous if and only if the continuation monad is
commutative. The specialist will recognize here a categori-
fication of Girard’s phase space semantics [9]. Anyway, this
shows that linear logic is essentially tensorial logic in which
the tensorial negation is commutative.

Linear logic
⊗ is monoidal
¬ is commutative

In that situation, every resource modality on the categoryA
induces a resource modality on the∗-autonomous cate-
goryA¬, and thus a model of full linear logic.

3 Multi-bracketed Conway games

We define here and in§4 a game semantics with resource
modalities and fixpoints, in order to interpret recursion in
programming languages. We achieve this by construct-
ing first a compact-closed categoryB of multi-bracketed



Conway games, inspired from André Joyal’s pioneering
work [19]. The compact-closed structure ofB induces a
trace operator [20] which, in turn, provides enough fixpoints
in the category constructed in§4 in order to interpret the
language PCF enriched with resource modalities.

Conway games. A Conway game is an oriented rooted
graph(V, E, λ) consisting of a setV of vertices called the
positionsof the game, a setE ⊂ V × V of edges called the
movesof the game, a functionλ : E → {−1, +1} indicat-
ing whether a move belongs to Opponent (−1) or Proponent
(+1). We note⋆ the root of the underlying graph.

Path and play. A play is a path starting from the root⋆A

of the multi-bracketed game:

⋆A
m1−−→ x1

m2−−→ . . .
mk−1

−−−→ xk−1
mk−−→ xk (15)

Two paths are parallel when they have the same initial and
final positions. A play (15) isalternatingwhen:

∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).

Strategy. A strategyσ of a Conway game is defined as a
set of alternating plays of even length such that:
• σ contains the empty play,

• every nonempty play starts with an Opponent move,

• σ is closed by even-length prefix: for every plays, and
for all movesm, n,

s · m · n ∈ σ =⇒ s ∈ σ,

• σ is deterministic: for every plays, and for all
movesm, n, n′,

s · m · n ∈ σ ands · m · n′ ∈ σ =⇒ n = n′.

We write σ : A whenσ is a strategy ofA. Note that a
play in a Conway game is generally non-alternating, but that
alternation is required on the plays of a strategy.

Multi-bracketed games. A multi-bracketed game is a
Conway game equipped with
• a finite setQA(x) of queriesfor each positionx ∈ V

of the game,

• a functionλ(x) : QA(x) −→ {−1, +1} which as-
signs to every query inQA(x) a polarity which indi-
cates whether the query is made by Opponent (−1) or
Proponent (+1),

• for each movex
m
−→ y, a residualrelation

[m] ⊂ QA(x) × QA(y)

satisfying:

r[m]r1 and r[m]r2 =⇒ r1 = r2

r1[m]r and r2[m]r =⇒ r1 = r2

The definition of residuals is then extended to pathss : x ։

y in the usual way: by composition of relations. We then
define

r[s]
def
= {r′ | r[s]r′} and [s]r

def
= {r′ | r′[s]r}.

We say that a paths : x ։ y:

• complies with a queryr ∈ QA(x) whenr has no resid-
ual afters — that is,r[s] = ∅,

• initiates a queryr ∈ QA(y) whenr has no ancestor
befores — that is,[s]r = ∅.

We require that a movem only initiates queries of its own
polarity, and only complies with queries of the opposite po-
larity. In order to formalise that a residual of a query is
intuitively the query itself, we also require that two parallel
pathss andt induce the same residual relation:[s] = [t].
Finally, we require that there are no queries at the root:
QA(⋆) = ∅.

Resource function. Extending Conway games with
queries enables the definition of a resource function

κ = (κ+, κ−)

which counts, for every paths : x ։ y, the numberκ+(s)
(respectivelyκ−(s)) of Proponent (respectively Opponent)
queries inr ∈ QA(y) initiated by the paths — that is,
such that[s]r = ∅. The definition of multi-bracketed games
induces three cardinal properties ofκ±, which will replace
the very definition ofκ, and will play the rôle of axioms in
all our proofs – in particular, in the proof that the composite
of two well-bracketed strategies is also well-bracketed.

Property 1: accuracy.For all pathss : x ։ y and Propo-
nent movem : y → z,

κ−(m) = 0 and κ+(s · m) = κ+(s) + κ+(m),

as well as the dual equalities for Opponent moves.

Property 2: suffix domination.For all pathss : x ։ y and
t : y ։ z,

κ(t) ≤ κ(s · t).

Property 3: sub-additivity.For all pathss : x ։ y and
t : y ։ z,

κ(s · t) ≤ κ(s) + κ(t).

Accuracy holds because Player does not initiate Opponent
queries, and does not comply with Player queries. Suffix
domination says that a query cannot already have been com-
plied with. Sub-additivity expresses that composing two
paths does not increase the number of queries.

Well-bracketed plays and strategies. Once the resource
functionκ is defined on paths, it becomes possible to de-
fine awell-bracketed playas a play which satisfies the two
conditions stated in Proposition 1 of§1. So, the property
becomes a definition here. A strategyσ is then declared



well-bracketedwhen, for every plays ·m · t ·n of the strat-
egyσ wherem is an Opponent move andn is (necessarily)
a Proponent move:

κ+
A(m · t · n) = 0 =⇒ κ−

A(m · t · n) = 0.

Every well-bracketed strategyσ then preserves well-
bracketing in the following sense:

Lemma 1 Supposes · m · n ∈ σ and thats · m is well-
bracketed. Then,s · m · n is well-bracketed.

Hence, when Opponent and Proponent play according
to well-bracketed strategies, the resulting play is well-
bracketed.

Dual. Every multi-bracketed gameA induces adualgame
A∗ obtained by reversing the polarity of moves and queries.
Thus,(κ+

A∗ , κ
−
A∗) = (κ−

A, κ+
A).

Tensor product. The tensor productA⊗B of two multi-
bracketed gamesA andB is defined as:

- its positions are the pairs(x, y) noted x ⊗ y, ie.
VA⊗B = VA × VB with ⋆A⊗B = (⋆A, ⋆B).

- its moves are of two kinds:

x ⊗ y →

{

z ⊗ y if x → z in the gameA,

x ⊗ z if y → z in the gameB.

- its queries at positionx ⊗ y are the queries at posi-
tion x in the gameA and the queries at positiony in
the gameB: QA⊗B(x ⊗ y) = QA(x) ⊎ QB(y).

The polarities of moves and queries in the gameA ⊗ B

are inherited from the gamesA andB, and the residual re-
lation of a movem in the gameA ⊗ B is defined just in
the expected (pointwise) way. The unique multi-bracketed
game1 with {⋆} as underlying Conway game is the neutral
element of the tensor product. As usual in game seman-
tics, every plays in the gameA ⊗ B may be seen as the
interleaving of a plays|A in the gameA and a plays|B in
the gameB. More interestingly, the resource functionκ is
“tensorial” in the following sense:

κA⊗B(s) = κA(s|A) + κB(s|B).

Composition. We proceed as in [26, 13], and say thatu

is an interaction on three gamesA, B, C, this notedu ∈
intABC , when the projection ofu on each gameA∗ ⊗ B,
B∗ ⊗ C andA∗ ⊗ C is a play. Given two strategiesσ :
A∗ ⊗ B, τ : B∗ ⊗ C, we define the composition of these
strategies as follows:

σ; τ = {u|A∗⊗C | u ∈ intABC , u|A∗⊗B ∈ σ, u|B∗⊗C ∈ τ}

As usually, the composition of two strategies is a strat-
egy. More interestingly, we show that our notion of well-
bracketing is preserved by composition:

Proposition 2 The strategyσ; τ : A∗⊗C is well-bracketed
when the two strategiesσ : A∗ ⊗ B and τ : B∗ ⊗ C are
well-bracketed.

Proof: The proof is entirely based on the three cardinal
properties ofκ mentioned earlier. The proof appears in the
Master’s thesis of the second author [34].

The categoryB of multi-bracketed games. The cate-
gory B has multi-bracketed games as objects, and well-
bracketed strategiesσ of A∗⊗B as morphismsσ : A → B.
The identity strategy is the usual copycat strategy, defined
by André Joyal in Conway game [19]. The resulting cate-
goryB is compact-closed in the sense of [21] and thus ad-
mits a canonical trace operator, unique up to equivalence,
see [20] for details.

Negative and positive games. A multi-bracketed gameA
is called negativewhen all the moves starting from the
root ⋆A are Opponent moves; andpositivewhen its dual
gameA∗ is negative. The full subcategory of negative (resp.
positive) multi-bracketed games is notedB− (resp. B+).
For a multi-bracketed gameA, we writeA− for the nega-
tive game obtained by removing all the Player moves from
the root.

The exponential modality. Every multi-bracketed
gameA induces anexponentialgame!A as follows:

- its positions are the wordsw = x1 · · ·xk whose let-
ters are positionsxi of the gameA different from the
root ⋆A; the intuition is that the letterxi describes the
current position of theith copy of the game,

- its root⋆!A is the empty word,
- its movesw → w′ are either moves played in one

copy:
w1 x w2 → w1 y w2

wherex → y is a move in the gameA; or moves where
Opponent opens a new copy:

w → w x

where⋆A → x is an Opponent move inA.
- its queries at positionw = x1 · · ·xn are pairs(i, q)

consisting of an index1 ≤ i ≤ n and a queryq at
positionxi in the gameA.

The polarities of moves and queries are inherited from the
gameA in the expected way, and the residual relation is
defined as for the tensor product. Interestingly, the result-
ing multi-bracketed game!A defines the free commutative
comonoid associated to the well-bracketed gameA in the
categoryB. Hence, the categoryB defines a model of multi-
plicative exponential linear logic. This model isdegenerate
in the sense that the tensor product is equal to its dual, i.e.
(A ⊗ B)∗ = A∗ ⊗ B∗.

Fixpoints. The exponential modality together with the
traced symmetric monoidal structure onB defines a fixpoint
operator inB as shown by Hasegawa Masahito in [14]. Re-
mark that this construction does not require that the cate-
goryB is cartesian.



4 A game model with resources

We would like to construct a model of tensorial logic
based on negative multi-bracketed games. However it is
meaningless to construct an affine modality on the cate-
gory B− itself because its unit1 is already a terminal ob-
ject in the category. So we need to introduce the notion of
pointed game.

Pointed games. A pointed game may be seen in two
different ways: (1) as a positive multi-bracketed Conway
game, with a unique initial Player move, (2) as a negative
multi-bracketed Conway game, except that the hypothesis
that there are no queries at the root∗ is now relaxed for
Player queries. From now on, we adopt the first point of
view, and thus see a pointed game as a positive game with
a unique initial move. Now, a morphismσ : A −→ B

in the categoryB is calledtransversewhen, for every play
mn of length 2 in the strategyσ : A∗ ⊗ B, the Opponent
movem is in A and the Player moven is in B. We note
B• the subcategory ofB with pointed games as objects, and
well-bracketed transverse strategies as morphisms.

Coalesced tensor. GivenA, B ∈ B•, the coalesced tensor
A⊙B is the pointed game obtained fromA⊗B by synchro-
nising the two initial Player moves ofA andB. Remark
that the coalesced tensor product preserves affine games,
and coincides there with the tensor product ofB−. The cat-
egoryB• equipped with⊙ is symmetric monoidal. It is not
monoidal closed, but admits a tensorial negation. Besides,
it inherits a trace operator from the categoryB, which is
partial, but sufficient to interpret a linear PCF with resource
modalities.

Tensorial negation. The negation¬A of a pointed
gameA is the pointed game obtained by lifting the dual
gameA∗ with a Proponent movem which initiates one
query. Then, every initial Opponent move inA∗ complies
with this query.

Affine modality. A pointed gameA is calledaffinewhen
its unique initial Player move does not initiate any query.
Note thatB− is isomorphic to the full subcategory of affine
games in the categoryB•. The affine game!•wA associated
to a pointed gameA is defined by removing all the queries
initiated by the first move — as well as their residuals. This
defines an affine resource modality onB•.

Exponential modality. The exponential modality!•e on
pointed games is obtained by composing the two adjunc-
tions underlying the comonads!•w and! (defined in§3).

M

⊆

''
⊥ B−

!

gg

⊆

''
⊥ B•

!•w

gg

In particular, given a pointed gameA, !•eA is defined as

!•eA
def
= ! ( !•wA)

Free coproducts. The categoryB• lacks coproducts to be
a model of (full) tensorial logic. We adjust this by con-
structing its free completion, notedFam(B•), under small
coproducts [3]. Given a categoryC, the objects ofFam(C)
are families{Ai|i ∈ I} of objects of the category. A mor-
phism from{Ai|i ∈ I} to{Bj|j ∈ J} consists of a reindex-
ing functionf : I → J together with a family of morphisms
{fi : Ai → Bf(i)|i ∈ I} of the categoryC.

Fam is a pseudo-commutative monad onCat [17].
Hence, the2-monad for symmetric monoidal categories dis-
tributes overFam. Consequently, (1) the categoryFam(C)
inherits the symmetric monoidal structure of a symmetric
monoidal categoryC, and (2) the coproduct ofFam(C) dis-
tributes over that tensor product, and (3)Fam preserves
monoidal adjunctions. Besides,Fam preserves categories
with finite products and categories with a terminal ob-
ject. The construction thus preserves affine and exponential
modalities in the sense of§2. Gathering all those remarks,
we obtain that:

Proposition 3 Fam(B•) is a model of tensorial logic.

Moreover, the categoryFam(B•) has a fixpoint operator
restricted on its singleton objects — that is, objects{Ai|i ∈
I} whereI is singleton. This is sufficient to interpret a lin-
ear variant of the language PCF equipped with affine and
exponential resource modalities, in the categoryFam(B•).

5 Conclusion

In this paper, we integrate resource modalities in game
semantics, in just the same way as they are integrated in
linear logic. This is achieved by reunderstanding the very
topography of the field. More specifically, linear logic is re-
laxed into tensorial logic, where the involutive negation of
linear logic is replaced by a tensorial negation. Once this
performed, it is possible to keep the best of linear logic: re-
source modalities, etc. but transported in the language of
games and continuations. Then, linear logic coincides with
tensorial logic with the additional axiom that the continu-
ation monad is commutative. In that sense, tensorial logic
is more primitive than linear logic, in the same way that
groups are more primitive than abelian groups. This opens
a new horizon to the subject. The whole point indeed is to
understand in the future how the theory of linear logic ex-
tends to this relaxed framework. We illustrate this approach
here by extending well-bracketing in arena games to the full
flavour of resources in linear logic, using multi-bracketing.
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A sequent calculus for tensorial logic

In the bilateral formulation of tensorial logic, the se-
quents are of two forms:Γ ⊢ A whereΓ is a context, andA
is a formula;Γ ⊢ whereΓ is a context (the notation[A]
expresses the unessential presence ofA in the sequent).

Γ ⊢ A ∆ ⊢ B
⊗-Right

Γ, ∆ ⊢ A ⊗ B

Γ1, A, B, Γ2 ⊢ [C]
⊗-Left

Γ1, A ⊗ B, Γ2 ⊢ [C]

Unit-Right
⊢ 1

Γ ⊢ [A]
Unit-Left

Γ, 1 ⊢ [A]

Γ, A ⊢
¬-Right

Γ ⊢ ¬A

Γ ⊢ A
¬-Left

Γ,¬A ⊢

Axiom
A ⊢ A

Γ ⊢ A A, ∆ ⊢ [B]
Cut

Γ, ∆ ⊢ [B]

Γ ⊢ A
⊕-Right-1

Γ ⊢ A ⊕ B

Γ ⊢ B
⊕-Right-2

Γ ⊢ A ⊕ B

Γ, A ⊢ C Γ, B ⊢ C
⊕-Left

Γ, A ⊕ B ⊢ C

No right introduction rule for0 0-Left
Γ, 0 ⊢ A

!•eΓ ⊢ A
Strengthening

!•eΓ ⊢ !•eA

Γ, A ⊢ [B]
Dereliction

Γ, !•eA ⊢ [B]

Γ ⊢ [B]
Weakening

Γ, !•eA ⊢ [B]

Γ, !•eA, !•eA ⊢ [B]
Contraction

Γ, !•eA ⊢ [B]

!•wΓ ⊢ A
Strengthening

!•wΓ ⊢ !•wA

Γ, A ⊢ [B]
Dereliction

Γ, !•wA ⊢ [B]

Γ ⊢ [B]
Weakening

Γ, !•wA ⊢ [B]

The monolateral formulation requires to polarize formulas,
and to clone each construct into a negative counterpart.

Positives 0 | 1 | ↓ L | P ⊗ Q | P ⊕ Q | !•wP | !•eP
Negatives ⊥ | ⊤ | ↑ P | L Γ M | L&M | ?•wL | ?•eL

It is then possible to reformulate all the sequent above, as
illustrated below by the right and left introduction of⊗.

⊢ Γ, P ⊢ ∆, Q
⊗ -Right

⊢ Γ, ∆, P ⊗ Q

⊢ Γ1, L, M, Γ2, [P ]
Γ -Left

⊢ Γ1, L Γ M, Γ2, [P ]


